Properties

Label 1100.1.cd.a.989.1
Level $1100$
Weight $1$
Character 1100.989
Analytic conductor $0.549$
Analytic rank $0$
Dimension $8$
Projective image $D_{30}$
CM discriminant -11
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1100,1,Mod(109,1100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1100, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 7, 5]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1100.109");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1100.cd (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.548971513896\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\Q(\zeta_{15})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{30}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{30} + \cdots)\)

Embedding invariants

Embedding label 989.1
Root \(-0.978148 - 0.207912i\) of defining polynomial
Character \(\chi\) \(=\) 1100.989
Dual form 1100.1.cd.a.109.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.89169 - 0.614648i) q^{3} +(0.500000 - 0.866025i) q^{5} +(2.39169 + 1.73767i) q^{9} +(0.809017 - 0.587785i) q^{11} +(-1.47815 + 1.33093i) q^{15} +(0.873619 + 1.20243i) q^{23} +(-0.500000 - 0.866025i) q^{25} +(-2.28716 - 3.14801i) q^{27} +(-0.564602 - 1.73767i) q^{31} +(-1.89169 + 0.614648i) q^{33} +(1.01807 - 1.40126i) q^{37} +(2.70071 - 1.20243i) q^{45} -1.00000 q^{49} +(-1.11803 - 0.363271i) q^{53} +(-0.104528 - 0.994522i) q^{55} +(0.169131 + 0.122881i) q^{59} +(0.395472 - 0.128496i) q^{67} +(-0.913545 - 2.81160i) q^{69} +(-0.0646021 + 0.198825i) q^{71} +(0.413545 + 1.94558i) q^{75} +(1.47815 + 4.54927i) q^{81} +(-1.58268 + 1.14988i) q^{89} +3.63416i q^{93} +(0.773659 + 0.251377i) q^{97} +2.95630 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{5} + 4 q^{9} + 2 q^{11} - 3 q^{15} - 4 q^{25} - 5 q^{27} - 2 q^{31} + 2 q^{45} - 8 q^{49} + q^{55} - 3 q^{59} + 5 q^{67} - q^{69} + 2 q^{71} - 3 q^{75} + 3 q^{81} - 2 q^{89} + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1100\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(551\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.89169 0.614648i −1.89169 0.614648i −0.978148 0.207912i \(-0.933333\pi\)
−0.913545 0.406737i \(-0.866667\pi\)
\(4\) 0 0
\(5\) 0.500000 0.866025i 0.500000 0.866025i
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) 2.39169 + 1.73767i 2.39169 + 1.73767i
\(10\) 0 0
\(11\) 0.809017 0.587785i 0.809017 0.587785i
\(12\) 0 0
\(13\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(14\) 0 0
\(15\) −1.47815 + 1.33093i −1.47815 + 1.33093i
\(16\) 0 0
\(17\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(18\) 0 0
\(19\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.873619 + 1.20243i 0.873619 + 1.20243i 0.978148 + 0.207912i \(0.0666667\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.500000 0.866025i
\(26\) 0 0
\(27\) −2.28716 3.14801i −2.28716 3.14801i
\(28\) 0 0
\(29\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(30\) 0 0
\(31\) −0.564602 1.73767i −0.564602 1.73767i −0.669131 0.743145i \(-0.733333\pi\)
0.104528 0.994522i \(-0.466667\pi\)
\(32\) 0 0
\(33\) −1.89169 + 0.614648i −1.89169 + 0.614648i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.01807 1.40126i 1.01807 1.40126i 0.104528 0.994522i \(-0.466667\pi\)
0.913545 0.406737i \(-0.133333\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 2.70071 1.20243i 2.70071 1.20243i
\(46\) 0 0
\(47\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(48\) 0 0
\(49\) −1.00000 −1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.11803 0.363271i −1.11803 0.363271i −0.309017 0.951057i \(-0.600000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(54\) 0 0
\(55\) −0.104528 0.994522i −0.104528 0.994522i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.169131 + 0.122881i 0.169131 + 0.122881i 0.669131 0.743145i \(-0.266667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(60\) 0 0
