Properties

Label 1100.2.q.b.221.3
Level $1100$
Weight $2$
Character 1100.221
Analytic conductor $8.784$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1100,2,Mod(221,1100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1100, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 6, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1100.221");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1100.q (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.78354422234\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(13\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 221.3
Character \(\chi\) \(=\) 1100.221
Dual form 1100.2.q.b.881.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.84339 - 1.33930i) q^{3} +(0.702061 + 2.12300i) q^{5} -3.98140 q^{7} +(0.677309 + 2.08454i) q^{9} +(-0.309017 + 0.951057i) q^{11} +(-1.95146 - 6.00596i) q^{13} +(1.54916 - 4.85378i) q^{15} +(2.73983 - 1.99060i) q^{17} +(-1.03621 + 0.752852i) q^{19} +(7.33928 + 5.33230i) q^{21} +(-0.925011 + 2.84689i) q^{23} +(-4.01422 + 2.98095i) q^{25} +(-0.569051 + 1.75136i) q^{27} +(8.32724 + 6.05009i) q^{29} +(4.95603 - 3.60077i) q^{31} +(1.84339 - 1.33930i) q^{33} +(-2.79519 - 8.45250i) q^{35} +(0.738428 + 2.27265i) q^{37} +(-4.44650 + 13.6849i) q^{39} +(3.07565 + 9.46588i) q^{41} +2.64935 q^{43} +(-3.94996 + 2.90140i) q^{45} +(6.52278 + 4.73907i) q^{47} +8.85157 q^{49} -7.71658 q^{51} +(4.20247 + 3.05327i) q^{53} +(-2.23604 + 0.0116581i) q^{55} +2.91844 q^{57} +(-1.77912 - 5.47556i) q^{59} +(1.10092 - 3.38827i) q^{61} +(-2.69664 - 8.29940i) q^{63} +(11.3806 - 8.35949i) q^{65} +(-2.78520 + 2.02357i) q^{67} +(5.51801 - 4.00907i) q^{69} +(1.92786 + 1.40067i) q^{71} +(4.42905 - 13.6312i) q^{73} +(11.3922 - 0.118795i) q^{75} +(1.23032 - 3.78654i) q^{77} +(-11.3833 - 8.27044i) q^{79} +(8.71424 - 6.33126i) q^{81} +(3.96051 - 2.87748i) q^{83} +(6.14956 + 4.41912i) q^{85} +(-7.24745 - 22.3054i) q^{87} +(-4.45845 + 13.7217i) q^{89} +(7.76953 + 23.9122i) q^{91} -13.9584 q^{93} +(-2.32578 - 1.67132i) q^{95} +(6.43566 + 4.67578i) q^{97} -2.19182 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - 3 q^{5} - 9 q^{9} + 13 q^{11} + 12 q^{13} - 15 q^{15} + 8 q^{17} - 10 q^{19} - 6 q^{21} + 22 q^{23} + 5 q^{25} + 21 q^{27} + 12 q^{29} - 12 q^{31} + 30 q^{35} + 15 q^{37} - 20 q^{39} - 68 q^{43}+ \cdots - 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1100\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(551\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.84339 1.33930i −1.06428 0.773246i −0.0894062 0.995995i \(-0.528497\pi\)
−0.974876 + 0.222749i \(0.928497\pi\)
\(4\) 0 0
\(5\) 0.702061 + 2.12300i 0.313971 + 0.949432i
\(6\) 0 0
\(7\) −3.98140 −1.50483 −0.752414 0.658690i \(-0.771111\pi\)
−0.752414 + 0.658690i \(0.771111\pi\)
\(8\) 0 0
\(9\) 0.677309 + 2.08454i 0.225770 + 0.694848i
\(10\) 0 0
\(11\) −0.309017 + 0.951057i −0.0931721 + 0.286754i
\(12\) 0 0
\(13\) −1.95146 6.00596i −0.541236 1.66575i −0.729774 0.683689i \(-0.760375\pi\)
0.188537 0.982066i \(-0.439625\pi\)
\(14\) 0 0
\(15\) 1.54916 4.85378i 0.399991 1.25324i
\(16\) 0 0
\(17\) 2.73983 1.99060i 0.664505 0.482791i −0.203676 0.979038i \(-0.565289\pi\)
0.868181 + 0.496247i \(0.165289\pi\)
\(18\) 0 0
\(19\) −1.03621 + 0.752852i −0.237723 + 0.172716i −0.700268 0.713880i \(-0.746936\pi\)
0.462545 + 0.886596i \(0.346936\pi\)
\(20\) 0 0
\(21\) 7.33928 + 5.33230i 1.60156 + 1.16360i
\(22\) 0 0
\(23\) −0.925011 + 2.84689i −0.192878 + 0.593618i 0.807117 + 0.590392i \(0.201027\pi\)
−0.999995 + 0.00322604i \(0.998973\pi\)
\(24\) 0 0
\(25\) −4.01422 + 2.98095i −0.802844 + 0.596189i
\(26\) 0 0
\(27\) −0.569051 + 1.75136i −0.109514 + 0.337049i
\(28\) 0 0
\(29\) 8.32724 + 6.05009i 1.54633 + 1.12347i 0.946205 + 0.323568i \(0.104882\pi\)
0.600125 + 0.799907i \(0.295118\pi\)
\(30\) 0 0
\(31\) 4.95603 3.60077i 0.890129 0.646717i −0.0457827 0.998951i \(-0.514578\pi\)
0.935912 + 0.352235i \(0.114578\pi\)
\(32\) 0 0
\(33\) 1.84339 1.33930i 0.320893 0.233142i
\(34\) 0 0
\(35\) −2.79519 8.45250i −0.472473 1.42873i
\(36\) 0 0
\(37\) 0.738428 + 2.27265i 0.121397 + 0.373621i 0.993227 0.116187i \(-0.0370671\pi\)
−0.871831 + 0.489807i \(0.837067\pi\)
\(38\) 0 0
\(39\) −4.44650 + 13.6849i −0.712010 + 2.19134i
\(40\) 0 0
\(41\) 3.07565 + 9.46588i 0.480336 + 1.47832i 0.838624 + 0.544711i \(0.183360\pi\)
−0.358288 + 0.933611i \(0.616640\pi\)
\(42\) 0 0
\(43\) 2.64935 0.404022 0.202011 0.979383i \(-0.435252\pi\)
0.202011 + 0.979383i \(0.435252\pi\)
\(44\) 0 0
\(45\) −3.94996 + 2.90140i −0.588826 + 0.432515i
\(46\) 0 0
\(47\) 6.52278 + 4.73907i 0.951445 + 0.691265i 0.951148 0.308735i \(-0.0999056\pi\)
0.000296464 1.00000i \(0.499906\pi\)
\(48\) 0 0
\(49\) 8.85157 1.26451
\(50\) 0 0
\(51\) −7.71658 −1.08054
\(52\) 0 0
\(53\) 4.20247 + 3.05327i 0.577253 + 0.419399i 0.837733 0.546080i \(-0.183881\pi\)
−0.260479 + 0.965479i \(0.583881\pi\)
\(54\) 0 0
\(55\) −2.23604 + 0.0116581i −0.301507 + 0.00157198i
\(56\) 0 0
\(57\) 2.91844 0.386557
\(58\) 0 0
\(59\) −1.77912 5.47556i −0.231622 0.712858i −0.997552 0.0699339i \(-0.977721\pi\)
0.765930 0.642924i \(-0.222279\pi\)
\(60\) 0 0
\(61\) 1.10092 3.38827i 0.140958 0.433824i −0.855511 0.517784i \(-0.826757\pi\)
0.996469 + 0.0839605i \(0.0267569\pi\)
\(62\) 0 0
\(63\) −2.69664 8.29940i −0.339745 1.04563i
\(64\) 0 0
\(65\) 11.3806 8.35949i 1.41159 1.03687i
\(66\) 0 0
