Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [110,3,Mod(3,110)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(110, base_ring=CyclotomicField(20))
chi = DirichletCharacter(H, H._module([15, 16]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("110.3");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 110 = 2 \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 110.l (of order \(20\), degree \(8\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.99728290796\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(6\) over \(\Q(\zeta_{20})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{20}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3.1 | −0.221232 | + | 1.39680i | −2.02588 | + | 3.97601i | −1.90211 | − | 0.618034i | 2.39781 | + | 4.38754i | −5.10551 | − | 3.70937i | 0.699150 | + | 1.37216i | 1.28408 | − | 2.52015i | −6.41440 | − | 8.82867i | −6.65900 | + | 2.37861i |
3.2 | −0.221232 | + | 1.39680i | −1.45699 | + | 2.85950i | −1.90211 | − | 0.618034i | −4.92092 | − | 0.885733i | −3.67182 | − | 2.66774i | −4.56016 | − | 8.94982i | 1.28408 | − | 2.52015i | −0.763859 | − | 1.05136i | 2.32586 | − | 6.67760i |
3.3 | −0.221232 | + | 1.39680i | −0.190659 | + | 0.374189i | −1.90211 | − | 0.618034i | 4.53254 | − | 2.11095i | −0.480488 | − | 0.349095i | 3.05982 | + | 6.00524i | 1.28408 | − | 2.52015i | 5.18640 | + | 7.13847i | 1.94584 | + | 6.79807i |
3.4 | −0.221232 | + | 1.39680i | 0.736983 | − | 1.44641i | −1.90211 | − | 0.618034i | 2.22216 | − | 4.47906i | 1.85731 | + | 1.34941i | −5.87986 | − | 11.5399i | 1.28408 | − | 2.52015i | 3.74111 | + | 5.14919i | 5.76475 | + | 4.09483i |
3.5 | −0.221232 | + | 1.39680i | 1.09534 | − | 2.14972i | −1.90211 | − | 0.618034i | 1.48006 | + | 4.77592i | 2.76042 | + | 2.00556i | 1.47655 | + | 2.89789i | 1.28408 | − | 2.52015i | 1.86852 | + | 2.57180i | −6.99845 | + | 1.01077i |
3.6 | −0.221232 | + | 1.39680i | 2.48324 | − | 4.87364i | −1.90211 | − | 0.618034i | −4.17484 | − | 2.75149i | 6.25814 | + | 4.54680i | 1.14280 | + | 2.24288i | 1.28408 | − | 2.52015i | −12.2958 | − | 16.9237i | 4.76690 | − | 5.22271i |
27.1 | −0.642040 | + | 1.26007i | −5.30750 | + | 0.840626i | −1.17557 | − | 1.61803i | −4.94213 | + | 0.758547i | 2.34838 | − | 7.22756i | 8.10082 | + | 1.28304i | 2.79360 | − | 0.442463i | 18.9034 | − | 6.14210i | 2.21721 | − | 6.71446i |
27.2 | −0.642040 | + | 1.26007i | −1.97586 | + | 0.312945i | −1.17557 | − | 1.61803i | 3.86028 | − | 3.17777i | 0.874244 | − | 2.69065i | 8.65808 | + | 1.37131i | 2.79360 | − | 0.442463i | −4.75344 | + | 1.54449i | 1.52577 | + | 6.90449i |
27.3 | −0.642040 | + | 1.26007i | −0.0723941 | + | 0.0114661i | −1.17557 | − | 1.61803i | −3.09837 | + | 3.92429i | 0.0320317 | − | 0.0985835i | −1.99053 | − | 0.315269i | 2.79360 | − | 0.442463i | −8.55440 | + | 2.77949i | −2.95562 | − | 6.42373i |
27.4 | −0.642040 | + | 1.26007i | −0.0541671 | + | 0.00857923i | −1.17557 | − | 1.61803i | −1.39544 | − | 4.80133i | 0.0239670 | − | 0.0737628i | −9.88997 | − | 1.56642i | 2.79360 | − | 0.442463i | −8.55665 | + | 2.78022i | 6.94595 | + | 1.32429i |
