Properties

Label 1098.2.d.a.487.2
Level $1098$
Weight $2$
Character 1098.487
Analytic conductor $8.768$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1098,2,Mod(487,1098)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1098, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1098.487");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1098 = 2 \cdot 3^{2} \cdot 61 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1098.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.76757414194\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 122)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 487.2
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1098.487
Dual form 1098.2.d.a.487.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} +3.00000 q^{5} +3.00000i q^{7} -1.00000i q^{8} +O(q^{10})\) \(q+1.00000i q^{2} -1.00000 q^{4} +3.00000 q^{5} +3.00000i q^{7} -1.00000i q^{8} +3.00000i q^{10} +3.00000i q^{11} -5.00000 q^{13} -3.00000 q^{14} +1.00000 q^{16} +6.00000i q^{17} -2.00000 q^{19} -3.00000 q^{20} -3.00000 q^{22} -9.00000i q^{23} +4.00000 q^{25} -5.00000i q^{26} -3.00000i q^{28} +6.00000i q^{29} +1.00000i q^{32} -6.00000 q^{34} +9.00000i q^{35} +6.00000i q^{37} -2.00000i q^{38} -3.00000i q^{40} +9.00000 q^{41} -3.00000i q^{44} +9.00000 q^{46} -2.00000 q^{49} +4.00000i q^{50} +5.00000 q^{52} +9.00000i q^{55} +3.00000 q^{56} -6.00000 q^{58} -3.00000i q^{59} +(-5.00000 + 6.00000i) q^{61} -1.00000 q^{64} -15.0000 q^{65} +3.00000i q^{67} -6.00000i q^{68} -9.00000 q^{70} -7.00000 q^{73} -6.00000 q^{74} +2.00000 q^{76} -9.00000 q^{77} -15.0000i q^{79} +3.00000 q^{80} +9.00000i q^{82} +12.0000 q^{83} +18.0000i q^{85} +3.00000 q^{88} -15.0000i q^{91} +9.00000i q^{92} -6.00000 q^{95} +10.0000 q^{97} -2.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} + 6 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{4} + 6 q^{5} - 10 q^{13} - 6 q^{14} + 2 q^{16} - 4 q^{19} - 6 q^{20} - 6 q^{22} + 8 q^{25} - 12 q^{34} + 18 q^{41} + 18 q^{46} - 4 q^{49} + 10 q^{52} + 6 q^{56} - 12 q^{58} - 10 q^{61} - 2 q^{64} - 30 q^{65} - 18 q^{70} - 14 q^{73} - 12 q^{74} + 4 q^{76} - 18 q^{77} + 6 q^{80} + 24 q^{83} + 6 q^{88} - 12 q^{95} + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1098\mathbb{Z}\right)^\times\).

\(n\) \(245\) \(307\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 3.00000 1.34164 0.670820 0.741620i \(-0.265942\pi\)
0.670820 + 0.741620i \(0.265942\pi\)
\(6\) 0 0
\(7\) 3.00000i 1.13389i 0.823754 + 0.566947i \(0.191875\pi\)
−0.823754 + 0.566947i \(0.808125\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 3.00000i 0.948683i
\(11\) 3.00000i 0.904534i 0.891883 + 0.452267i \(0.149385\pi\)
−0.891883 + 0.452267i \(0.850615\pi\)
\(12\) 0 0
\(13\) −5.00000 −1.38675 −0.693375 0.720577i \(-0.743877\pi\)
−0.693375 + 0.720577i \(0.743877\pi\)
\(14\) −3.00000 −0.801784
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 6.00000i 1.45521i 0.685994 + 0.727607i \(0.259367\pi\)
−0.685994 + 0.727607i \(0.740633\pi\)
\(18\) 0 0
\(19\) −2.00000 −0.458831 −0.229416 0.973329i \(-0.573682\pi\)
−0.229416 + 0.973329i \(0.573682\pi\)
\(20\) −3.00000 −0.670820
\(21\) 0 0
\(22\) −3.00000 −0.639602
\(23\) 9.00000i 1.87663i −0.345782 0.938315i \(-0.612386\pi\)
0.345782 0.938315i \(-0.387614\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 5.00000i 0.980581i
\(27\) 0 0
\(28\) 3.00000i 0.566947i
\(29\) 6.00000i 1.11417i 0.830455 + 0.557086i \(0.188081\pi\)
−0.830455 + 0.557086i \(0.811919\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) −6.00000 −1.02899
\(35\) 9.00000i 1.52128i
\(36\) 0 0
\(37\) 6.00000i 0.986394i 0.869918 + 0.493197i \(0.164172\pi\)
−0.869918 + 0.493197i \(0.835828\pi\)
\(38\) 2.00000i 0.324443i
\(39\) 0 0
\(40\) 3.00000i 0.474342i
\(41\) 9.00000 1.40556 0.702782 0.711405i \(-0.251941\pi\)
0.702782 + 0.711405i \(0.251941\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 3.00000i 0.452267i
\(45\) 0 0
\(46\) 9.00000 1.32698
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −2.00000 −0.285714
\(50\) 4.00000i 0.565685i
\(51\) 0 0
\(52\) 5.00000 0.693375
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 9.00000i 1.21356i
\(56\) 3.00000 0.400892
\(57\) 0 0
\(58\) −6.00000 −0.787839
\(59\) 3.00000i 0.390567i −0.980747 0.195283i \(-0.937437\pi\)
0.980747 0.195283i \(-0.0625627\pi\)
\(60\) 0 0
\(61\) −5.00000 + 6.00000i −0.640184 + 0.768221i
\(62\) 0 0
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −15.0000 −1.86052
\(66\) 0 0