\(67\) −2.78520 + 2.02357i −0.340267 + 0.247218i −0.744774 0.667316i \(-0.767443\pi\)
0.404508 + 0.914535i \(0.367443\pi\)
\(68\) 0 0
\(69\) 5.51801 4.00907i 0.664290 0.482635i
\(70\) 0 0
\(71\) 1.92786 + 1.40067i 0.228794 + 0.166229i 0.696276 0.717774i \(-0.254839\pi\)
−0.467482 + 0.884003i \(0.654839\pi\)
\(72\) 0 0
\(73\) 4.42905 13.6312i 0.518382 1.59541i −0.258662 0.965968i \(-0.583282\pi\)
0.777044 0.629447i \(-0.216718\pi\)
\(74\) 0 0
\(75\) 11.3922 0.118795i 1.31545 0.0137173i
\(76\) 0 0
\(77\) 1.23032 3.78654i 0.140208 0.431516i
\(78\) 0 0
\(79\) −11.3833 8.27044i −1.28072 0.930497i −0.281145 0.959665i \(-0.590714\pi\)
−0.999575 + 0.0291677i \(0.990714\pi\)
\(80\) 0 0
\(81\) 8.71424 6.33126i 0.968248 0.703474i
\(82\) 0 0
\(83\) 3.96051 2.87748i 0.434723 0.315844i −0.348812 0.937193i \(-0.613415\pi\)
0.783534 + 0.621348i \(0.213415\pi\)
\(84\) 0 0
\(85\) 6.14956 + 4.41912i 0.667013 + 0.479320i
\(86\) 0 0
\(87\) −7.24745 22.3054i −0.777009 2.39139i
\(88\) 0 0
\(89\) −4.45845 + 13.7217i −0.472595 + 1.45450i 0.376579 + 0.926385i \(0.377101\pi\)
−0.849174 + 0.528114i \(0.822899\pi\)
\(90\) 0 0
\(91\) 7.76953 + 23.9122i 0.814468 + 2.50668i
\(92\) 0 0
\(93\) −13.9584 −1.44742
\(94\) 0 0
\(95\) −2.32578 1.67132i −0.238620 0.171474i
\(96\) 0 0
\(97\) 6.43566 + 4.67578i 0.653443 + 0.474754i 0.864442 0.502732i \(-0.167672\pi\)
−0.210999 + 0.977486i \(0.567672\pi\)
\(98\) 0 0
\(99\) −2.19182 −0.220286
\(100\) 0 0
\(101\) 11.9259 1.18668 0.593338 0.804953i \(-0.297810\pi\)
0.593338 + 0.804953i \(0.297810\pi\)
\(102\) 0 0
\(103\) 1.29949 + 0.944133i 0.128042 + 0.0930282i 0.649963 0.759966i \(-0.274784\pi\)
−0.521921 + 0.852994i \(0.674784\pi\)
\(104\) 0 0
\(105\) −6.16782 + 19.3249i −0.601918 + 1.88591i
\(106\) 0 0
\(107\) 9.50503 0.918886 0.459443 0.888207i \(-0.348049\pi\)
0.459443 + 0.888207i \(0.348049\pi\)
\(108\) 0 0
\(109\) 1.84366 + 5.67420i 0.176590 + 0.543490i 0.999703 0.0243894i \(-0.00776416\pi\)
−0.823112 + 0.567879i \(0.807764\pi\)
\(110\) 0 0
\(111\) 1.68255 5.17835i 0.159700 0.491507i
\(112\) 0 0
\(113\) 3.86897 + 11.9075i 0.363962 + 1.12016i 0.950628 + 0.310331i \(0.100440\pi\)
−0.586666 + 0.809829i \(0.699560\pi\)
\(114\) 0 0
\(115\) −6.69336 + 0.0348975i −0.624159 + 0.00325421i
\(116\) 0 0
\(117\) 11.1979 8.13579i 1.03525 0.752154i
\(118\) 0 0
\(119\) −10.9084 + 7.92538i −0.999967 + 0.726518i
\(120\) 0 0
\(121\) −0.809017 0.587785i −0.0735470 0.0534350i
\(122\) 0 0
\(123\) 7.00804 21.5685i 0.631894 1.94477i
\(124\) 0 0
\(125\) −9.14676 6.42937i −0.818111 0.575060i
\(126\) 0 0
\(127\) −4.46351 + 13.7373i −0.396072 + 1.21898i 0.532051 + 0.846712i \(0.321421\pi\)
−0.928123 + 0.372273i \(0.878579\pi\)
\(128\) 0 0
\(129\) −4.88379 3.54828i −0.429994 0.312409i
\(130\) 0 0
\(131\) 0.0531810 0.0386383i 0.00464645 0.00337584i −0.585460 0.810702i \(-0.699086\pi\)
0.590106 + 0.807326i \(0.299086\pi\)
\(132\) 0 0
\(133\) 4.12558 2.99741i 0.357733 0.259908i
\(134\) 0 0
\(135\) −4.11764 + 0.0214683i −0.354390 + 0.00184770i
\(136\) 0 0
\(137\) −4.65551 14.3282i −0.397747 1.22414i −0.926801 0.375552i \(-0.877453\pi\)
0.529054 0.848588i \(-0.322547\pi\)
\(138\) 0 0
\(139\) −1.18608 + 3.65038i −0.100602 + 0.309621i −0.988673 0.150085i \(-0.952045\pi\)
0.888071 + 0.459706i \(0.152045\pi\)
\(140\) 0 0
\(141\) −5.67697 17.4719i −0.478087 1.47140i
\(142\) 0 0
\(143\) 6.31504 0.528090
\(144\) 0 0
\(145\) −6.99809 + 21.9262i −0.581160 + 1.82087i
\(146\) 0 0
\(147\) −16.3169 11.8549i −1.34580 0.977778i
\(148\) 0 0
\(149\) −13.8400 −1.13382 −0.566909 0.823780i \(-0.691861\pi\)
−0.566909 + 0.823780i \(0.691861\pi\)
\(150\) 0 0
\(151\) 19.4381 1.58185 0.790927 0.611911i \(-0.209599\pi\)
0.790927 + 0.611911i \(0.209599\pi\)
\(152\) 0 0
\(153\) 6.00520 + 4.36303i 0.485492 + 0.352730i
\(154\) 0 0
\(155\) 11.1238 + 7.99367i 0.893489 + 0.642067i
\(156\) 0 0
\(157\) −11.1274 −0.888066 −0.444033 0.896011i \(-0.646453\pi\)
−0.444033 + 0.896011i \(0.646453\pi\)
\(158\) 0 0
\(159\) −3.65754 11.2567i −0.290062 0.892718i
\(160\) 0 0
\(161\) 3.68284 11.3346i 0.290249 0.893294i
\(162\) 0 0
\(163\) 1.95871 + 6.02830i 0.153418 + 0.472173i 0.997997 0.0632583i \(-0.0201492\pi\)
−0.844579 + 0.535431i \(0.820149\pi\)
\(164\) 0 0
\(165\) 4.13750 + 2.97324i 0.322104 + 0.231466i
\(166\) 0 0
\(167\) 7.75942 5.63755i 0.600442 0.436246i −0.245594 0.969373i \(-0.578983\pi\)
0.846036 + 0.533126i \(0.178983\pi\)
\(168\) 0 0
\(169\) −21.7462 + 15.7995i −1.67278 + 1.21535i
\(170\) 0 0
\(171\) −2.27119 1.65011i −0.173682 0.126187i
\(172\) 0 0
\(173\) −3.40903 + 10.4919i −0.259184 + 0.797685i 0.733793 + 0.679373i \(0.237748\pi\)
−0.992976 + 0.118312i \(0.962252\pi\)
\(174\) 0 0
\(175\) 15.9822 11.8683i 1.20814 0.897163i
\(176\) 0 0
\(177\) −4.05382 + 12.4764i −0.304704 + 0.937782i
\(178\) 0 0
\(179\) −5.59356 4.06396i −0.418083 0.303755i 0.358783 0.933421i \(-0.383192\pi\)
−0.776866 + 0.629666i \(0.783192\pi\)
\(180\) 0 0
\(181\) 15.2279 11.0638i 1.13188 0.822362i 0.145916 0.989297i \(-0.453387\pi\)
0.985968 + 0.166935i \(0.0533869\pi\)
\(182\) 0 0
\(183\) −6.56734 + 4.77145i −0.485472 + 0.352716i
\(184\) 0 0
\(185\) −4.30640 + 3.16322i −0.316613 + 0.232564i
\(186\) 0 0
\(187\) 1.04652 + 3.22086i 0.0765291 + 0.235532i
\(188\) 0 0
\(189\) 2.26562 6.97287i 0.164800 0.507202i
\(190\) 0 0
\(191\) 7.32981 + 22.5588i 0.530367 + 1.63230i 0.753453 + 0.657502i \(0.228387\pi\)
−0.223086 + 0.974799i \(0.571613\pi\)
\(192\) 0 0