\(61\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0.395472 0.128496i 0.395472 0.128496i −0.104528 0.994522i \(-0.533333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(68\) 0 0
\(69\) −0.913545 2.81160i −0.913545 2.81160i
\(70\) 0 0
\(71\) −0.0646021 + 0.198825i −0.0646021 + 0.198825i −0.978148 0.207912i \(-0.933333\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(72\) 0 0
\(73\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(74\) 0 0
\(75\) 0.413545 + 1.94558i 0.413545 + 1.94558i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(80\) 0 0
\(81\) 1.47815 + 4.54927i 1.47815 + 4.54927i
\(82\) 0 0
\(83\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.58268 + 1.14988i −1.58268 + 1.14988i −0.669131 + 0.743145i \(0.733333\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 3.63416i 3.63416i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0.773659 + 0.251377i 0.773659 + 0.251377i 0.669131 0.743145i \(-0.266667\pi\)
0.104528 + 0.994522i \(0.466667\pi\)
\(98\) 0 0
\(99\) 2.95630 2.95630
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 1.80902 + 0.587785i 1.80902 + 0.587785i 1.00000 \(0\)
0.809017 + 0.587785i \(0.200000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(110\) 0 0
\(111\) −2.78716 + 2.02499i −2.78716 + 2.02499i
\(112\) 0 0
\(113\) 0.873619 1.20243i 0.873619 1.20243i −0.104528 0.994522i \(-0.533333\pi\)
0.978148 0.207912i \(-0.0666667\pi\)
\(114\) 0 0
\(115\) 1.47815 0.155360i 1.47815 0.155360i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.309017 0.951057i 0.309017 0.951057i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −1.00000
\(126\) 0 0
\(127\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −3.86984 + 0.406737i −3.86984 + 0.406737i
\(136\) 0 0
\(137\) −0.244415 + 0.336408i −0.244415 + 0.336408i −0.913545 0.406737i \(-0.866667\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(138\) 0 0
\(139\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 1.89169 + 0.614648i 1.89169 + 0.614648i
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.78716 0.379874i −1.78716 0.379874i
\(156\) 0 0
\(157\) 0.415823i 0.415823i 0.978148 + 0.207912i \(0.0666667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(158\) 0 0
\(159\) 1.89169 + 1.37440i 1.89169 + 1.37440i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −0.690983 + 0.951057i −0.690983 + 0.951057i 0.309017 + 0.951057i \(0.400000\pi\)
−1.00000 \(1.00000\pi\)
\(164\) 0 0
\(165\) −0.413545 + 1.94558i −0.413545 + 1.94558i
\(166\) 0 0
\(167\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(168\) 0 0
\(169\) −0.309017 0.951057i −0.309017 0.951057i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −0.244415 0.336408i −0.244415 0.336408i
\(178\) 0 0
\(179\) −0.413545 + 1.27276i −0.413545 + 1.27276i 0.500000 + 0.866025i \(0.333333\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(180\) 0 0
\(181\) 0.309017 + 0.951057i 0.309017 + 0.951057i 0.978148 + 0.207912i \(0.0666667\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.704489 1.58231i −0.704489 1.58231i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.08268 + 0.786610i 1.08268 + 0.786610i 0.978148 0.207912i \(-0.0666667\pi\)
0.104528 + 0.994522i \(0.466667\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(198\) 0 0
\(199\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(200\) 0 0
\(201\) −0.827091 −0.827091
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 4.39391i 4.39391i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(212\) 0 0
\(213\) 0.244415 0.336408i 0.244415 0.336408i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −1.16913 1.60917i −1.16913 1.60917i −0.669131 0.743145i \(-0.733333\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(224\) 0 0
\(225\) 0.309017 2.94010i 0.309017 2.94010i
\(226\) 0 0
\(227\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(228\) 0 0
\(229\) 0.413545 1.27276i 0.413545 1.27276i −0.500000 0.866025i \(-0.666667\pi\)
0.913545 0.406737i \(-0.133333\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(240\) 0 0