\(67\) 3.00000i 0.366508i 0.983066 + 0.183254i \(0.0586631\pi\)
−0.983066 + 0.183254i \(0.941337\pi\)
\(68\) 6.00000i 0.727607i
\(69\) 0 0
\(70\) −9.00000 −1.07571
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) −7.00000 −0.819288 −0.409644 0.912245i \(-0.634347\pi\)
−0.409644 + 0.912245i \(0.634347\pi\)
\(74\) −6.00000 −0.697486
\(75\) 0 0
\(76\) 2.00000 0.229416
\(77\) −9.00000 −1.02565
\(78\) 0 0
\(79\) 15.0000i 1.68763i −0.536633 0.843816i \(-0.680304\pi\)
0.536633 0.843816i \(-0.319696\pi\)
\(80\) 3.00000 0.335410
\(81\) 0 0
\(82\) 9.00000i 0.993884i
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) 18.0000i 1.95237i
\(86\) 0 0
\(87\) 0 0
\(88\) 3.00000 0.319801
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 15.0000i 1.57243i
\(92\) 9.00000i 0.938315i
\(93\) 0 0
\(94\) 0 0
\(95\) −6.00000 −0.615587
\(96\) 0 0
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) 2.00000i 0.202031i
\(99\) 0 0
\(100\) −4.00000 −0.400000
\(101\) 18.0000i 1.79107i 0.444994 + 0.895533i \(0.353206\pi\)
−0.444994 + 0.895533i \(0.646794\pi\)
\(102\) 0 0
\(103\) −14.0000 −1.37946 −0.689730 0.724066i \(-0.742271\pi\)
−0.689730 + 0.724066i \(0.742271\pi\)
\(104\) 5.00000i 0.490290i
\(105\) 0 0
\(106\) 0 0
\(107\) 12.0000 1.16008 0.580042 0.814587i \(-0.303036\pi\)
0.580042 + 0.814587i \(0.303036\pi\)
\(108\) 0 0
\(109\) 11.0000 1.05361 0.526804 0.849987i \(-0.323390\pi\)
0.526804 + 0.849987i \(0.323390\pi\)
\(110\) −9.00000 −0.858116
\(111\) 0 0
\(112\) 3.00000i 0.283473i
\(113\) −3.00000 −0.282216 −0.141108 0.989994i \(-0.545067\pi\)
−0.141108 + 0.989994i \(0.545067\pi\)
\(114\) 0 0
\(115\) 27.0000i 2.51776i
\(116\) 6.00000i 0.557086i
\(117\) 0 0
\(118\) 3.00000 0.276172
\(119\) −18.0000 −1.65006
\(120\) 0 0
\(121\) 2.00000 0.181818
\(122\) −6.00000 5.00000i −0.543214 0.452679i
\(123\) 0 0
\(124\) 0 0
\(125\) −3.00000 −0.268328
\(126\) 0 0
\(127\) −2.00000 −0.177471 −0.0887357 0.996055i \(-0.528283\pi\)
−0.0887357 + 0.996055i \(0.528283\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) 15.0000i 1.31559i
\(131\) −18.0000 −1.57267 −0.786334 0.617802i \(-0.788023\pi\)
−0.786334 + 0.617802i \(0.788023\pi\)
\(132\) 0 0
\(133\) 6.00000i 0.520266i
\(134\) −3.00000 −0.259161
\(135\) 0 0
\(136\) 6.00000 0.514496
\(137\) 3.00000 0.256307 0.128154 0.991754i \(-0.459095\pi\)
0.128154 + 0.991754i \(0.459095\pi\)
\(138\) 0 0
\(139\) 15.0000i 1.27228i 0.771572 + 0.636142i \(0.219471\pi\)
−0.771572 + 0.636142i \(0.780529\pi\)
\(140\) 9.00000i 0.760639i
\(141\) 0 0
\(142\) 0 0
\(143\) 15.0000i 1.25436i
\(144\) 0 0
\(145\) 18.0000i 1.49482i
\(146\) 7.00000i 0.579324i
\(147\) 0 0
\(148\) 6.00000i 0.493197i
\(149\) 21.0000 1.72039 0.860194 0.509968i \(-0.170343\pi\)
0.860194 + 0.509968i \(0.170343\pi\)
\(150\) 0 0
\(151\) 3.00000i 0.244137i 0.992522 + 0.122068i \(0.0389527\pi\)
−0.992522 + 0.122068i \(0.961047\pi\)
\(152\) 2.00000i 0.162221i
\(153\) 0 0
\(154\) 9.00000i 0.725241i
\(155\) 0 0
\(156\) 0 0
\(157\) 18.0000i 1.43656i −0.695756 0.718278i \(-0.744931\pi\)
0.695756 0.718278i \(-0.255069\pi\)
\(158\) 15.0000 1.19334
\(159\) 0 0
\(160\) 3.00000i 0.237171i
\(161\) 27.0000 2.12790
\(162\) 0 0
\(163\) −2.00000 −0.156652 −0.0783260 0.996928i \(-0.524958\pi\)
−0.0783260 + 0.996928i \(0.524958\pi\)
\(164\) −9.00000 −0.702782
\(165\) 0 0
\(166\) 12.0000i 0.931381i
\(167\) 6.00000 0.464294 0.232147 0.972681i \(-0.425425\pi\)
0.232147 + 0.972681i \(0.425425\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) −18.0000 −1.38054
\(171\) 0 0
\(172\) 0 0
\(173\) 24.0000i 1.82469i −0.409426 0.912343i \(-0.634271\pi\)
0.409426 0.912343i \(-0.365729\pi\)
\(174\) 0 0
\(175\) 12.0000i 0.907115i
\(176\) 3.00000i 0.226134i
\(177\) 0 0
\(178\) 0 0
\(179\) 24.0000 1.79384 0.896922 0.442189i \(-0.145798\pi\)
0.896922 + 0.442189i \(0.145798\pi\)
\(180\) 0 0
\(181\) 12.0000i 0.891953i 0.895045 + 0.445976i \(0.147144\pi\)
−0.895045 + 0.445976i \(0.852856\pi\)
\(182\) 15.0000 1.11187
\(183\) 0 0
\(184\) −9.00000 −0.663489
\(185\) 18.0000i 1.32339i
\(186\) 0 0
\(187\) −18.0000 −1.31629
\(188\) 0 0
\(189\) 0 0
\(190\) 6.00000i 0.435286i
\(191\) 3.00000i 0.217072i −0.994092 0.108536i \(-0.965384\pi\)
0.994092 0.108536i \(-0.0346163\pi\)
\(192\) 0 0
\(193\) 12.0000i 0.863779i −0.901927 0.431889i \(-0.857847\pi\)
0.901927 0.431889i \(-0.142153\pi\)
\(194\) 10.0000i 0.717958i
\(195\) 0 0
\(196\) 2.00000 0.142857
\(197\) 3.00000 0.213741 0.106871 0.994273i \(-0.465917\pi\)
0.106871 + 0.994273i \(0.465917\pi\)
\(198\) 0 0