\(193\) −12.4661 −0.897329 −0.448664 0.893700i \(-0.648100\pi\)
−0.448664 + 0.893700i \(0.648100\pi\)
\(194\) 0 0
\(195\) −32.1748 + 0.167751i −2.30408 + 0.0120129i
\(196\) 0 0
\(197\) −13.5407 9.83791i −0.964737 0.700922i −0.0104908 0.999945i \(-0.503339\pi\)
−0.954246 + 0.299023i \(0.903339\pi\)
\(198\) 0 0
\(199\) 20.9394 1.48436 0.742178 0.670203i \(-0.233793\pi\)
0.742178 + 0.670203i \(0.233793\pi\)
\(200\) 0 0
\(201\) 7.84439 0.553300
\(202\) 0 0
\(203\) −33.1541 24.0879i −2.32696 1.69064i
\(204\) 0 0
\(205\) −17.9367 + 13.1752i −1.25275 + 0.920197i
\(206\) 0 0
\(207\) −6.56099 −0.456020
\(208\) 0 0
\(209\) −0.395798 1.21814i −0.0273779 0.0842605i
\(210\) 0 0
\(211\) 6.32495 19.4662i 0.435427 1.34011i −0.457221 0.889353i \(-0.651155\pi\)
0.892648 0.450754i \(-0.148845\pi\)
\(212\) 0 0
\(213\) −1.67787 5.16396i −0.114966 0.353829i
\(214\) 0 0
\(215\) 1.86001 + 5.62456i 0.126851 + 0.383592i
\(216\) 0 0
\(217\) −19.7319 + 14.3361i −1.33949 + 0.973198i
\(218\) 0 0
\(219\) −26.4208 + 19.1958i −1.78535 + 1.29713i
\(220\) 0 0
\(221\) −17.3021 12.5707i −1.16387 0.845599i
\(222\) 0 0
\(223\) −0.753633 + 2.31944i −0.0504670 + 0.155322i −0.973114 0.230324i \(-0.926021\pi\)
0.922647 + 0.385646i \(0.126021\pi\)
\(224\) 0 0
\(225\) −8.93278 6.34879i −0.595518 0.423253i
\(226\) 0 0
\(227\) −1.32427 + 4.07570i −0.0878952 + 0.270514i −0.985337 0.170619i \(-0.945423\pi\)
0.897442 + 0.441133i \(0.145423\pi\)
\(228\) 0 0
\(229\) −16.3255 11.8612i −1.07882 0.783810i −0.101345 0.994851i \(-0.532315\pi\)
−0.977477 + 0.211041i \(0.932315\pi\)
\(230\) 0 0
\(231\) −7.33928 + 5.33230i −0.482889 + 0.350840i
\(232\) 0 0
\(233\) 5.15555 3.74573i 0.337751 0.245391i −0.405961 0.913890i \(-0.633063\pi\)
0.743712 + 0.668500i \(0.233063\pi\)
\(234\) 0 0
\(235\) −5.48164 + 17.1749i −0.357583 + 1.12037i
\(236\) 0 0
\(237\) 9.90723 + 30.4913i 0.643544 + 1.98062i
\(238\) 0 0
\(239\) 0.0753449 0.231888i 0.00487366 0.0149996i −0.948590 0.316507i \(-0.897490\pi\)
0.953464 + 0.301508i \(0.0974899\pi\)
\(240\) 0 0
\(241\) 4.61927 + 14.2166i 0.297553 + 0.915774i 0.982352 + 0.187042i \(0.0598901\pi\)
−0.684799 + 0.728732i \(0.740110\pi\)
\(242\) 0 0
\(243\) −19.0187 −1.22005
\(244\) 0 0
\(245\) 6.21434 + 18.7918i 0.397020 + 1.20057i
\(246\) 0 0
\(247\) 6.54372 + 4.75429i 0.416367 + 0.302508i
\(248\) 0 0
\(249\) −11.1546 −0.706893
\(250\) 0 0
\(251\) −19.7970 −1.24958 −0.624788 0.780795i \(-0.714815\pi\)
−0.624788 + 0.780795i \(0.714815\pi\)
\(252\) 0 0
\(253\) −2.42171 1.75948i −0.152252 0.110617i
\(254\) 0 0
\(255\) −5.41751 16.3823i −0.339258 1.02590i
\(256\) 0 0
\(257\) −11.3290 −0.706683 −0.353342 0.935494i \(-0.614955\pi\)
−0.353342 + 0.935494i \(0.614955\pi\)
\(258\) 0 0
\(259\) −2.93998 9.04832i −0.182681 0.562235i
\(260\) 0 0
\(261\) −6.97156 + 21.4563i −0.431529 + 1.32811i
\(262\) 0 0
\(263\) 1.05655 + 3.25172i 0.0651495 + 0.200510i 0.978332 0.207041i \(-0.0663832\pi\)
−0.913183 + 0.407550i \(0.866383\pi\)
\(264\) 0 0
\(265\) −3.53169 + 11.0654i −0.216950 + 0.679742i
\(266\) 0 0
\(267\) 26.5962 19.3233i 1.62766 1.18256i
\(268\) 0 0
\(269\) 17.2215 12.5121i 1.05001 0.762878i 0.0777973 0.996969i \(-0.475211\pi\)
0.972215 + 0.234091i \(0.0752113\pi\)
\(270\) 0 0
\(271\) 13.5826 + 9.86835i 0.825086 + 0.599460i 0.918165 0.396199i \(-0.129671\pi\)
−0.0930791 + 0.995659i \(0.529671\pi\)
\(272\) 0 0
\(273\) 17.7033 54.4852i 1.07145 3.29759i
\(274\) 0 0
\(275\) −1.59459 4.73891i −0.0961571 0.285767i
\(276\) 0 0
\(277\) 4.83464 14.8795i 0.290485 0.894022i −0.694215 0.719768i \(-0.744248\pi\)
0.984701 0.174255i \(-0.0557516\pi\)
\(278\) 0 0
\(279\) 10.8627 + 7.89222i 0.650333 + 0.472495i
\(280\) 0 0
\(281\) −0.632829 + 0.459777i −0.0377514 + 0.0274280i −0.606501 0.795083i \(-0.707427\pi\)
0.568750 + 0.822511i \(0.307427\pi\)
\(282\) 0 0
\(283\) −12.3846 + 8.99796i −0.736190 + 0.534873i −0.891516 0.452990i \(-0.850357\pi\)
0.155326 + 0.987863i \(0.450357\pi\)
\(284\) 0 0
\(285\) 2.04892 + 6.19583i 0.121368 + 0.367009i
\(286\) 0 0
\(287\) −12.2454 37.6875i −0.722823 2.22462i
\(288\) 0 0
\(289\) −1.70913 + 5.26017i −0.100537 + 0.309422i
\(290\) 0 0
\(291\) −5.60116 17.2386i −0.328346 1.01054i
\(292\) 0 0
\(293\) 10.3378 0.603940 0.301970 0.953317i \(-0.402356\pi\)
0.301970 + 0.953317i \(0.402356\pi\)
\(294\) 0 0
\(295\) 10.3755 7.62124i 0.604088 0.443726i
\(296\) 0 0
\(297\) −1.48980 1.08240i −0.0864467 0.0628072i
\(298\) 0 0
\(299\) 18.9035 1.09321
\(300\) 0 0
\(301\) −10.5481 −0.607985
\(302\) 0 0
\(303\) −21.9842 15.9724i −1.26296 0.917593i
\(304\) 0 0
\(305\) 7.96620 0.0415338i 0.456143 0.00237822i
\(306\) 0 0
\(307\) 14.9141 0.851193 0.425597 0.904913i \(-0.360064\pi\)
0.425597 + 0.904913i \(0.360064\pi\)
\(308\) 0 0
\(309\) −1.13098 3.48081i −0.0643395 0.198017i
\(310\) 0 0
\(311\) −6.97205 + 21.4578i −0.395349 + 1.21676i 0.533341 + 0.845900i \(0.320936\pi\)
−0.928690 + 0.370858i \(0.879064\pi\)
\(312\) 0 0
\(313\) 9.70561 + 29.8708i 0.548594 + 1.68840i 0.712288 + 0.701887i \(0.247659\pi\)
−0.163695 + 0.986511i \(0.552341\pi\)
\(314\) 0 0
\(315\) 15.7264 11.5516i 0.886082 0.650861i
\(316\) 0 0
\(317\) 18.3049 13.2993i 1.02811 0.746964i 0.0601787 0.998188i \(-0.480833\pi\)
0.967929 + 0.251224i \(0.0808329\pi\)
\(318\) 0 0
\(319\) −8.32724 + 6.05009i −0.466236 + 0.338740i
\(320\) 0 0
\(321\) −17.5215 12.7301i −0.977954 0.710525i
\(322\) 0 0
\(323\) −1.34041 + 4.12537i −0.0745825 + 0.229541i