\(241\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(242\) 0 0
\(243\) 5.62321i 5.62321i
\(244\) 0 0
\(245\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1.82709 1.82709 0.913545 0.406737i \(-0.133333\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(252\) 0 0
\(253\) 1.41355 + 0.459289i 1.41355 + 0.459289i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.90211i 1.90211i 0.309017 + 0.951057i \(0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(264\) 0 0
\(265\) −0.873619 + 0.786610i −0.873619 + 0.786610i
\(266\) 0 0
\(267\) 3.70071 1.20243i 3.70071 1.20243i
\(268\) 0 0
\(269\) 0.190983 + 0.587785i 0.190983 + 0.587785i 1.00000 \(0\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(270\) 0 0
\(271\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.913545 0.406737i −0.913545 0.406737i
\(276\) 0 0
\(277\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(278\) 0 0
\(279\) 1.66913 5.13706i 1.66913 5.13706i
\(280\) 0 0
\(281\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(282\) 0 0
\(283\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 0.809017 0.587785i 0.809017 0.587785i
\(290\) 0 0
\(291\) −1.30902 0.951057i −1.30902 0.951057i
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0.190983 0.0850311i 0.190983 0.0850311i
\(296\) 0 0
\(297\) −3.70071 1.20243i −3.70071 1.20243i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) −3.06082 2.22382i −3.06082 2.22382i
\(310\) 0 0
\(311\) −0.500000 + 0.363271i −0.500000 + 0.363271i −0.809017 0.587785i \(-0.800000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(312\) 0 0
\(313\) −0.873619 + 1.20243i −0.873619 + 1.20243i 0.104528 + 0.994522i \(0.466667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −0.773659 + 0.251377i −0.773659 + 0.251377i −0.669131 0.743145i \(-0.733333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −0.413545 1.27276i −0.413545 1.27276i −0.913545 0.406737i \(-0.866667\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(332\) 0 0
\(333\) 4.86984 1.58231i 4.86984 1.58231i
\(334\) 0 0
\(335\) 0.0864545 0.406737i 0.0864545 0.406737i
\(336\) 0 0
\(337\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(338\) 0 0
\(339\) −2.39169 + 1.73767i −2.39169 + 1.73767i
\(340\) 0 0
\(341\) −1.47815 1.07394i −1.47815 1.07394i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −2.89169 0.614648i −2.89169 0.614648i
\(346\) 0 0
\(347\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.64728 + 0.535233i 1.64728 + 0.535233i 0.978148 0.207912i \(-0.0666667\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(354\) 0 0
\(355\) 0.139886 + 0.155360i 0.139886 + 0.155360i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(360\) 0 0
\(361\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(362\) 0 0
\(363\) −1.16913 + 1.60917i −1.16913 + 1.60917i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 1.41355 0.459289i 1.41355 0.459289i 0.500000 0.866025i \(-0.333333\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(374\) 0 0
\(375\) 1.89169 + 0.614648i 1.89169 + 0.614648i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i \(0.266667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0.773659 0.251377i 0.773659 0.251377i 0.104528 0.994522i \(-0.466667\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1.47815 + 1.07394i −1.47815 + 1.07394i −0.500000 + 0.866025i \(0.666667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 1.80902 + 0.587785i 1.80902 + 0.587785i 1.00000 \(0\)
0.809017 + 0.587785i \(0.200000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 4.67886 + 0.994522i 4.67886 + 0.994522i
\(406\) 0 0
\(407\) 1.73205i 1.73205i
\(408\) 0 0
\(409\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(410\) 0 0
\(411\) 0.669131 0.486152i 0.669131 0.486152i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0.500000 + 1.53884i 0.500000 + 1.53884i 0.809017 + 0.587785i \(0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(420\) 0 0