\(199\) 20.0000 1.41776 0.708881 0.705328i \(-0.249200\pi\)
0.708881 + 0.705328i \(0.249200\pi\)
\(200\) 4.00000i 0.282843i
\(201\) 0 0
\(202\) −18.0000 −1.26648
\(203\) −18.0000 −1.26335
\(204\) 0 0
\(205\) 27.0000 1.88576
\(206\) 14.0000i 0.975426i
\(207\) 0 0
\(208\) −5.00000 −0.346688
\(209\) 6.00000i 0.415029i
\(210\) 0 0
\(211\) 12.0000i 0.826114i −0.910705 0.413057i \(-0.864461\pi\)
0.910705 0.413057i \(-0.135539\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 12.0000i 0.820303i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 11.0000i 0.745014i
\(219\) 0 0
\(220\) 9.00000i 0.606780i
\(221\) 30.0000i 2.01802i
\(222\) 0 0
\(223\) 9.00000i 0.602685i 0.953516 + 0.301342i \(0.0974347\pi\)
−0.953516 + 0.301342i \(0.902565\pi\)
\(224\) −3.00000 −0.200446
\(225\) 0 0
\(226\) 3.00000i 0.199557i
\(227\) 3.00000i 0.199117i 0.995032 + 0.0995585i \(0.0317430\pi\)
−0.995032 + 0.0995585i \(0.968257\pi\)
\(228\) 0 0
\(229\) 13.0000 0.859064 0.429532 0.903052i \(-0.358679\pi\)
0.429532 + 0.903052i \(0.358679\pi\)
\(230\) 27.0000 1.78033
\(231\) 0 0
\(232\) 6.00000 0.393919
\(233\) 6.00000i 0.393073i 0.980497 + 0.196537i \(0.0629694\pi\)
−0.980497 + 0.196537i \(0.937031\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 3.00000i 0.195283i
\(237\) 0 0
\(238\) 18.0000i 1.16677i
\(239\) 6.00000 0.388108 0.194054 0.980991i \(-0.437836\pi\)
0.194054 + 0.980991i \(0.437836\pi\)
\(240\) 0 0
\(241\) 1.00000 0.0644157 0.0322078 0.999481i \(-0.489746\pi\)
0.0322078 + 0.999481i \(0.489746\pi\)
\(242\) 2.00000i 0.128565i
\(243\) 0 0
\(244\) 5.00000 6.00000i 0.320092 0.384111i
\(245\) −6.00000 −0.383326
\(246\) 0 0
\(247\) 10.0000 0.636285
\(248\) 0 0
\(249\) 0 0
\(250\) 3.00000i 0.189737i
\(251\) 24.0000i 1.51487i −0.652913 0.757433i \(-0.726453\pi\)
0.652913 0.757433i \(-0.273547\pi\)
\(252\) 0 0
\(253\) 27.0000 1.69748
\(254\) 2.00000i 0.125491i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 6.00000 0.374270 0.187135 0.982334i \(-0.440080\pi\)
0.187135 + 0.982334i \(0.440080\pi\)
\(258\) 0 0
\(259\) −18.0000 −1.11847
\(260\) 15.0000 0.930261
\(261\) 0 0
\(262\) 18.0000i 1.11204i
\(263\) −18.0000 −1.10993 −0.554964 0.831875i \(-0.687268\pi\)
−0.554964 + 0.831875i \(0.687268\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 6.00000 0.367884
\(267\) 0 0
\(268\) 3.00000i 0.183254i
\(269\) 6.00000 0.365826 0.182913 0.983129i \(-0.441447\pi\)
0.182913 + 0.983129i \(0.441447\pi\)
\(270\) 0 0
\(271\) 2.00000 0.121491 0.0607457 0.998153i \(-0.480652\pi\)
0.0607457 + 0.998153i \(0.480652\pi\)
\(272\) 6.00000i 0.363803i
\(273\) 0 0
\(274\) 3.00000i 0.181237i
\(275\) 12.0000i 0.723627i
\(276\) 0 0
\(277\) 18.0000i 1.08152i 0.841178 + 0.540758i \(0.181862\pi\)
−0.841178 + 0.540758i \(0.818138\pi\)
\(278\) −15.0000 −0.899640
\(279\) 0 0
\(280\) 9.00000 0.537853
\(281\) 12.0000i 0.715860i 0.933748 + 0.357930i \(0.116517\pi\)
−0.933748 + 0.357930i \(0.883483\pi\)
\(282\) 0 0
\(283\) 14.0000 0.832214 0.416107 0.909316i \(-0.363394\pi\)
0.416107 + 0.909316i \(0.363394\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 15.0000 0.886969
\(287\) 27.0000i 1.59376i
\(288\) 0 0
\(289\) −19.0000 −1.11765
\(290\) −18.0000 −1.05700
\(291\) 0 0
\(292\) 7.00000 0.409644
\(293\) 30.0000 1.75262 0.876309 0.481749i \(-0.159998\pi\)
0.876309 + 0.481749i \(0.159998\pi\)
\(294\) 0 0
\(295\) 9.00000i 0.524000i
\(296\) 6.00000 0.348743
\(297\) 0 0
\(298\) 21.0000i 1.21650i
\(299\) 45.0000i 2.60242i
\(300\) 0 0
\(301\) 0 0
\(302\) −3.00000 −0.172631
\(303\) 0 0
\(304\) −2.00000 −0.114708
\(305\) −15.0000 + 18.0000i −0.858898 + 1.03068i
\(306\) 0 0
\(307\) 27.0000i 1.54097i −0.637457 0.770486i \(-0.720014\pi\)
0.637457 0.770486i \(-0.279986\pi\)
\(308\) 9.00000 0.512823
\(309\) 0 0
\(310\) 0 0
\(311\) 3.00000i 0.170114i 0.996376 + 0.0850572i \(0.0271073\pi\)
−0.996376 + 0.0850572i \(0.972893\pi\)
\(312\) 0 0
\(313\) 12.0000i 0.678280i −0.940736 0.339140i \(-0.889864\pi\)
0.940736 0.339140i \(-0.110136\pi\)
\(314\) 18.0000 1.01580
\(315\) 0 0
\(316\) 15.0000i 0.843816i
\(317\) −18.0000 −1.01098 −0.505490 0.862832i \(-0.668688\pi\)
−0.505490 + 0.862832i \(0.668688\pi\)
\(318\) 0 0
\(319\) −18.0000 −1.00781
\(320\) −3.00000 −0.167705
\(321\) 0 0
\(322\) 27.0000i 1.50465i
\(323\) 12.0000i 0.667698i
\(324\) 0 0
\(325\) −20.0000 −1.10940
\(326\) 2.00000i 0.110770i
\(327\) 0 0
\(328\) 9.00000i 0.496942i
\(329\) 0 0
\(330\) 0 0
\(331\) 3.00000i 0.164895i 0.996595 + 0.0824475i \(0.0262737\pi\)
−0.996595 + 0.0824475i \(0.973726\pi\)