\(324\) 0 0
\(325\) 25.7370 + 18.2921i 1.42763 + 1.01466i
\(326\) 0 0
\(327\) 4.20088 12.9290i 0.232309 0.714974i
\(328\) 0 0
\(329\) −25.9698 18.8682i −1.43176 1.04024i
\(330\) 0 0
\(331\) 6.88210 5.00014i 0.378275 0.274833i −0.382359 0.924014i \(-0.624888\pi\)
0.760634 + 0.649181i \(0.224888\pi\)
\(332\) 0 0
\(333\) −4.23728 + 3.07857i −0.232202 + 0.168704i
\(334\) 0 0
\(335\) −6.25141 4.49231i −0.341551 0.245441i
\(336\) 0 0
\(337\) 2.57087 + 7.91233i 0.140044 + 0.431012i 0.996340 0.0854731i \(-0.0272402\pi\)
−0.856296 + 0.516485i \(0.827240\pi\)
\(338\) 0 0
\(339\) 8.81566 27.1318i 0.478801 1.47360i
\(340\) 0 0
\(341\) 1.89303 + 5.82616i 0.102514 + 0.315504i
\(342\) 0 0
\(343\) −7.37185 −0.398042
\(344\) 0 0
\(345\) 12.3852 + 8.90009i 0.666797 + 0.479165i
\(346\) 0 0
\(347\) 15.2286 + 11.0642i 0.817515 + 0.593959i 0.916000 0.401179i \(-0.131400\pi\)
−0.0984845 + 0.995139i \(0.531400\pi\)
\(348\) 0 0
\(349\) 29.5799 1.58337 0.791687 0.610927i \(-0.209203\pi\)
0.791687 + 0.610927i \(0.209203\pi\)
\(350\) 0 0
\(351\) 11.6291 0.620714
\(352\) 0 0
\(353\) −7.52140 5.46462i −0.400324 0.290852i 0.369349 0.929291i \(-0.379581\pi\)
−0.769673 + 0.638438i \(0.779581\pi\)
\(354\) 0 0
\(355\) −1.62014 + 5.07618i −0.0859882 + 0.269416i
\(356\) 0 0
\(357\) 30.7228 1.62602
\(358\) 0 0
\(359\) 1.90912 + 5.87565i 0.100759 + 0.310105i 0.988712 0.149830i \(-0.0478727\pi\)
−0.887953 + 0.459935i \(0.847873\pi\)
\(360\) 0 0
\(361\) −5.36437 + 16.5098i −0.282335 + 0.868939i
\(362\) 0 0
\(363\) 0.704113 + 2.16704i 0.0369563 + 0.113740i
\(364\) 0 0
\(365\) 32.0485 0.167093i 1.67750 0.00874604i
\(366\) 0 0
\(367\) 17.0951 12.4204i 0.892359 0.648337i −0.0441327 0.999026i \(-0.514052\pi\)
0.936492 + 0.350689i \(0.114052\pi\)
\(368\) 0 0
\(369\) −17.6489 + 12.8226i −0.918763 + 0.667520i
\(370\) 0 0
\(371\) −16.7317 12.1563i −0.868668 0.631124i
\(372\) 0 0
\(373\) −6.10998 + 18.8046i −0.316363 + 0.973665i 0.658827 + 0.752295i \(0.271053\pi\)
−0.975190 + 0.221370i \(0.928947\pi\)
\(374\) 0 0
\(375\) 8.25020 + 24.1021i 0.426038 + 1.24463i
\(376\) 0 0
\(377\) 20.0864 61.8196i 1.03450 3.18387i
\(378\) 0 0
\(379\) 2.33045 + 1.69317i 0.119707 + 0.0869724i 0.646028 0.763314i \(-0.276429\pi\)
−0.526321 + 0.850286i \(0.676429\pi\)
\(380\) 0 0
\(381\) 26.6263 19.3452i 1.36411 0.991082i
\(382\) 0 0
\(383\) 1.70617 1.23960i 0.0871810 0.0633407i −0.543341 0.839512i \(-0.682841\pi\)
0.630522 + 0.776171i \(0.282841\pi\)
\(384\) 0 0
\(385\) 8.90257 0.0464158i 0.453717 0.00236557i
\(386\) 0 0
\(387\) 1.79443 + 5.52269i 0.0912160 + 0.280734i
\(388\) 0 0
\(389\) 3.88719 11.9635i 0.197088 0.606575i −0.802858 0.596171i \(-0.796688\pi\)
0.999946 0.0104043i \(-0.00331184\pi\)
\(390\) 0 0
\(391\) 3.13265 + 9.64132i 0.158425 + 0.487582i
\(392\) 0 0
\(393\) −0.149782 −0.00755549
\(394\) 0 0
\(395\) 9.56635 29.9730i 0.481335 1.50811i
\(396\) 0 0
\(397\) −7.12989 5.18017i −0.357839 0.259985i 0.394311 0.918977i \(-0.370983\pi\)
−0.752150 + 0.658992i \(0.770983\pi\)
\(398\) 0 0
\(399\) −11.6195 −0.581702
\(400\) 0 0
\(401\) 18.2018 0.908955 0.454477 0.890758i \(-0.349826\pi\)
0.454477 + 0.890758i \(0.349826\pi\)
\(402\) 0 0
\(403\) −31.2975 22.7390i −1.55904 1.13271i
\(404\) 0 0
\(405\) 19.5592 + 14.0554i 0.971903 + 0.698416i
\(406\) 0 0
\(407\) −2.38960 −0.118448
\(408\) 0 0
\(409\) 6.18803 + 19.0448i 0.305978 + 0.941704i 0.979310 + 0.202364i \(0.0648624\pi\)
−0.673332 + 0.739340i \(0.735138\pi\)
\(410\) 0 0
\(411\) −10.6078 + 32.6476i −0.523246 + 1.61039i
\(412\) 0 0
\(413\) 7.08339 + 21.8004i 0.348551 + 1.07273i
\(414\) 0 0
\(415\) 8.88940 + 6.38798i 0.436363 + 0.313574i
\(416\) 0 0
\(417\) 7.07536 5.14055i 0.346482 0.251734i
\(418\) 0 0
\(419\) −25.5580 + 18.5690i −1.24859 + 0.907153i −0.998139 0.0609763i \(-0.980579\pi\)
−0.250450 + 0.968130i \(0.580579\pi\)
\(420\) 0 0
\(421\) −29.0811 21.1287i −1.41733 1.02975i −0.992205 0.124612i \(-0.960231\pi\)
−0.425122 0.905136i \(-0.639769\pi\)
\(422\) 0 0
\(423\) −5.46087 + 16.8068i −0.265516 + 0.817176i
\(424\) 0 0
\(425\) −5.06439 + 16.1580i −0.245659 + 0.783777i
\(426\) 0 0
\(427\) −4.38319 + 13.4901i −0.212118 + 0.652831i
\(428\) 0 0
\(429\) −11.6411 8.45775i −0.562037 0.408344i
\(430\) 0 0
\(431\) 14.6781 10.6642i 0.707018 0.513679i −0.175192 0.984534i \(-0.556055\pi\)
0.882210 + 0.470855i \(0.156055\pi\)
\(432\) 0 0
\(433\) −27.5255 + 19.9984i −1.32279 + 0.961063i −0.322897 + 0.946434i \(0.604657\pi\)
−0.999893 + 0.0146286i \(0.995343\pi\)
\(434\) 0 0
\(435\) 42.2660 31.0460i 2.02650 1.48854i
\(436\) 0 0
\(437\) −1.18478 3.64638i −0.0566757 0.174430i
\(438\) 0 0
\(439\) 4.12582 12.6980i 0.196915 0.606041i −0.803034 0.595933i \(-0.796782\pi\)
0.999949 0.0101080i \(-0.00321754\pi\)
\(440\) 0 0
\(441\) 5.99525 + 18.4515i 0.285488 + 0.878642i
\(442\) 0 0
\(443\) −25.0208 −1.18878 −0.594388 0.804179i \(-0.702605\pi\)
−0.594388 + 0.804179i \(0.702605\pi\)
\(444\) 0 0
\(445\) −32.2612 + 0.168202i −1.52933 + 0.00797354i
\(446\) 0 0
\(447\) 25.5125 + 18.5360i 1.20670 + 0.876720i
\(448\) 0 0
\(449\) −32.4949 −1.53353 −0.766765 0.641927i \(-0.778135\pi\)
−0.766765 + 0.641927i \(0.778135\pi\)
\(450\) 0 0
\(451\) −9.95301 −0.468669
\(452\) 0 0
\(453\) −35.8321 26.0335i −1.68354 1.22316i
\(454\) 0 0
\(455\) −45.3107 + 33.2825i −2.12420 + 1.56031i
\(456\) 0 0
\(457\) −19.2253 −0.899323 −0.449662 0.893199i \(-0.648455\pi\)