\(421\) −0.190983 + 0.587785i −0.190983 + 0.587785i 0.809017 + 0.587785i \(0.200000\pi\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(432\) 0 0
\(433\) −1.64728 + 0.535233i −1.64728 + 0.535233i −0.978148 0.207912i \(-0.933333\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(440\) 0 0
\(441\) −2.39169 1.73767i −2.39169 1.73767i
\(442\) 0 0
\(443\) 1.98904i 1.98904i 0.104528 + 0.994522i \(0.466667\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(444\) 0 0
\(445\) 0.204489 + 1.94558i 0.204489 + 1.94558i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −1.33826 −1.33826 −0.669131 0.743145i \(-0.733333\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(462\) 0 0
\(463\) −0.244415 + 0.336408i −0.244415 + 0.336408i −0.913545 0.406737i \(-0.866667\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(464\) 0 0
\(465\) 3.14728 + 1.81708i 3.14728 + 1.81708i
\(466\) 0 0
\(467\) −1.64728 + 0.535233i −1.64728 + 0.535233i −0.978148 0.207912i \(-0.933333\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0.255585 0.786610i 0.255585 0.786610i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −2.04275 2.81160i −2.04275 2.81160i
\(478\) 0 0
\(479\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0.604528 0.544320i 0.604528 0.544320i
\(486\) 0 0
\(487\) −1.01807 + 1.40126i −1.01807 + 1.40126i −0.104528 + 0.994522i \(0.533333\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(488\) 0 0
\(489\) 1.89169 1.37440i 1.89169 1.37440i
\(490\) 0 0
\(491\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 1.47815 2.56023i 1.47815 2.56023i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 1.98904i 1.98904i
\(508\) 0 0
\(509\) −1.08268 0.786610i −1.08268 0.786610i −0.104528 0.994522i \(-0.533333\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 1.41355 1.27276i 1.41355 1.27276i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −0.413545 + 1.27276i −0.413545 + 1.27276i 0.500000 + 0.866025i \(0.333333\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(522\) 0 0
\(523\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −0.373619 + 1.14988i −0.373619 + 1.14988i
\(530\) 0 0
\(531\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 1.56460 2.15349i 1.56460 2.15349i
\(538\) 0 0
\(539\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(540\) 0 0
\(541\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(542\) 0 0
\(543\) 1.98904i 1.98904i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0.360114 + 3.42625i 0.360114 + 3.42625i
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(564\) 0 0
\(565\) −0.604528 1.35779i −0.604528 1.35779i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(570\) 0 0
\(571\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(572\) 0 0
\(573\) −1.56460 2.15349i −1.56460 2.15349i
\(574\) 0 0
\(575\) 0.604528 1.35779i 0.604528 1.35779i
\(576\) 0 0
\(577\) 0.478148 + 0.658114i 0.478148 + 0.658114i 0.978148 0.207912i \(-0.0666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −1.11803 + 0.363271i −1.11803 + 0.363271i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −0.690983 + 0.951057i −0.690983 + 0.951057i 0.309017 + 0.951057i \(0.400000\pi\)
−1.00000 \(1.00000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −1.16913 0.379874i −1.16913 0.379874i
\(598\) 0 0
\(599\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 1.16913 + 0.379874i 1.16913 + 0.379874i
\(604\) 0 0
\(605\) −0.669131 0.743145i −0.669131 0.743145i
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.11803 0.363271i 1.11803 0.363271i 0.309017 0.951057i \(-0.400000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(618\) 0 0
\(619\) −0.564602 1.73767i −0.564602 1.73767i −0.669131 0.743145i \(-0.733333\pi\)
0.104528 0.994522i \(-0.466667\pi\)
\(620\) 0 0
\(621\) 1.78716 5.50033i 1.78716 5.50033i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −0.604528 1.86055i −0.604528 1.86055i −0.500000 0.866025i \(-0.666667\pi\)
−0.104528 0.994522i \(-0.533333\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(640\) 0 0