\(332\) −12.0000 −0.658586
\(333\) 0 0
\(334\) 6.00000i 0.328305i
\(335\) 9.00000i 0.491723i
\(336\) 0 0
\(337\) 12.0000i 0.653682i −0.945079 0.326841i \(-0.894016\pi\)
0.945079 0.326841i \(-0.105984\pi\)
\(338\) 12.0000i 0.652714i
\(339\) 0 0
\(340\) 18.0000i 0.976187i
\(341\) 0 0
\(342\) 0 0
\(343\) 15.0000i 0.809924i
\(344\) 0 0
\(345\) 0 0
\(346\) 24.0000 1.29025
\(347\) 6.00000 0.322097 0.161048 0.986947i \(-0.448512\pi\)
0.161048 + 0.986947i \(0.448512\pi\)
\(348\) 0 0
\(349\) 6.00000i 0.321173i 0.987022 + 0.160586i \(0.0513385\pi\)
−0.987022 + 0.160586i \(0.948662\pi\)
\(350\) −12.0000 −0.641427
\(351\) 0 0
\(352\) −3.00000 −0.159901
\(353\) 3.00000 0.159674 0.0798369 0.996808i \(-0.474560\pi\)
0.0798369 + 0.996808i \(0.474560\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 24.0000i 1.26844i
\(359\) 24.0000i 1.26667i −0.773877 0.633336i \(-0.781685\pi\)
0.773877 0.633336i \(-0.218315\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) −12.0000 −0.630706
\(363\) 0 0
\(364\) 15.0000i 0.786214i
\(365\) −21.0000 −1.09919
\(366\) 0 0
\(367\) −8.00000 −0.417597 −0.208798 0.977959i \(-0.566955\pi\)
−0.208798 + 0.977959i \(0.566955\pi\)
\(368\) 9.00000i 0.469157i
\(369\) 0 0
\(370\) −18.0000 −0.935775
\(371\) 0 0
\(372\) 0 0
\(373\) 30.0000i 1.55334i −0.629907 0.776671i \(-0.716907\pi\)
0.629907 0.776671i \(-0.283093\pi\)
\(374\) 18.0000i 0.930758i
\(375\) 0 0
\(376\) 0 0
\(377\) 30.0000i 1.54508i
\(378\) 0 0
\(379\) 2.00000 0.102733 0.0513665 0.998680i \(-0.483642\pi\)
0.0513665 + 0.998680i \(0.483642\pi\)
\(380\) 6.00000 0.307794
\(381\) 0 0
\(382\) 3.00000 0.153493
\(383\) 9.00000i 0.459879i −0.973205 0.229939i \(-0.926147\pi\)
0.973205 0.229939i \(-0.0738528\pi\)
\(384\) 0 0
\(385\) −27.0000 −1.37605
\(386\) 12.0000 0.610784
\(387\) 0 0
\(388\) −10.0000 −0.507673
\(389\) 12.0000i 0.608424i −0.952604 0.304212i \(-0.901607\pi\)
0.952604 0.304212i \(-0.0983931\pi\)
\(390\) 0 0
\(391\) 54.0000 2.73090
\(392\) 2.00000i 0.101015i
\(393\) 0 0
\(394\) 3.00000i 0.151138i
\(395\) 45.0000i 2.26420i
\(396\) 0 0
\(397\) 18.0000i 0.903394i −0.892171 0.451697i \(-0.850819\pi\)
0.892171 0.451697i \(-0.149181\pi\)
\(398\) 20.0000i 1.00251i
\(399\) 0 0
\(400\) 4.00000 0.200000
\(401\) 24.0000i 1.19850i 0.800561 + 0.599251i \(0.204535\pi\)
−0.800561 + 0.599251i \(0.795465\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 18.0000i 0.895533i
\(405\) 0 0
\(406\) 18.0000i 0.893325i
\(407\) −18.0000 −0.892227
\(408\) 0 0
\(409\) 12.0000i 0.593362i 0.954977 + 0.296681i \(0.0958798\pi\)
−0.954977 + 0.296681i \(0.904120\pi\)
\(410\) 27.0000i 1.33343i
\(411\) 0 0
\(412\) 14.0000 0.689730
\(413\) 9.00000 0.442861
\(414\) 0 0
\(415\) 36.0000 1.76717
\(416\) 5.00000i 0.245145i
\(417\) 0 0
\(418\) 6.00000 0.293470
\(419\) 12.0000i 0.586238i −0.956076 0.293119i \(-0.905307\pi\)
0.956076 0.293119i \(-0.0946933\pi\)
\(420\) 0 0
\(421\) 6.00000i 0.292422i −0.989253 0.146211i \(-0.953292\pi\)
0.989253 0.146211i \(-0.0467079\pi\)
\(422\) 12.0000 0.584151
\(423\) 0 0
\(424\) 0 0
\(425\) 24.0000i 1.16417i
\(426\) 0 0
\(427\) −18.0000 15.0000i −0.871081 0.725901i
\(428\) −12.0000 −0.580042
\(429\) 0 0
\(430\) 0 0
\(431\) 12.0000 0.578020 0.289010 0.957326i \(-0.406674\pi\)
0.289010 + 0.957326i \(0.406674\pi\)
\(432\) 0 0
\(433\) 36.0000i 1.73005i −0.501729 0.865025i \(-0.667303\pi\)
0.501729 0.865025i \(-0.332697\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −11.0000 −0.526804
\(437\) 18.0000i 0.861057i
\(438\) 0 0
\(439\) −10.0000 −0.477274 −0.238637 0.971109i \(-0.576701\pi\)
−0.238637 + 0.971109i \(0.576701\pi\)
\(440\) 9.00000 0.429058
\(441\) 0 0
\(442\) 30.0000 1.42695
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −9.00000 −0.426162
\(447\) 0 0
\(448\) 3.00000i 0.141737i
\(449\) −33.0000 −1.55737 −0.778683 0.627417i \(-0.784112\pi\)
−0.778683 + 0.627417i \(0.784112\pi\)
\(450\) 0 0
\(451\) 27.0000i 1.27138i
\(452\) 3.00000 0.141108
\(453\) 0 0
\(454\) −3.00000 −0.140797
\(455\) 45.0000i 2.10963i
\(456\) 0 0
\(457\) 18.0000i 0.842004i 0.907060 + 0.421002i \(0.138322\pi\)
−0.907060 + 0.421002i \(0.861678\pi\)
\(458\) 13.0000i 0.607450i
\(459\) 0 0
\(460\) 27.0000i 1.25888i
\(461\) 18.0000 0.838344 0.419172 0.907907i \(-0.362320\pi\)
0.419172 + 0.907907i \(0.362320\pi\)
\(462\) 0 0
\(463\) −32.0000 −1.48717 −0.743583 0.668644i \(-0.766875\pi\)
−0.743583 + 0.668644i \(0.766875\pi\)
\(464\) 6.00000i 0.278543i
\(465\) 0 0
\(466\) −6.00000 −0.277945
\(467\) 9.00000i 0.416470i 0.978079 + 0.208235i \(0.0667719\pi\)