−0.449662 + 0.893199i \(0.648455\pi\)
\(458\) 0 0
\(459\) 1.92716 + 5.93117i 0.0899519 + 0.276843i
\(460\) 0 0
\(461\) −6.68841 + 20.5848i −0.311510 + 0.958730i 0.665657 + 0.746258i \(0.268151\pi\)
−0.977167 + 0.212472i \(0.931849\pi\)
\(462\) 0 0
\(463\) 11.3958 + 35.0726i 0.529606 + 1.62996i 0.755023 + 0.655699i \(0.227626\pi\)
−0.225416 + 0.974263i \(0.572374\pi\)
\(464\) 0 0
\(465\) −9.79965 29.6336i −0.454448 1.37423i
\(466\) 0 0
\(467\) 10.5887 7.69317i 0.489988 0.355997i −0.315191 0.949028i \(-0.602069\pi\)
0.805180 + 0.593031i \(0.202069\pi\)
\(468\) 0 0
\(469\) 11.0890 8.05664i 0.512043 0.372021i
\(470\) 0 0
\(471\) 20.5122 + 14.9030i 0.945152 + 0.686693i
\(472\) 0 0
\(473\) −0.818695 + 2.51968i −0.0376436 + 0.115855i
\(474\) 0 0
\(475\) 1.91537 6.11100i 0.0878833 0.280392i
\(476\) 0 0
\(477\) −3.51831 + 10.8282i −0.161092 + 0.495791i
\(478\) 0 0
\(479\) −6.42518 4.66817i −0.293574 0.213294i 0.431242 0.902236i \(-0.358075\pi\)
−0.724816 + 0.688942i \(0.758075\pi\)
\(480\) 0 0
\(481\) 12.2084 8.86994i 0.556656 0.404434i
\(482\) 0 0
\(483\) −21.9694 + 15.9617i −0.999643 + 0.726283i
\(484\) 0 0
\(485\) −5.40844 + 16.9456i −0.245585 + 0.769459i
\(486\) 0 0
\(487\) −5.47442 16.8485i −0.248070 0.763480i −0.995116 0.0987086i \(-0.968529\pi\)
0.747047 0.664772i \(-0.231471\pi\)
\(488\) 0 0
\(489\) 4.46304 13.7358i 0.201825 0.621155i
\(490\) 0 0
\(491\) −9.01132 27.7340i −0.406675 1.25162i −0.919488 0.393117i \(-0.871397\pi\)
0.512813 0.858500i \(-0.328603\pi\)
\(492\) 0 0
\(493\) 34.8585 1.56995
\(494\) 0 0
\(495\) −1.53879 4.65322i −0.0691635 0.209147i
\(496\) 0 0
\(497\) −7.67557 5.57663i −0.344296 0.250146i
\(498\) 0 0
\(499\) 13.7573 0.615863 0.307932 0.951408i \(-0.400363\pi\)
0.307932 + 0.951408i \(0.400363\pi\)
\(500\) 0 0
\(501\) −21.8540 −0.976365
\(502\) 0 0
\(503\) 29.1242 + 21.1600i 1.29858 + 0.943476i 0.999941 0.0108894i \(-0.00346626\pi\)
0.298642 + 0.954365i \(0.403466\pi\)
\(504\) 0 0
\(505\) 8.37274 + 25.3187i 0.372582 + 1.12667i
\(506\) 0 0
\(507\) 61.2471 2.72008
\(508\) 0 0
\(509\) −4.86462 14.9718i −0.215621 0.663612i −0.999109 0.0422057i \(-0.986562\pi\)
0.783488 0.621407i \(-0.213438\pi\)
\(510\) 0 0
\(511\) −17.6339 + 54.2714i −0.780076 + 2.40083i
\(512\) 0 0
\(513\) −0.728857 2.24319i −0.0321798 0.0990393i
\(514\) 0 0
\(515\) −1.09207 + 3.42165i −0.0481224 + 0.150776i
\(516\) 0 0
\(517\) −6.52278 + 4.73907i −0.286871 + 0.208424i
\(518\) 0 0
\(519\) 20.3360 14.7750i 0.892651 0.648549i
\(520\) 0 0
\(521\) −3.94146 2.86364i −0.172678 0.125458i 0.498089 0.867126i \(-0.334035\pi\)
−0.670768 + 0.741668i \(0.734035\pi\)
\(522\) 0 0
\(523\) 8.19292 25.2152i 0.358251 1.10258i −0.595849 0.803097i \(-0.703184\pi\)
0.954100 0.299488i \(-0.0968158\pi\)
\(524\) 0 0
\(525\) −45.3568 + 0.472971i −1.97953 + 0.0206421i
\(526\) 0 0
\(527\) 6.41097 19.7309i 0.279266 0.859493i
\(528\) 0 0
\(529\) 11.3582 + 8.25224i 0.493836 + 0.358793i
\(530\) 0 0
\(531\) 10.2090 7.41730i 0.443034 0.321883i
\(532\) 0 0
\(533\) 50.8497 36.9445i 2.20255 1.60024i
\(534\) 0 0
\(535\) 6.67311 + 20.1791i 0.288504 + 0.872420i
\(536\) 0 0
\(537\) 4.86825 + 14.9829i 0.210081 + 0.646562i
\(538\) 0 0
\(539\) −2.73529 + 8.41834i −0.117817 + 0.362604i
\(540\) 0 0
\(541\) −8.73538 26.8847i −0.375563 1.15587i −0.943098 0.332516i \(-0.892103\pi\)
0.567534 0.823350i \(-0.307897\pi\)
\(542\) 0 0
\(543\) −42.8888 −1.84053
\(544\) 0 0
\(545\) −10.7519 + 7.89771i −0.460562 + 0.338301i
\(546\) 0 0
\(547\) 32.4180 + 23.5531i 1.38609 + 1.00706i 0.996281 + 0.0861618i \(0.0274602\pi\)
0.389813 + 0.920894i \(0.372540\pi\)
\(548\) 0 0
\(549\) 7.80866 0.333266
\(550\) 0 0
\(551\) −13.1836 −0.561640
\(552\) 0 0
\(553\) 45.3215 + 32.9280i 1.92726 + 1.40024i
\(554\) 0 0
\(555\) 12.1749 0.0634767i 0.516794 0.00269444i
\(556\) 0 0
\(557\) −0.0888659 −0.00376537 −0.00188268 0.999998i \(-0.500599\pi\)
−0.00188268 + 0.999998i \(0.500599\pi\)
\(558\) 0 0
\(559\) −5.17009 15.9119i −0.218672 0.673002i
\(560\) 0 0
\(561\) 2.38456 7.33891i 0.100676 0.309849i
\(562\) 0 0
\(563\) 9.48207 + 29.1828i 0.399621 + 1.22991i 0.925304 + 0.379227i \(0.123810\pi\)
−0.525682 + 0.850681i \(0.676190\pi\)
\(564\) 0 0
\(565\) −22.5632 + 16.5736i −0.949243 + 0.697255i
\(566\) 0 0
\(567\) −34.6949 + 25.2073i −1.45705 + 1.05861i
\(568\) 0 0
\(569\) 11.8016 8.57439i 0.494750 0.359457i −0.312258 0.949997i \(-0.601085\pi\)
0.807008 + 0.590540i \(0.201085\pi\)
\(570\) 0 0
\(571\) −20.2271 14.6959i −0.846479 0.615003i 0.0776941 0.996977i \(-0.475244\pi\)
−0.924173 + 0.381974i \(0.875244\pi\)
\(572\) 0 0
\(573\) 16.7014 51.4016i 0.697711 2.14733i
\(574\) 0 0
\(575\) −4.77323 14.1855i −0.199058 0.591575i
\(576\) 0 0
\(577\) −5.20745 + 16.0269i −0.216789 + 0.667208i 0.782233 + 0.622986i \(0.214081\pi\)
−0.999022 + 0.0442219i \(0.985919\pi\)
\(578\) 0 0
\(579\) 22.9799 + 16.6959i 0.955011 + 0.693856i
\(580\) 0 0
\(581\) −15.7684 + 11.4564i −0.654183 + 0.475292i
\(582\) 0 0
\(583\) −4.20247 + 3.05327i −0.174048 + 0.126454i
\(584\) 0 0
\(585\) 25.1339 + 18.0614i 1.03916 + 0.746746i
\(586\) 0 0
\(587\) 11.7865 + 36.2751i 0.486481 + 1.49723i 0.829824 + 0.558024i \(0.188440\pi\)
−0.343344 + 0.939210i \(0.611560\pi\)
\(588\) 0 0
\(589\) −2.42465 + 7.46231i −0.0999060 + 0.307479i
\(590\) 0 0
\(591\) 11.7849 + 36.2702i 0.484767 + 1.49196i
\(592\) 0 0
\(593\) 37.4808 1.53915 0.769576 0.638556i \(-0.220468\pi\)
0.769576 + 0.638556i \(0.220468\pi\)