\(641\) 1.47815 + 1.07394i 1.47815 + 1.07394i 0.978148 + 0.207912i \(0.0666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(642\) 0 0
\(643\) 0.813473i 0.813473i 0.913545 + 0.406737i \(0.133333\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1.41355 0.459289i −1.41355 0.459289i −0.500000 0.866025i \(-0.666667\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(648\) 0 0
\(649\) 0.209057 0.209057
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0.773659 + 0.251377i 0.773659 + 0.251377i 0.669131 0.743145i \(-0.266667\pi\)
0.104528 + 0.994522i \(0.466667\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(660\) 0 0
\(661\) 1.58268 1.14988i 1.58268 1.14988i 0.669131 0.743145i \(-0.266667\pi\)
0.913545 0.406737i \(-0.133333\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 1.22256 + 3.76266i 1.22256 + 3.76266i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(674\) 0 0
\(675\) −1.58268 + 3.55475i −1.58268 + 3.55475i
\(676\) 0 0
\(677\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.80902 + 0.587785i −1.80902 + 0.587785i −0.809017 + 0.587785i \(0.800000\pi\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 0.169131 + 0.379874i 0.169131 + 0.379874i
\(686\) 0 0
\(687\) −1.56460 + 2.15349i −1.56460 + 2.15349i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −1.08268 0.786610i −1.08268 0.786610i −0.104528 0.994522i \(-0.533333\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 1.47815 + 1.07394i 1.47815 + 1.07394i 0.978148 + 0.207912i \(0.0666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.59618 2.19696i 1.59618 2.19696i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0.604528 + 1.86055i 0.604528 + 1.86055i 0.500000 + 0.866025i \(0.333333\pi\)
0.104528 + 0.994522i \(0.466667\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0.478148 + 0.658114i 0.478148 + 0.658114i 0.978148 0.207912i \(-0.0666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(728\) 0 0
\(729\) −1.97815 + 6.08811i −1.97815 + 6.08811i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(734\) 0 0
\(735\) 1.47815 1.33093i 1.47815 1.33093i
\(736\) 0 0
\(737\) 0.244415 0.336408i 0.244415 0.336408i
\(738\) 0 0
\(739\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1.33826 1.33826 0.669131 0.743145i \(-0.266667\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(752\) 0 0
\(753\) −3.45630 1.12302i −3.45630 1.12302i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1.17557i 1.17557i −0.809017 0.587785i \(-0.800000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(758\) 0 0
\(759\) −2.39169 1.73767i −2.39169 1.73767i
\(760\) 0 0
\(761\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(770\) 0 0
\(771\) 1.16913 3.59821i 1.16913 3.59821i
\(772\) 0 0
\(773\) −0.690983 0.951057i −0.690983 0.951057i 0.309017 0.951057i \(-0.400000\pi\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) −1.22256 + 1.35779i −1.22256 + 1.35779i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0.0646021 + 0.198825i 0.0646021 + 0.198825i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0.360114 + 0.207912i 0.360114 + 0.207912i
\(786\) 0 0
\(787\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 2.13611 0.951057i 2.13611 0.951057i
\(796\) 0 0
\(797\) 0.395472 + 0.128496i 0.395472 + 0.128496i 0.500000 0.866025i \(-0.333333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −5.78339 −5.78339
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.22930i 1.22930i
\(808\) 0 0
\(809\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(810\) 0 0
\(811\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0.478148 + 1.07394i 0.478148 + 1.07394i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(822\) 0 0
\(823\) 0.478148 + 0.658114i 0.478148 + 0.658114i 0.978148 0.207912i \(-0.0666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(824\) 0 0
\(825\) 1.47815 + 1.33093i 1.47815 + 1.33093i
\(826\) 0 0
\(827\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(828\) 0 0