−0.978079 + 0.208235i \(0.933228\pi\)
\(468\) 0 0
\(469\) −9.00000 −0.415581
\(470\) 0 0
\(471\) 0 0
\(472\) −3.00000 −0.138086
\(473\) 0 0
\(474\) 0 0
\(475\) −8.00000 −0.367065
\(476\) 18.0000 0.825029
\(477\) 0 0
\(478\) 6.00000i 0.274434i
\(479\) −12.0000 −0.548294 −0.274147 0.961688i \(-0.588395\pi\)
−0.274147 + 0.961688i \(0.588395\pi\)
\(480\) 0 0
\(481\) 30.0000i 1.36788i
\(482\) 1.00000i 0.0455488i
\(483\) 0 0
\(484\) −2.00000 −0.0909091
\(485\) 30.0000 1.36223
\(486\) 0 0
\(487\) 2.00000 0.0906287 0.0453143 0.998973i \(-0.485571\pi\)
0.0453143 + 0.998973i \(0.485571\pi\)
\(488\) 6.00000 + 5.00000i 0.271607 + 0.226339i
\(489\) 0 0
\(490\) 6.00000i 0.271052i
\(491\) −6.00000 −0.270776 −0.135388 0.990793i \(-0.543228\pi\)
−0.135388 + 0.990793i \(0.543228\pi\)
\(492\) 0 0
\(493\) −36.0000 −1.62136
\(494\) 10.0000i 0.449921i
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 27.0000i 1.20869i 0.796724 + 0.604343i \(0.206564\pi\)
−0.796724 + 0.604343i \(0.793436\pi\)
\(500\) 3.00000 0.134164
\(501\) 0 0
\(502\) 24.0000 1.07117
\(503\) −6.00000 −0.267527 −0.133763 0.991013i \(-0.542706\pi\)
−0.133763 + 0.991013i \(0.542706\pi\)
\(504\) 0 0
\(505\) 54.0000i 2.40297i
\(506\) 27.0000i 1.20030i
\(507\) 0 0
\(508\) 2.00000 0.0887357
\(509\) 18.0000i 0.797836i −0.916987 0.398918i \(-0.869386\pi\)
0.916987 0.398918i \(-0.130614\pi\)
\(510\) 0 0
\(511\) 21.0000i 0.928985i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 6.00000i 0.264649i
\(515\) −42.0000 −1.85074
\(516\) 0 0
\(517\) 0 0
\(518\) 18.0000i 0.790875i
\(519\) 0 0
\(520\) 15.0000i 0.657794i
\(521\) 18.0000i 0.788594i 0.918983 + 0.394297i \(0.129012\pi\)
−0.918983 + 0.394297i \(0.870988\pi\)
\(522\) 0 0
\(523\) 33.0000i 1.44299i 0.692420 + 0.721495i \(0.256545\pi\)
−0.692420 + 0.721495i \(0.743455\pi\)
\(524\) 18.0000 0.786334
\(525\) 0 0
\(526\) 18.0000i 0.784837i
\(527\) 0 0
\(528\) 0 0
\(529\) −58.0000 −2.52174
\(530\) 0 0
\(531\) 0 0
\(532\) 6.00000i 0.260133i
\(533\) −45.0000 −1.94917
\(534\) 0 0
\(535\) 36.0000 1.55642
\(536\) 3.00000 0.129580
\(537\) 0 0
\(538\) 6.00000i 0.258678i
\(539\) 6.00000i 0.258438i
\(540\) 0 0
\(541\) 12.0000i 0.515920i 0.966156 + 0.257960i \(0.0830503\pi\)
−0.966156 + 0.257960i \(0.916950\pi\)
\(542\) 2.00000i 0.0859074i
\(543\) 0 0
\(544\) −6.00000 −0.257248
\(545\) 33.0000 1.41356
\(546\) 0 0
\(547\) 15.0000i 0.641354i −0.947189 0.320677i \(-0.896090\pi\)
0.947189 0.320677i \(-0.103910\pi\)
\(548\) −3.00000 −0.128154
\(549\) 0 0
\(550\) −12.0000 −0.511682
\(551\) 12.0000i 0.511217i
\(552\) 0 0
\(553\) 45.0000 1.91359
\(554\) −18.0000 −0.764747
\(555\) 0 0
\(556\) 15.0000i 0.636142i
\(557\) 24.0000i 1.01691i −0.861088 0.508456i \(-0.830216\pi\)
0.861088 0.508456i \(-0.169784\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 9.00000i 0.380319i
\(561\) 0 0
\(562\) −12.0000 −0.506189
\(563\) −18.0000 −0.758610 −0.379305 0.925272i \(-0.623837\pi\)
−0.379305 + 0.925272i \(0.623837\pi\)
\(564\) 0 0
\(565\) −9.00000 −0.378633
\(566\) 14.0000i 0.588464i
\(567\) 0 0
\(568\) 0 0
\(569\) 27.0000 1.13190 0.565949 0.824440i \(-0.308510\pi\)
0.565949 + 0.824440i \(0.308510\pi\)
\(570\) 0 0
\(571\) 4.00000 0.167395 0.0836974 0.996491i \(-0.473327\pi\)
0.0836974 + 0.996491i \(0.473327\pi\)
\(572\) 15.0000i 0.627182i
\(573\) 0 0
\(574\) −27.0000 −1.12696
\(575\) 36.0000i 1.50130i
\(576\) 0 0
\(577\) 6.00000i 0.249783i 0.992170 + 0.124892i \(0.0398583\pi\)
−0.992170 + 0.124892i \(0.960142\pi\)
\(578\) 19.0000i 0.790296i
\(579\) 0 0
\(580\) 18.0000i 0.747409i
\(581\) 36.0000i 1.49353i
\(582\) 0 0
\(583\) 0 0
\(584\) 7.00000i 0.289662i
\(585\) 0 0
\(586\) 30.0000i 1.23929i
\(587\) 12.0000i 0.495293i −0.968850 0.247647i \(-0.920343\pi\)
0.968850 0.247647i \(-0.0796572\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 9.00000 0.370524
\(591\) 0 0
\(592\) 6.00000i 0.246598i
\(593\) 6.00000i 0.246390i 0.992382 + 0.123195i \(0.0393141\pi\)
−0.992382 + 0.123195i \(0.960686\pi\)
\(594\) 0 0
\(595\) −54.0000 −2.21378
\(596\) −21.0000 −0.860194
\(597\) 0 0
\(598\) −45.0000 −1.84019
\(599\) 15.0000i 0.612883i −0.951889 0.306442i \(-0.900862\pi\)
0.951889 0.306442i \(-0.0991384\pi\)
\(600\) 0 0
\(601\) 19.0000 0.775026 0.387513 0.921864i \(-0.373334\pi\)
0.387513 + 0.921864i \(0.373334\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 3.00000i 0.122068i
\(605\) 6.00000 0.243935
\(606\) 0 0
\(607\) −40.0000 −1.62355 −0.811775 0.583970i \(-0.801498\pi\)
−0.811775 + 0.583970i \(0.801498\pi\)