\(594\) 0 0
\(595\) −24.4839 17.5943i −1.00374 0.721295i
\(596\) 0 0
\(597\) −38.5995 28.0442i −1.57977 1.14777i
\(598\) 0 0
\(599\) −17.3143 −0.707444 −0.353722 0.935351i \(-0.615084\pi\)
−0.353722 + 0.935351i \(0.615084\pi\)
\(600\) 0 0
\(601\) −3.59867 −0.146793 −0.0733965 0.997303i \(-0.523384\pi\)
−0.0733965 + 0.997303i \(0.523384\pi\)
\(602\) 0 0
\(603\) −6.10466 4.43529i −0.248601 0.180619i
\(604\) 0 0
\(605\) 0.679886 2.13020i 0.0276413 0.0866050i
\(606\) 0 0
\(607\) −15.8314 −0.642577 −0.321289 0.946981i \(-0.604116\pi\)
−0.321289 + 0.946981i \(0.604116\pi\)
\(608\) 0 0
\(609\) 28.8550 + 88.8067i 1.16927 + 3.59863i
\(610\) 0 0
\(611\) 15.7338 48.4236i 0.636521 1.95901i
\(612\) 0 0
\(613\) −9.74603 29.9952i −0.393639 1.21150i −0.930017 0.367517i \(-0.880208\pi\)
0.536378 0.843978i \(-0.319792\pi\)
\(614\) 0 0
\(615\) 50.7100 0.264389i 2.04482 0.0106612i
\(616\) 0 0
\(617\) −23.3896 + 16.9935i −0.941628 + 0.684133i −0.948812 0.315841i \(-0.897713\pi\)
0.00718392 + 0.999974i \(0.497713\pi\)
\(618\) 0 0
\(619\) 19.1568 13.9183i 0.769978 0.559422i −0.131976 0.991253i \(-0.542132\pi\)
0.901955 + 0.431831i \(0.142132\pi\)
\(620\) 0 0
\(621\) −4.45955 3.24006i −0.178956 0.130019i
\(622\) 0 0
\(623\) 17.7509 54.6317i 0.711175 2.18877i
\(624\) 0 0
\(625\) 7.22793 23.9323i 0.289117 0.957294i
\(626\) 0 0
\(627\) −0.901847 + 2.77560i −0.0360163 + 0.110847i
\(628\) 0 0
\(629\) 6.54709 + 4.75674i 0.261050 + 0.189664i
\(630\) 0 0
\(631\) 37.6996 27.3904i 1.50080 1.09039i 0.530737 0.847537i \(-0.321915\pi\)
0.970062 0.242857i \(-0.0780846\pi\)
\(632\) 0 0
\(633\) −37.7304 + 27.4128i −1.49965 + 1.08956i
\(634\) 0 0
\(635\) −32.2978 + 0.168393i −1.28170 + 0.00668246i
\(636\) 0 0
\(637\) −17.2734 53.1622i −0.684399 2.10636i
\(638\) 0 0
\(639\) −1.61400 + 4.96738i −0.0638489 + 0.196507i
\(640\) 0 0
\(641\) 0.390198 + 1.20091i 0.0154119 + 0.0474330i 0.958467 0.285204i \(-0.0920615\pi\)
−0.943055 + 0.332637i \(0.892061\pi\)
\(642\) 0 0
\(643\) −22.1395 −0.873099 −0.436549 0.899680i \(-0.643800\pi\)
−0.436549 + 0.899680i \(0.643800\pi\)
\(644\) 0 0
\(645\) 4.10427 12.8594i 0.161605 0.506337i
\(646\) 0 0
\(647\) 12.6802 + 9.21268i 0.498509 + 0.362188i 0.808447 0.588569i \(-0.200308\pi\)
−0.309938 + 0.950757i \(0.600308\pi\)
\(648\) 0 0
\(649\) 5.75735 0.225996
\(650\) 0 0
\(651\) 55.5740 2.17812
\(652\) 0 0
\(653\) 33.8204 + 24.5720i 1.32350 + 0.961576i 0.999882 + 0.0153866i \(0.00489791\pi\)
0.323614 + 0.946189i \(0.395102\pi\)
\(654\) 0 0
\(655\) 0.119365 + 0.0857767i 0.00466399 + 0.00335157i
\(656\) 0 0
\(657\) 31.4147 1.22560
\(658\) 0 0
\(659\) −4.24120 13.0531i −0.165214 0.508476i 0.833838 0.552009i \(-0.186139\pi\)
−0.999052 + 0.0435332i \(0.986139\pi\)
\(660\) 0 0
\(661\) −3.49706 + 10.7628i −0.136020 + 0.418626i −0.995747 0.0921274i \(-0.970633\pi\)
0.859728 + 0.510753i \(0.170633\pi\)
\(662\) 0 0
\(663\) 15.0586 + 46.3455i 0.584826 + 1.79991i
\(664\) 0 0
\(665\) 9.25989 + 6.65422i 0.359083 + 0.258039i
\(666\) 0 0
\(667\) −24.9268 + 18.1104i −0.965168 + 0.701236i
\(668\) 0 0
\(669\) 4.49568 3.26630i 0.173813 0.126282i
\(670\) 0 0
\(671\) 2.88224 + 2.09407i 0.111268 + 0.0808406i
\(672\) 0 0
\(673\) −0.929133 + 2.85958i −0.0358154 + 0.110229i −0.967366 0.253383i \(-0.918457\pi\)
0.931551 + 0.363612i \(0.118457\pi\)
\(674\) 0 0
\(675\) −2.93641 8.72665i −0.113022 0.335889i
\(676\) 0 0
\(677\) 4.92695 15.1636i 0.189358 0.582785i −0.810638 0.585548i \(-0.800879\pi\)
0.999996 + 0.00276301i \(0.000879496\pi\)
\(678\) 0 0
\(679\) −25.6230 18.6162i −0.983320 0.714423i
\(680\) 0 0
\(681\) 7.89974 5.73950i 0.302719 0.219938i
\(682\) 0 0
\(683\) −21.8813 + 15.8977i −0.837265 + 0.608308i −0.921605 0.388129i \(-0.873122\pi\)
0.0843407 + 0.996437i \(0.473122\pi\)
\(684\) 0 0
\(685\) 27.1502 19.9429i 1.03736 0.761979i
\(686\) 0 0
\(687\) 14.2086 + 43.7297i 0.542093 + 1.66839i
\(688\) 0 0
\(689\) 10.1369 31.1982i 0.386185 1.18856i
\(690\) 0 0
\(691\) 9.21239 + 28.3528i 0.350456 + 1.07859i 0.958598 + 0.284764i \(0.0919151\pi\)
−0.608142 + 0.793828i \(0.708085\pi\)
\(692\) 0 0
\(693\) 8.72651 0.331493
\(694\) 0 0
\(695\) −8.58243 + 0.0447467i −0.325550 + 0.00169734i
\(696\) 0 0
\(697\) 27.2695 + 19.8125i 1.03291 + 0.750451i
\(698\) 0 0
\(699\) −14.5204 −0.549210
\(700\) 0 0
\(701\) 15.9604 0.602814 0.301407 0.953496i \(-0.402544\pi\)
0.301407 + 0.953496i \(0.402544\pi\)
\(702\) 0 0
\(703\) −2.47613 1.79902i −0.0933891 0.0678512i
\(704\) 0 0
\(705\) 33.1072 24.3186i 1.24689 0.915890i
\(706\) 0 0
\(707\) −47.4820 −1.78574
\(708\) 0 0
\(709\) 0.457954 + 1.40944i 0.0171988 + 0.0529325i 0.959288 0.282431i \(-0.0911408\pi\)
−0.942089 + 0.335364i \(0.891141\pi\)
\(710\) 0 0
\(711\) 9.53009 29.3306i 0.357406 1.09998i
\(712\) 0 0
\(713\) 5.66661 + 17.4400i 0.212216 + 0.653134i
\(714\) 0 0
\(715\) 4.43355 + 13.4068i 0.165805 + 0.501386i
\(716\) 0 0
\(717\) −0.449458 + 0.326550i −0.0167853 + 0.0121952i
\(718\) 0 0
\(719\) 6.06583 4.40709i 0.226217 0.164357i −0.468903 0.883249i \(-0.655351\pi\)
0.695121 + 0.718893i \(0.255351\pi\)
\(720\) 0 0
\(721\) −5.17378 3.75897i −0.192682 0.139992i
\(722\) 0 0
\(723\) 10.5253 32.3934i 0.391439 1.20472i
\(724\) 0 0
\(725\) −51.4624 + 0.536639i −1.91126 + 0.0199303i
\(726\) 0 0
\(727\) 6.77523 20.8520i 0.251279 0.773358i −0.743261 0.669002i \(-0.766722\pi\)
0.994540 0.104356i \(-0.0332782\pi\)
\(728\) 0 0
\(729\) 8.91627 + 6.47805i 0.330232 + 0.239928i