\(829\) 0.0646021 0.198825i 0.0646021 0.198825i −0.913545 0.406737i \(-0.866667\pi\)
0.978148 + 0.207912i \(0.0666667\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −4.17886 + 5.75170i −4.17886 + 5.75170i
\(838\) 0 0
\(839\) 1.58268 1.14988i 1.58268 1.14988i 0.669131 0.743145i \(-0.266667\pi\)
0.913545 0.406737i \(-0.133333\pi\)
\(840\) 0 0
\(841\) −0.809017 0.587785i −0.809017 0.587785i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −0.978148 0.207912i −0.978148 0.207912i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.57433 2.57433
\(852\) 0 0
\(853\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) −0.169131 0.122881i −0.169131 0.122881i 0.500000 0.866025i \(-0.333333\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0.690983 0.951057i 0.690983 0.951057i −0.309017 0.951057i \(-0.600000\pi\)
1.00000 \(0\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −1.89169 + 0.614648i −1.89169 + 0.614648i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 1.41355 + 1.94558i 1.41355 + 1.94558i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −0.0646021 0.198825i −0.0646021 0.198825i 0.913545 0.406737i \(-0.133333\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(882\) 0 0
\(883\) −1.11803 + 0.363271i −1.11803 + 0.363271i −0.809017 0.587785i \(-0.800000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(884\) 0 0
\(885\) −0.413545 + 0.0434654i −0.413545 + 0.0434654i
\(886\) 0 0
\(887\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 3.86984 + 2.81160i 3.86984 + 2.81160i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0.895472 + 0.994522i 0.895472 + 0.994522i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0.978148 + 0.207912i 0.978148 + 0.207912i
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0.500000 0.363271i 0.500000 0.363271i −0.309017 0.951057i \(-0.600000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −1.72256 0.181049i −1.72256 0.181049i
\(926\) 0 0
\(927\) 3.30524 + 4.54927i 3.30524 + 4.54927i
\(928\) 0 0
\(929\) 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i \(-0.800000\pi\)
1.00000 \(0\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 1.16913 0.379874i 1.16913 0.379874i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(938\) 0 0
\(939\) 2.39169 1.73767i 2.39169 1.73767i
\(940\) 0 0
\(941\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −0.773659 0.251377i −0.773659 0.251377i −0.104528 0.994522i \(-0.533333\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 1.61803 1.61803
\(952\) 0 0
\(953\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(954\) 0 0
\(955\) 1.22256 0.544320i 1.22256 0.544320i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −1.89169 + 1.37440i −1.89169 + 1.37440i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −0.564602 + 1.73767i −0.564602 + 1.73767i 0.104528 + 0.994522i \(0.466667\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1.01807 1.40126i −1.01807 1.40126i −0.913545 0.406737i \(-0.866667\pi\)
−0.104528 0.994522i \(-0.533333\pi\)
\(978\) 0 0
\(979\) −0.604528 + 1.86055i −0.604528 + 1.86055i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0.395472 0.128496i 0.395472 0.128496i −0.104528 0.994522i \(-0.533333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −1.30902 0.951057i −1.30902 0.951057i −0.309017 0.951057i \(-0.600000\pi\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 2.66186i 2.66186i
\(994\) 0 0
\(995\) 0.309017 0.535233i 0.309017 0.535233i
\(996\) 0 0
\(997\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(998\) 0 0
\(999\) −6.73968 −6.73968
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1100.1.cd.a.989.1 yes 8
11.10 odd 2 CM 1100.1.cd.a.989.1 yes 8
25.9 even 10 inner 1100.1.cd.a.109.1 8
275.109 odd 10 inner 1100.1.cd.a.109.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1100.1.cd.a.109.1 8 25.9 even 10 inner
1100.1.cd.a.109.1 8 275.109 odd 10 inner
1100.1.cd.a.989.1 yes 8 1.1 even 1 trivial
1100.1.cd.a.989.1 yes 8 11.10 odd 2 CM