\(608\) 2.00000i 0.0811107i
\(609\) 0 0
\(610\) −18.0000 15.0000i −0.728799 0.607332i
\(611\) 0 0
\(612\) 0 0
\(613\) −2.00000 −0.0807792 −0.0403896 0.999184i \(-0.512860\pi\)
−0.0403896 + 0.999184i \(0.512860\pi\)
\(614\) 27.0000 1.08963
\(615\) 0 0
\(616\) 9.00000i 0.362620i
\(617\) 36.0000i 1.44931i −0.689114 0.724653i \(-0.742000\pi\)
0.689114 0.724653i \(-0.258000\pi\)
\(618\) 0 0
\(619\) −8.00000 −0.321547 −0.160774 0.986991i \(-0.551399\pi\)
−0.160774 + 0.986991i \(0.551399\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −3.00000 −0.120289
\(623\) 0 0
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 12.0000 0.479616
\(627\) 0 0
\(628\) 18.0000i 0.718278i
\(629\) −36.0000 −1.43541
\(630\) 0 0
\(631\) 39.0000i 1.55257i −0.630385 0.776283i \(-0.717103\pi\)
0.630385 0.776283i \(-0.282897\pi\)
\(632\) −15.0000 −0.596668
\(633\) 0 0
\(634\) 18.0000i 0.714871i
\(635\) −6.00000 −0.238103
\(636\) 0 0
\(637\) 10.0000 0.396214
\(638\) 18.0000i 0.712627i
\(639\) 0 0
\(640\) 3.00000i 0.118585i
\(641\) 12.0000i 0.473972i 0.971513 + 0.236986i \(0.0761595\pi\)
−0.971513 + 0.236986i \(0.923841\pi\)
\(642\) 0 0
\(643\) 36.0000i 1.41970i 0.704352 + 0.709851i \(0.251238\pi\)
−0.704352 + 0.709851i \(0.748762\pi\)
\(644\) −27.0000 −1.06395
\(645\) 0 0
\(646\) 12.0000 0.472134
\(647\) 21.0000i 0.825595i 0.910823 + 0.412798i \(0.135448\pi\)
−0.910823 + 0.412798i \(0.864552\pi\)
\(648\) 0 0
\(649\) 9.00000 0.353281
\(650\) 20.0000i 0.784465i
\(651\) 0 0
\(652\) 2.00000 0.0783260
\(653\) 36.0000i 1.40879i 0.709809 + 0.704394i \(0.248781\pi\)
−0.709809 + 0.704394i \(0.751219\pi\)
\(654\) 0 0
\(655\) −54.0000 −2.10995
\(656\) 9.00000 0.351391
\(657\) 0 0
\(658\) 0 0
\(659\) −18.0000 −0.701180 −0.350590 0.936529i \(-0.614019\pi\)
−0.350590 + 0.936529i \(0.614019\pi\)
\(660\) 0 0
\(661\) 30.0000i 1.16686i 0.812162 + 0.583432i \(0.198291\pi\)
−0.812162 + 0.583432i \(0.801709\pi\)
\(662\) −3.00000 −0.116598
\(663\) 0 0
\(664\) 12.0000i 0.465690i
\(665\) 18.0000i 0.698010i
\(666\) 0 0
\(667\) 54.0000 2.09089
\(668\) −6.00000 −0.232147
\(669\) 0 0
\(670\) −9.00000 −0.347700
\(671\) −18.0000 15.0000i −0.694882 0.579069i
\(672\) 0 0
\(673\) 6.00000i 0.231283i 0.993291 + 0.115642i \(0.0368924\pi\)
−0.993291 + 0.115642i \(0.963108\pi\)
\(674\) 12.0000 0.462223
\(675\) 0 0
\(676\) −12.0000 −0.461538
\(677\) 36.0000i 1.38359i 0.722093 + 0.691796i \(0.243180\pi\)
−0.722093 + 0.691796i \(0.756820\pi\)
\(678\) 0 0
\(679\) 30.0000i 1.15129i
\(680\) 18.0000 0.690268
\(681\) 0 0
\(682\) 0 0
\(683\) 30.0000 1.14792 0.573959 0.818884i \(-0.305407\pi\)
0.573959 + 0.818884i \(0.305407\pi\)
\(684\) 0 0
\(685\) 9.00000 0.343872
\(686\) −15.0000 −0.572703
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 28.0000 1.06517 0.532585 0.846376i \(-0.321221\pi\)
0.532585 + 0.846376i \(0.321221\pi\)
\(692\) 24.0000i 0.912343i
\(693\) 0 0
\(694\) 6.00000i 0.227757i
\(695\) 45.0000i 1.70695i
\(696\) 0 0
\(697\) 54.0000i 2.04540i
\(698\) −6.00000 −0.227103
\(699\) 0 0
\(700\) 12.0000i 0.453557i
\(701\) 24.0000i 0.906467i 0.891392 + 0.453234i \(0.149730\pi\)
−0.891392 + 0.453234i \(0.850270\pi\)
\(702\) 0 0
\(703\) 12.0000i 0.452589i
\(704\) 3.00000i 0.113067i
\(705\) 0 0
\(706\) 3.00000i 0.112906i
\(707\) −54.0000 −2.03088
\(708\) 0 0
\(709\) 6.00000i 0.225335i 0.993633 + 0.112667i \(0.0359394\pi\)
−0.993633 + 0.112667i \(0.964061\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 45.0000i 1.68290i
\(716\) −24.0000 −0.896922
\(717\) 0 0
\(718\) 24.0000 0.895672
\(719\) 18.0000 0.671287 0.335643 0.941989i \(-0.391046\pi\)
0.335643 + 0.941989i \(0.391046\pi\)
\(720\) 0 0
\(721\) 42.0000i 1.56416i
\(722\) 15.0000i 0.558242i
\(723\) 0 0
\(724\) 12.0000i 0.445976i
\(725\) 24.0000i 0.891338i
\(726\) 0 0
\(727\) −8.00000 −0.296704 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(728\) −15.0000 −0.555937
\(729\) 0 0
\(730\) 21.0000i 0.777245i
\(731\) 0 0
\(732\) 0 0
\(733\) −13.0000 −0.480166 −0.240083 0.970752i \(-0.577175\pi\)
−0.240083 + 0.970752i \(0.577175\pi\)
\(734\) 8.00000i 0.295285i
\(735\) 0 0
\(736\) 9.00000 0.331744
\(737\) −9.00000 −0.331519
\(738\) 0 0
\(739\) 9.00000i 0.331070i 0.986204 + 0.165535i \(0.0529351\pi\)
−0.986204 + 0.165535i \(0.947065\pi\)
\(740\) 18.0000i 0.661693i
\(741\) 0 0
\(742\) 0 0
\(743\) 3.00000i 0.110059i −0.998485 0.0550297i \(-0.982475\pi\)
0.998485 0.0550297i \(-0.0175253\pi\)
\(744\) 0 0
\(745\) 63.0000 2.30814
\(746\) 30.0000 1.09838
\(747\) 0 0
\(748\) 18.0000 0.658145
\(749\) 36.0000i 1.31541i