\(730\) 0 0
\(731\) 7.25876 5.27380i 0.268475 0.195059i
\(732\) 0 0
\(733\) 26.2958 19.1050i 0.971258 0.705660i 0.0155200 0.999880i \(-0.495060\pi\)
0.955738 + 0.294219i \(0.0950596\pi\)
\(734\) 0 0
\(735\) 13.7125 42.9636i 0.505793 1.58474i
\(736\) 0 0
\(737\) −1.06385 3.27420i −0.0391875 0.120607i
\(738\) 0 0
\(739\) −9.09359 + 27.9872i −0.334513 + 1.02953i 0.632448 + 0.774602i \(0.282050\pi\)
−0.966961 + 0.254923i \(0.917950\pi\)
\(740\) 0 0
\(741\) −5.69520 17.5280i −0.209219 0.643908i
\(742\) 0 0
\(743\) 7.10981 0.260834 0.130417 0.991459i \(-0.458368\pi\)
0.130417 + 0.991459i \(0.458368\pi\)
\(744\) 0 0
\(745\) −9.71654 29.3823i −0.355986 1.07648i
\(746\) 0 0
\(747\) 8.68072 + 6.30691i 0.317611 + 0.230758i
\(748\) 0 0
\(749\) −37.8434 −1.38277
\(750\) 0 0
\(751\) −1.66911 −0.0609067 −0.0304534 0.999536i \(-0.509695\pi\)
−0.0304534 + 0.999536i \(0.509695\pi\)
\(752\) 0 0
\(753\) 36.4936 + 26.5142i 1.32990 + 0.966230i
\(754\) 0 0
\(755\) 13.6468 + 41.2671i 0.496657 + 1.50186i
\(756\) 0 0
\(757\) 20.0451 0.728552 0.364276 0.931291i \(-0.381316\pi\)
0.364276 + 0.931291i \(0.381316\pi\)
\(758\) 0 0
\(759\) 2.10769 + 6.48680i 0.0765043 + 0.235456i
\(760\) 0 0
\(761\) 11.4872 35.3541i 0.416412 1.28158i −0.494570 0.869138i \(-0.664674\pi\)
0.910982 0.412446i \(-0.135326\pi\)
\(762\) 0 0
\(763\) −7.34035 22.5913i −0.265738 0.817859i
\(764\) 0 0
\(765\) −5.04668 + 15.8121i −0.182463 + 0.571689i
\(766\) 0 0
\(767\) −29.4142 + 21.3706i −1.06208 + 0.771649i
\(768\) 0 0
\(769\) 10.8387 7.87479i 0.390854 0.283972i −0.374951 0.927045i \(-0.622341\pi\)
0.765805 + 0.643072i \(0.222341\pi\)
\(770\) 0 0
\(771\) 20.8838 + 15.1729i 0.752110 + 0.546440i
\(772\) 0 0
\(773\) −2.02806 + 6.24174i −0.0729444 + 0.224500i −0.980881 0.194607i \(-0.937657\pi\)
0.907937 + 0.419107i \(0.137657\pi\)
\(774\) 0 0
\(775\) −9.16090 + 29.2279i −0.329069 + 1.04990i
\(776\) 0 0
\(777\) −6.69890 + 20.6171i −0.240322 + 0.739635i
\(778\) 0 0
\(779\) −10.3134 7.49314i −0.369517 0.268470i
\(780\) 0 0
\(781\) −1.92786 + 1.40067i −0.0689841 + 0.0501199i
\(782\) 0 0
\(783\) −15.3345 + 11.1412i −0.548011 + 0.398153i
\(784\) 0 0
\(785\) −7.81214 23.6235i −0.278827 0.843158i
\(786\) 0 0
\(787\) −5.17920 15.9399i −0.184619 0.568198i 0.815323 0.579006i \(-0.196559\pi\)
−0.999942 + 0.0108087i \(0.996559\pi\)
\(788\) 0 0
\(789\) 2.40740 7.40922i 0.0857058 0.263775i
\(790\) 0 0
\(791\) −15.4039 47.4084i −0.547701 1.68565i
\(792\) 0 0
\(793\) −22.4982 −0.798936
\(794\) 0 0
\(795\) 21.3302 15.6679i 0.756504 0.555682i
\(796\) 0 0
\(797\) −38.0351 27.6341i −1.34727 0.978851i −0.999142 0.0414055i \(-0.986816\pi\)
−0.348131 0.937446i \(-0.613184\pi\)
\(798\) 0 0
\(799\) 27.3049 0.965977
\(800\) 0 0
\(801\) −31.6232 −1.11735
\(802\) 0 0
\(803\) 11.5954 + 8.42456i 0.409193 + 0.297296i
\(804\) 0 0
\(805\) 26.6489 0.138941i 0.939252 0.00489703i
\(806\) 0 0
\(807\) −48.5034 −1.70740
\(808\) 0 0
\(809\) 15.1335 + 46.5762i 0.532067 + 1.63753i 0.749903 + 0.661548i \(0.230100\pi\)
−0.217836 + 0.975985i \(0.569900\pi\)
\(810\) 0 0
\(811\) 14.7449 45.3800i 0.517762 1.59351i −0.260437 0.965491i \(-0.583867\pi\)
0.778199 0.628017i \(-0.216133\pi\)
\(812\) 0 0
\(813\) −11.8214 36.3825i −0.414594 1.27599i
\(814\) 0 0
\(815\) −11.4229 + 8.39057i −0.400127 + 0.293909i
\(816\) 0 0
\(817\) −2.74529 + 1.99457i −0.0960455 + 0.0697811i
\(818\) 0 0
\(819\) −44.5835 + 32.3918i −1.55788 + 1.13186i
\(820\) 0 0
\(821\) −21.5962 15.6906i −0.753714 0.547605i 0.143262 0.989685i \(-0.454241\pi\)
−0.896976 + 0.442079i \(0.854241\pi\)
\(822\) 0 0
\(823\) −4.86603 + 14.9761i −0.169619 + 0.522034i −0.999347 0.0361339i \(-0.988496\pi\)
0.829728 + 0.558168i \(0.188496\pi\)
\(824\) 0 0
\(825\) −3.40739 + 10.8713i −0.118630 + 0.378490i
\(826\) 0 0
\(827\) −6.28447 + 19.3416i −0.218532 + 0.672574i 0.780352 + 0.625341i \(0.215040\pi\)
−0.998884 + 0.0472324i \(0.984960\pi\)
\(828\) 0 0
\(829\) −11.6180 8.44100i −0.403511 0.293168i 0.367459 0.930040i \(-0.380228\pi\)
−0.770970 + 0.636872i \(0.780228\pi\)
\(830\) 0 0
\(831\) −28.8403 + 20.9537i −1.00046 + 0.726875i
\(832\) 0 0
\(833\) 24.2518 17.6199i 0.840274 0.610495i
\(834\) 0 0
\(835\) 17.4161 + 12.5153i 0.602708 + 0.433110i
\(836\) 0 0
\(837\) 3.48600 + 10.7288i 0.120494 + 0.370842i
\(838\) 0 0
\(839\) 6.82476 21.0045i 0.235617 0.725155i −0.761422 0.648257i \(-0.775498\pi\)
0.997039 0.0768980i \(-0.0245016\pi\)
\(840\) 0 0
\(841\) 23.7778 + 73.1805i 0.819924 + 2.52347i
\(842\) 0 0
\(843\) 1.78233 0.0613868
\(844\) 0 0
\(845\) −48.8095 35.0748i −1.67910 1.20661i
\(846\) 0 0
\(847\) 3.22102 + 2.34021i 0.110676 + 0.0804106i
\(848\) 0 0
\(849\) 34.8807 1.19710
\(850\) 0 0
\(851\) −7.15303 −0.245203
\(852\) 0 0
\(853\) 9.78192 + 7.10698i 0.334927 + 0.243339i 0.742518 0.669826i \(-0.233631\pi\)
−0.407592 + 0.913164i \(0.633631\pi\)
\(854\) 0 0
\(855\) 1.90867 5.98020i 0.0652752 0.204519i
\(856\) 0 0
\(857\) −36.6737 −1.25275 −0.626375 0.779522i \(-0.715462\pi\)
−0.626375 + 0.779522i \(0.715462\pi\)
\(858\) 0 0
\(859\) −9.44350 29.0641i −0.322208 0.991655i −0.972685 0.232129i \(-0.925431\pi\)
0.650477 0.759526i \(-0.274569\pi\)
\(860\) 0 0
\(861\) −27.9018 + 85.8730i −0.950892 + 2.92654i
\(862\) 0 0
\(863\) 8.55531 + 26.3305i 0.291226 + 0.896302i 0.984463 + 0.175592i \(0.0561839\pi\)
−0.693237 + 0.720710i \(0.743816\pi\)
\(864\) 0 0
\(865\) −24.6676 + 0.128611i −0.838724 + 0.00437290i