27.5 | −0.642040 | + | 1.26007i | 3.86350 | − | 0.611918i | −1.17557 | − | 1.61803i | 3.87433 | + | 3.16063i | −1.70946 | + | 5.26117i | −2.25703 | − | 0.357478i | 2.79360 | − | 0.442463i | 5.99265 | − | 1.94713i | −6.47010 | + | 2.85268i |
27.6 | −0.642040 | + | 1.26007i | 4.94323 | − | 0.782930i | −1.17557 | − | 1.61803i | −3.72952 | − | 3.33027i | −2.18720 | + | 6.73150i | 10.4055 | + | 1.64808i | 2.79360 | − | 0.442463i | 15.2630 | − | 4.95925i | 6.59088 | − | 2.56131i |
37.1 | −0.221232 | − | 1.39680i | −2.02588 | − | 3.97601i | −1.90211 | + | 0.618034i | 2.39781 | − | 4.38754i | −5.10551 | + | 3.70937i | 0.699150 | − | 1.37216i | 1.28408 | + | 2.52015i | −6.41440 | + | 8.82867i | −6.65900 | − | 2.37861i |
37.2 | −0.221232 | − | 1.39680i | −1.45699 | − | 2.85950i | −1.90211 | + | 0.618034i | −4.92092 | + | 0.885733i | −3.67182 | + | 2.66774i | −4.56016 | + | 8.94982i | 1.28408 | + | 2.52015i | −0.763859 | + | 1.05136i | 2.32586 | + | 6.67760i |
37.3 | −0.221232 | − | 1.39680i | −0.190659 | − | 0.374189i | −1.90211 | + | 0.618034i | 4.53254 | + | 2.11095i | −0.480488 | + | 0.349095i | 3.05982 | − | 6.00524i | 1.28408 | + | 2.52015i | 5.18640 | − | 7.13847i | 1.94584 | − | 6.79807i |
37.4 | −0.221232 | − | 1.39680i | 0.736983 | + | 1.44641i | −1.90211 | + | 0.618034i | 2.22216 | + | 4.47906i | 1.85731 | − | 1.34941i | −5.87986 | + | 11.5399i | 1.28408 | + | 2.52015i | 3.74111 | − | 5.14919i | 5.76475 | − | 4.09483i |
37.5 | −0.221232 | − | 1.39680i | 1.09534 | + | 2.14972i | −1.90211 | + | 0.618034i | 1.48006 | − | 4.77592i | 2.76042 | − | 2.00556i | 1.47655 | − | 2.89789i | 1.28408 | + | 2.52015i | 1.86852 | − | 2.57180i | −6.99845 | − | 1.01077i |
37.6 | −0.221232 | − | 1.39680i | 2.48324 | + | 4.87364i | −1.90211 | + | 0.618034i | −4.17484 | + | 2.75149i | 6.25814 | − | 4.54680i | 1.14280 | − | 2.24288i | 1.28408 | + | 2.52015i | −12.2958 | + | 16.9237i | 4.76690 | + | 5.22271i |
47.1 | −1.39680 | − | 0.221232i | −4.87364 | − | 2.48324i | 1.90211 | + | 0.618034i | −3.90692 | − | 3.12025i | 6.25814 | + | 4.54680i | −2.24288 | + | 1.14280i | −2.52015 | − | 1.28408i | 12.2958 | + | 16.9237i | 4.76690 | + | 5.22271i |
47.2 | −1.39680 | − | 0.221232i | −2.14972 | − | 1.09534i | 1.90211 | + | 0.618034i | 4.99953 | − | 0.0682179i | 2.76042 | + | 2.00556i | −2.89789 | + | 1.47655i | −2.52015 | − | 1.28408i | −1.86852 | − | 2.57180i | −6.99845 | − | 1.01077i |
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
11.c | even | 5 | 1 | inner |
55.k | odd | 20 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 110.3.l.a | ✓ | 48 |
5.c | odd | 4 | 1 | inner | 110.3.l.a | ✓ | 48 |
11.c | even | 5 | 1 | inner | 110.3.l.a | ✓ | 48 |
55.k | odd | 20 | 1 | inner | 110.3.l.a | ✓ | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
110.3.l.a | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
110.3.l.a | ✓ | 48 | 5.c | odd | 4 | 1 | inner |
110.3.l.a | ✓ | 48 | 11.c | even | 5 | 1 | inner |
110.3.l.a | ✓ | 48 | 55.k | odd | 20 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{48} - 2 T_{3}^{47} + 2 T_{3}^{46} + 38 T_{3}^{45} - 1018 T_{3}^{44} + 588 T_{3}^{43} + \cdots + 141158161 \) acting on \(S_{3}^{\mathrm{new}}(110, [\chi])\).