\(750\) 0 0
\(751\) −4.00000 −0.145962 −0.0729810 0.997333i \(-0.523251\pi\)
−0.0729810 + 0.997333i \(0.523251\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 30.0000 1.09254
\(755\) 9.00000i 0.327544i
\(756\) 0 0
\(757\) −43.0000 −1.56286 −0.781431 0.623992i \(-0.785510\pi\)
−0.781431 + 0.623992i \(0.785510\pi\)
\(758\) 2.00000i 0.0726433i
\(759\) 0 0
\(760\) 6.00000i 0.217643i
\(761\) 30.0000i 1.08750i 0.839248 + 0.543750i \(0.182996\pi\)
−0.839248 + 0.543750i \(0.817004\pi\)
\(762\) 0 0
\(763\) 33.0000i 1.19468i
\(764\) 3.00000i 0.108536i
\(765\) 0 0
\(766\) 9.00000 0.325183
\(767\) 15.0000i 0.541619i
\(768\) 0 0
\(769\) 42.0000i 1.51456i 0.653091 + 0.757279i \(0.273472\pi\)
−0.653091 + 0.757279i \(0.726528\pi\)
\(770\) 27.0000i 0.973012i
\(771\) 0 0
\(772\) 12.0000i 0.431889i
\(773\) 6.00000 0.215805 0.107903 0.994161i \(-0.465587\pi\)
0.107903 + 0.994161i \(0.465587\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 10.0000i 0.358979i
\(777\) 0 0
\(778\) 12.0000 0.430221
\(779\) −18.0000 −0.644917
\(780\) 0 0
\(781\) 0 0
\(782\) 54.0000i 1.93104i
\(783\) 0 0
\(784\) −2.00000 −0.0714286
\(785\) 54.0000i 1.92734i
\(786\) 0 0
\(787\) 24.0000i 0.855508i 0.903895 + 0.427754i \(0.140695\pi\)
−0.903895 + 0.427754i \(0.859305\pi\)
\(788\) −3.00000 −0.106871
\(789\) 0 0
\(790\) 45.0000 1.60103
\(791\) 9.00000i 0.320003i
\(792\) 0 0
\(793\) 25.0000 30.0000i 0.887776 1.06533i
\(794\) 18.0000 0.638796
\(795\) 0 0
\(796\) −20.0000 −0.708881
\(797\) −9.00000 −0.318796 −0.159398 0.987214i \(-0.550955\pi\)
−0.159398 + 0.987214i \(0.550955\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 4.00000i 0.141421i
\(801\) 0 0
\(802\) −24.0000 −0.847469
\(803\) 21.0000i 0.741074i
\(804\) 0 0
\(805\) 81.0000 2.85487
\(806\) 0 0
\(807\) 0 0
\(808\) 18.0000 0.633238
\(809\) 27.0000 0.949269 0.474635 0.880183i \(-0.342580\pi\)
0.474635 + 0.880183i \(0.342580\pi\)
\(810\) 0 0
\(811\) 45.0000i 1.58016i −0.613001 0.790082i \(-0.710038\pi\)
0.613001 0.790082i \(-0.289962\pi\)
\(812\) 18.0000 0.631676
\(813\) 0 0
\(814\) 18.0000i 0.630900i
\(815\) −6.00000 −0.210171
\(816\) 0 0
\(817\) 0 0
\(818\) −12.0000 −0.419570
\(819\) 0 0
\(820\) −27.0000 −0.942881
\(821\) 36.0000i 1.25641i −0.778048 0.628204i \(-0.783790\pi\)
0.778048 0.628204i \(-0.216210\pi\)
\(822\) 0 0
\(823\) 12.0000i 0.418294i 0.977884 + 0.209147i \(0.0670687\pi\)
−0.977884 + 0.209147i \(0.932931\pi\)
\(824\) 14.0000i 0.487713i
\(825\) 0 0
\(826\) 9.00000i 0.313150i
\(827\) 42.0000 1.46048 0.730242 0.683189i \(-0.239408\pi\)
0.730242 + 0.683189i \(0.239408\pi\)
\(828\) 0 0
\(829\) −25.0000 −0.868286 −0.434143 0.900844i \(-0.642949\pi\)
−0.434143 + 0.900844i \(0.642949\pi\)
\(830\) 36.0000i 1.24958i
\(831\) 0 0
\(832\) 5.00000 0.173344
\(833\) 12.0000i 0.415775i
\(834\) 0 0
\(835\) 18.0000 0.622916
\(836\) 6.00000i 0.207514i
\(837\) 0 0
\(838\) 12.0000 0.414533
\(839\) 48.0000 1.65714 0.828572 0.559883i \(-0.189154\pi\)
0.828572 + 0.559883i \(0.189154\pi\)
\(840\) 0 0
\(841\) −7.00000 −0.241379
\(842\) 6.00000 0.206774
\(843\) 0 0
\(844\) 12.0000i 0.413057i
\(845\) 36.0000 1.23844
\(846\) 0 0
\(847\) 6.00000i 0.206162i
\(848\) 0 0
\(849\) 0 0
\(850\) −24.0000 −0.823193
\(851\) 54.0000 1.85110
\(852\) 0 0
\(853\) 17.0000 0.582069 0.291034 0.956713i \(-0.406001\pi\)
0.291034 + 0.956713i \(0.406001\pi\)
\(854\) 15.0000 18.0000i 0.513289 0.615947i
\(855\) 0 0
\(856\) 12.0000i 0.410152i
\(857\) −39.0000 −1.33221 −0.666107 0.745856i \(-0.732041\pi\)
−0.666107 + 0.745856i \(0.732041\pi\)
\(858\) 0 0
\(859\) 14.0000 0.477674 0.238837 0.971060i \(-0.423234\pi\)
0.238837 + 0.971060i \(0.423234\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 12.0000i 0.408722i
\(863\) −24.0000 −0.816970 −0.408485 0.912765i \(-0.633943\pi\)
−0.408485 + 0.912765i \(0.633943\pi\)
\(864\) 0 0
\(865\) 72.0000i 2.44807i
\(866\) 36.0000 1.22333
\(867\) 0 0
\(868\) 0 0
\(869\) 45.0000 1.52652
\(870\) 0 0
\(871\) 15.0000i 0.508256i
\(872\) 11.0000i 0.372507i
\(873\) 0 0
\(874\) −18.0000 −0.608859
\(875\) 9.00000i 0.304256i
\(876\) 0 0
\(877\) 12.0000i 0.405211i −0.979260 0.202606i \(-0.935059\pi\)
0.979260 0.202606i \(-0.0649409\pi\)
\(878\) 10.0000i 0.337484i
\(879\) 0 0
\(880\) 9.00000i 0.303390i
\(881\) 15.0000 0.505363 0.252681 0.967550i \(-0.418688\pi\)
0.252681 + 0.967550i \(0.418688\pi\)
\(882\) 0 0
\(883\) 21.0000i 0.706706i −0.935490 0.353353i \(-0.885041\pi\)
0.935490 0.353353i \(-0.114959\pi\)
\(884\) 30.0000i 1.00901i
\(885\) 0 0
\(886\) 0 0
