Properties

Label 110.6.a.e
Level $110$
Weight $6$
Character orbit 110.a
Self dual yes
Analytic conductor $17.642$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [110,6,Mod(1,110)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(110, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("110.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 110 = 2 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 110.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.6422201794\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{889}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 222 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{889})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 q^{2} + ( - \beta + 11) q^{3} + 16 q^{4} - 25 q^{5} + (4 \beta - 44) q^{6} + (5 \beta + 15) q^{7} - 64 q^{8} + ( - 21 \beta + 100) q^{9} + 100 q^{10} + 121 q^{11} + ( - 16 \beta + 176) q^{12} + ( - 30 \beta + 398) q^{13}+ \cdots + ( - 2541 \beta + 12100) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} + 21 q^{3} + 32 q^{4} - 50 q^{5} - 84 q^{6} + 35 q^{7} - 128 q^{8} + 179 q^{9} + 200 q^{10} + 242 q^{11} + 336 q^{12} + 766 q^{13} - 140 q^{14} - 525 q^{15} + 512 q^{16} + 283 q^{17} - 716 q^{18}+ \cdots + 21659 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
15.4081
−14.4081
−4.00000 −4.40805 16.0000 −25.0000 17.6322 92.0403 −64.0000 −223.569 100.000
1.2 −4.00000 25.4081 16.0000 −25.0000 −101.632 −57.0403 −64.0000 402.569 100.000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 110.6.a.e 2
3.b odd 2 1 990.6.a.s 2
4.b odd 2 1 880.6.a.f 2
5.b even 2 1 550.6.a.j 2
5.c odd 4 2 550.6.b.h 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
110.6.a.e 2 1.a even 1 1 trivial
550.6.a.j 2 5.b even 2 1
550.6.b.h 4 5.c odd 4 2
880.6.a.f 2 4.b odd 2 1
990.6.a.s 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 21T_{3} - 112 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(110))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 21T - 112 \) Copy content Toggle raw display
$5$ \( (T + 25)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 35T - 5250 \) Copy content Toggle raw display
$11$ \( (T - 121)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 766T - 53336 \) Copy content Toggle raw display
$17$ \( T^{2} - 283 T - 2337828 \) Copy content Toggle raw display
$19$ \( T^{2} - 1537 T + 588592 \) Copy content Toggle raw display
$23$ \( T^{2} + 806 T - 9268992 \) Copy content Toggle raw display
$29$ \( T^{2} - 7667 T + 10881690 \) Copy content Toggle raw display
$31$ \( T^{2} - 4765 T + 3994096 \) Copy content Toggle raw display
$37$ \( T^{2} - 28575 T + 202948286 \) Copy content Toggle raw display
$41$ \( T^{2} - 10044 T + 20611908 \) Copy content Toggle raw display
$43$ \( T^{2} - 19522 T - 18025040 \) Copy content Toggle raw display
$47$ \( T^{2} - 22646 T - 91380672 \) Copy content Toggle raw display
$53$ \( T^{2} + 33037 T - 16482210 \) Copy content Toggle raw display
$59$ \( T^{2} + 15098 T - 482494248 \) Copy content Toggle raw display
$61$ \( T^{2} - 4349 T - 216190050 \) Copy content Toggle raw display
$67$ \( T^{2} - 32996 T + 113867328 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 1505523600 \) Copy content Toggle raw display
$73$ \( T^{2} - 38974 T - 539739752 \) Copy content Toggle raw display
$79$ \( T^{2} + 48118 T - 315506520 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 2668794204 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 5311355382 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 11525817448 \) Copy content Toggle raw display
show more
show less