\(866\) 0 0
\(867\) 10.1955 7.40750i 0.346259 0.251572i
\(868\) 0 0
\(869\) 11.3833 8.27044i 0.386152 0.280556i
\(870\) 0 0
\(871\) 17.5887 + 12.7789i 0.595970 + 0.432997i
\(872\) 0 0
\(873\) −5.38794 + 16.5824i −0.182354 + 0.561228i
\(874\) 0 0
\(875\) 36.4169 + 25.5979i 1.23112 + 0.865367i
\(876\) 0 0
\(877\) 4.98320 15.3367i 0.168271 0.517884i −0.830992 0.556285i \(-0.812226\pi\)
0.999262 + 0.0384007i \(0.0122263\pi\)
\(878\) 0 0
\(879\) −19.0566 13.8454i −0.642763 0.466994i
\(880\) 0 0
\(881\) 14.8951 10.8219i 0.501828 0.364599i −0.307887 0.951423i \(-0.599622\pi\)
0.809715 + 0.586824i \(0.199622\pi\)
\(882\) 0 0
\(883\) 39.2762 28.5358i 1.32175 0.960307i 0.321841 0.946794i \(-0.395698\pi\)
0.999909 0.0135138i \(-0.00430169\pi\)
\(884\) 0 0
\(885\) −29.3333 + 0.152937i −0.986029 + 0.00514091i
\(886\) 0 0
\(887\) 4.61158 + 14.1930i 0.154842 + 0.476553i 0.998145 0.0608847i \(-0.0193922\pi\)
−0.843303 + 0.537438i \(0.819392\pi\)
\(888\) 0 0
\(889\) 17.7710 54.6936i 0.596021 1.83436i
\(890\) 0 0
\(891\) 3.32854 + 10.2442i 0.111510 + 0.343194i
\(892\) 0 0
\(893\) −10.3268 −0.345573
\(894\) 0 0
\(895\) 4.70075 14.7283i 0.157129 0.492312i
\(896\) 0 0
\(897\) −34.8464 25.3174i −1.16349 0.845324i
\(898\) 0 0
\(899\) 63.0550 2.10300
\(900\) 0 0
\(901\) 17.5919 0.586070
\(902\) 0 0
\(903\) 19.4443 + 14.1271i 0.647067 + 0.470122i
\(904\) 0 0
\(905\) 34.1792 + 24.5614i 1.13616 + 0.816450i
\(906\) 0 0
\(907\) −49.5167 −1.64418 −0.822088 0.569361i \(-0.807191\pi\)
−0.822088 + 0.569361i \(0.807191\pi\)
\(908\) 0 0
\(909\) 8.07755 + 24.8601i 0.267915 + 0.824559i
\(910\) 0 0
\(911\) 9.80029 30.1622i 0.324698 0.999318i −0.646879 0.762593i \(-0.723926\pi\)
0.971577 0.236725i \(-0.0760740\pi\)
\(912\) 0 0
\(913\) 1.51278 + 4.65586i 0.0500657 + 0.154086i
\(914\) 0 0
\(915\) −14.7404 10.5926i −0.487304 0.350180i
\(916\) 0 0
\(917\) −0.211735 + 0.153835i −0.00699211 + 0.00508007i
\(918\) 0 0
\(919\) −31.8703 + 23.1551i −1.05130 + 0.763817i −0.972460 0.233070i \(-0.925123\pi\)
−0.0788443 + 0.996887i \(0.525123\pi\)
\(920\) 0 0
\(921\) −27.4925 19.9745i −0.905910 0.658182i
\(922\) 0 0
\(923\) 4.65024 14.3120i 0.153065 0.471084i
\(924\) 0 0
\(925\) −9.73885 6.92169i −0.320211 0.227584i
\(926\) 0 0
\(927\) −1.08793 + 3.34831i −0.0357323 + 0.109973i
\(928\) 0 0
\(929\) 29.7677 + 21.6275i 0.976646 + 0.709575i 0.956957 0.290231i \(-0.0937321\pi\)
0.0196898 + 0.999806i \(0.493732\pi\)
\(930\) 0 0
\(931\) −9.17210 + 6.66392i −0.300603 + 0.218401i
\(932\) 0 0
\(933\) 41.5906 30.2174i 1.36162 0.989272i
\(934\) 0 0
\(935\) −6.10315 + 4.48300i −0.199594 + 0.146610i
\(936\) 0 0
\(937\) 13.7521 + 42.3247i 0.449262 + 1.38269i 0.877741 + 0.479135i \(0.159050\pi\)
−0.428479 + 0.903552i \(0.640950\pi\)
\(938\) 0 0
\(939\) 22.1148 68.0623i 0.721689 2.22113i
\(940\) 0 0
\(941\) −4.10444 12.6322i −0.133801 0.411797i 0.861601 0.507587i \(-0.169462\pi\)
−0.995402 + 0.0957900i \(0.969462\pi\)
\(942\) 0 0
\(943\) −29.7933 −0.970205
\(944\) 0 0
\(945\) 16.3940 0.0854741i 0.533296 0.00278047i
\(946\) 0 0
\(947\) −13.1727 9.57051i −0.428054 0.311000i 0.352816 0.935693i \(-0.385224\pi\)
−0.780870 + 0.624693i \(0.785224\pi\)
\(948\) 0 0
\(949\) −90.5118 −2.93814
\(950\) 0 0
\(951\) −51.5549 −1.67178
\(952\) 0 0
\(953\) −6.81156 4.94889i −0.220648 0.160310i 0.471970 0.881614i \(-0.343543\pi\)
−0.692618 + 0.721304i \(0.743543\pi\)
\(954\) 0 0
\(955\) −42.7464 + 31.3989i −1.38324 + 1.01604i
\(956\) 0 0
\(957\) 23.4533 0.758136
\(958\) 0 0
\(959\) 18.5355 + 57.0463i 0.598541 + 1.84212i
\(960\) 0 0
\(961\) 2.01718 6.20823i 0.0650702 0.200266i
\(962\) 0 0
\(963\) 6.43784 + 19.8136i 0.207457 + 0.638486i
\(964\) 0 0
\(965\) −8.75196 26.4655i −0.281735 0.851953i
\(966\) 0 0
\(967\) 30.2632 21.9875i 0.973199 0.707070i 0.0170206 0.999855i \(-0.494582\pi\)
0.956178 + 0.292785i \(0.0945819\pi\)
\(968\) 0 0
\(969\) 7.99601 5.80944i 0.256869 0.186626i
\(970\) 0 0
\(971\) 18.5002 + 13.4412i 0.593700 + 0.431349i 0.843637 0.536914i \(-0.180410\pi\)
−0.249937 + 0.968262i \(0.580410\pi\)
\(972\) 0 0
\(973\) 4.72226 14.5336i 0.151389 0.465926i
\(974\) 0 0
\(975\) −22.9448 68.1891i −0.734821 2.18380i
\(976\) 0 0
\(977\) −1.49568 + 4.60323i −0.0478511 + 0.147270i −0.972127 0.234454i \(-0.924670\pi\)
0.924276 + 0.381725i \(0.124670\pi\)
\(978\) 0 0
\(979\) −11.6724 8.48048i −0.373051 0.271037i
\(980\) 0 0
\(981\) −10.5794 + 7.68637i −0.337774 + 0.245407i
\(982\) 0 0
\(983\) −6.33747 + 4.60444i −0.202134 + 0.146859i −0.684248 0.729250i \(-0.739869\pi\)
0.482114 + 0.876109i \(0.339869\pi\)
\(984\) 0 0
\(985\) 11.3794 35.6537i 0.362579 1.13602i
\(986\) 0 0
\(987\) 22.6023 + 69.5628i 0.719440 + 2.21421i
\(988\) 0 0
\(989\) −2.45068 + 7.54242i −0.0779271 + 0.239835i
\(990\) 0 0
\(991\) 12.0156 + 36.9803i 0.381689 + 1.17472i 0.938853 + 0.344317i \(0.111889\pi\)
−0.557164 + 0.830402i \(0.688111\pi\)
\(992\) 0 0
\(993\) −19.3831 −0.615104
\(994\) 0 0
\(995\) 14.7008 + 44.4543i 0.466045 + 1.40930i
\(996\) 0 0
\(997\) −2.25673 1.63961i −0.0714714 0.0519270i 0.551476 0.834191i \(-0.314065\pi\)
−0.622947 + 0.782264i \(0.714065\pi\)
\(998\) 0 0
\(999\) −4.40042 −0.139223
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1100.2.q.b.221.3 52
25.6 even 5 inner 1100.2.q.b.881.3 yes 52
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1100.2.q.b.221.3 52 1.1 even 1 trivial
1100.2.q.b.881.3 yes 52 25.6 even 5 inner