\(887\) 12.0000i 0.402921i −0.979497 0.201460i \(-0.935431\pi\)
0.979497 0.201460i \(-0.0645687\pi\)
\(888\) 0 0
\(889\) 6.00000i 0.201234i
\(890\) 0 0
\(891\) 0 0
\(892\) 9.00000i 0.301342i
\(893\) 0 0
\(894\) 0 0
\(895\) 72.0000 2.40669
\(896\) 3.00000 0.100223
\(897\) 0 0
\(898\) 33.0000i 1.10122i
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) −27.0000 −0.899002
\(903\) 0 0
\(904\) 3.00000i 0.0997785i
\(905\) 36.0000i 1.19668i
\(906\) 0 0
\(907\) 12.0000i 0.398453i −0.979953 0.199227i \(-0.936157\pi\)
0.979953 0.199227i \(-0.0638430\pi\)
\(908\) 3.00000i 0.0995585i
\(909\) 0 0
\(910\) 45.0000 1.49174
\(911\) 42.0000 1.39152 0.695761 0.718273i \(-0.255067\pi\)
0.695761 + 0.718273i \(0.255067\pi\)
\(912\) 0 0
\(913\) 36.0000i 1.19143i
\(914\) −18.0000 −0.595387
\(915\) 0 0
\(916\) −13.0000 −0.429532
\(917\) 54.0000i 1.78324i
\(918\) 0 0
\(919\) −52.0000 −1.71532 −0.857661 0.514216i \(-0.828083\pi\)
−0.857661 + 0.514216i \(0.828083\pi\)
\(920\) −27.0000 −0.890164
\(921\) 0 0
\(922\) 18.0000i 0.592798i
\(923\) 0 0
\(924\) 0 0
\(925\) 24.0000i 0.789115i
\(926\) 32.0000i 1.05159i
\(927\) 0 0
\(928\) −6.00000 −0.196960
\(929\) −15.0000 −0.492134 −0.246067 0.969253i \(-0.579138\pi\)
−0.246067 + 0.969253i \(0.579138\pi\)
\(930\) 0 0
\(931\) 4.00000 0.131095
\(932\) 6.00000i 0.196537i
\(933\) 0 0
\(934\) −9.00000 −0.294489
\(935\) −54.0000 −1.76599
\(936\) 0 0
\(937\) −29.0000 −0.947389 −0.473694 0.880689i \(-0.657080\pi\)
−0.473694 + 0.880689i \(0.657080\pi\)
\(938\) 9.00000i 0.293860i
\(939\) 0 0
\(940\) 0 0
\(941\) 6.00000i 0.195594i 0.995206 + 0.0977972i \(0.0311797\pi\)
−0.995206 + 0.0977972i \(0.968820\pi\)
\(942\) 0 0
\(943\) 81.0000i 2.63772i
\(944\) 3.00000i 0.0976417i
\(945\) 0 0
\(946\) 0 0
\(947\) 15.0000i 0.487435i −0.969846 0.243717i \(-0.921633\pi\)
0.969846 0.243717i \(-0.0783669\pi\)
\(948\) 0 0
\(949\) 35.0000 1.13615
\(950\) 8.00000i 0.259554i
\(951\) 0 0
\(952\) 18.0000i 0.583383i
\(953\) 30.0000i 0.971795i 0.874016 + 0.485898i \(0.161507\pi\)
−0.874016 + 0.485898i \(0.838493\pi\)
\(954\) 0 0
\(955\) 9.00000i 0.291233i
\(956\) −6.00000 −0.194054
\(957\) 0 0
\(958\) 12.0000i 0.387702i
\(959\) 9.00000i 0.290625i
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) 30.0000 0.967239
\(963\) 0 0
\(964\) −1.00000 −0.0322078
\(965\) 36.0000i 1.15888i
\(966\) 0 0
\(967\) −58.0000 −1.86515 −0.932577 0.360971i \(-0.882445\pi\)
−0.932577 + 0.360971i \(0.882445\pi\)
\(968\) 2.00000i 0.0642824i
\(969\) 0 0
\(970\) 30.0000i 0.963242i
\(971\) −12.0000 −0.385098 −0.192549 0.981287i \(-0.561675\pi\)
−0.192549 + 0.981287i \(0.561675\pi\)
\(972\) 0 0
\(973\) −45.0000 −1.44263
\(974\) 2.00000i 0.0640841i
\(975\) 0 0
\(976\) −5.00000 + 6.00000i −0.160046 + 0.192055i
\(977\) −30.0000 −0.959785 −0.479893 0.877327i \(-0.659324\pi\)
−0.479893 + 0.877327i \(0.659324\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 6.00000 0.191663
\(981\) 0 0
\(982\) 6.00000i 0.191468i
\(983\) 48.0000i 1.53096i 0.643458 + 0.765481i \(0.277499\pi\)
−0.643458 + 0.765481i \(0.722501\pi\)
\(984\) 0 0
\(985\) 9.00000 0.286764
\(986\) 36.0000i 1.14647i
\(987\) 0 0
\(988\) −10.0000 −0.318142
\(989\) 0 0
\(990\) 0 0
\(991\) 16.0000 0.508257 0.254128 0.967170i \(-0.418211\pi\)
0.254128 + 0.967170i \(0.418211\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 60.0000 1.90213
\(996\) 0 0
\(997\) 18.0000i 0.570066i −0.958518 0.285033i \(-0.907995\pi\)
0.958518 0.285033i \(-0.0920045\pi\)
\(998\) −27.0000 −0.854670
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1098.2.d.a.487.2 2
3.2 odd 2 122.2.b.a.121.1 2
12.11 even 2 976.2.h.a.609.1 2
15.2 even 4 3050.2.c.c.3049.2 2
15.8 even 4 3050.2.c.b.3049.1 2
15.14 odd 2 3050.2.d.c.1951.2 2
61.60 even 2 inner 1098.2.d.a.487.1 2
183.11 even 4 7442.2.a.c.1.1 1
183.50 even 4 7442.2.a.a.1.1 1
183.182 odd 2 122.2.b.a.121.2 yes 2
732.731 even 2 976.2.h.a.609.2 2
915.182 even 4 3050.2.c.b.3049.2 2
915.548 even 4 3050.2.c.c.3049.1 2
915.914 odd 2 3050.2.d.c.1951.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
122.2.b.a.121.1 2 3.2 odd 2
122.2.b.a.121.2 yes 2 183.182 odd 2
976.2.h.a.609.1 2 12.11 even 2
976.2.h.a.609.2 2 732.731 even 2
1098.2.d.a.487.1 2 61.60 even 2 inner
1098.2.d.a.487.2 2 1.1 even 1 trivial
3050.2.c.b.3049.1 2 15.8 even 4
3050.2.c.b.3049.2 2 915.182 even 4
3050.2.c.c.3049.1 2 915.548 even 4
3050.2.c.c.3049.2 2 15.2 even 4
3050.2.d.c.1951.1 2 915.914 odd 2
3050.2.d.c.1951.2 2 15.14 odd 2
7442.2.a.a.1.1 1 183.50 even 4
7442.2.a.c.1.1 1 183.11 even 4