Properties

Label 1100.2.q.b.221.8
Level $1100$
Weight $2$
Character 1100.221
Analytic conductor $8.784$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1100,2,Mod(221,1100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1100, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 6, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1100.221");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1100.q (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.78354422234\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(13\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 221.8
Character \(\chi\) \(=\) 1100.221
Dual form 1100.2.q.b.881.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.722709 + 0.525079i) q^{3} +(1.39423 + 1.74818i) q^{5} +1.78111 q^{7} +(-0.680451 - 2.09421i) q^{9} +(-0.309017 + 0.951057i) q^{11} +(1.61178 + 4.96054i) q^{13} +(0.0896884 + 1.99550i) q^{15} +(2.21980 - 1.61278i) q^{17} +(0.400006 - 0.290622i) q^{19} +(1.28723 + 0.935224i) q^{21} +(-0.601937 + 1.85257i) q^{23} +(-1.11226 + 4.87472i) q^{25} +(1.43601 - 4.41958i) q^{27} +(0.705083 + 0.512273i) q^{29} +(3.23288 - 2.34883i) q^{31} +(-0.722709 + 0.525079i) q^{33} +(2.48327 + 3.11370i) q^{35} +(1.67890 + 5.16713i) q^{37} +(-1.43983 + 4.43133i) q^{39} +(-2.01543 - 6.20285i) q^{41} -3.82844 q^{43} +(2.71236 - 4.10936i) q^{45} +(4.24705 + 3.08567i) q^{47} -3.82764 q^{49} +2.45111 q^{51} +(2.54764 + 1.85097i) q^{53} +(-2.09346 + 0.785772i) q^{55} +0.441687 q^{57} +(-1.01123 - 3.11226i) q^{59} +(-2.80371 + 8.62892i) q^{61} +(-1.21196 - 3.73003i) q^{63} +(-6.42473 + 9.73379i) q^{65} +(-3.65535 + 2.65577i) q^{67} +(-1.40777 + 1.02280i) q^{69} +(3.86992 + 2.81166i) q^{71} +(2.51385 - 7.73684i) q^{73} +(-3.36345 + 2.93898i) q^{75} +(-0.550394 + 1.69394i) q^{77} +(-5.06666 - 3.68114i) q^{79} +(-1.98589 + 1.44283i) q^{81} +(1.96298 - 1.42619i) q^{83} +(5.91433 + 1.63203i) q^{85} +(0.240586 + 0.740448i) q^{87} +(-0.446707 + 1.37482i) q^{89} +(2.87076 + 8.83528i) q^{91} +3.56975 q^{93} +(1.06576 + 0.294090i) q^{95} +(3.05092 + 2.21662i) q^{97} +2.20198 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - 3 q^{5} - 9 q^{9} + 13 q^{11} + 12 q^{13} - 15 q^{15} + 8 q^{17} - 10 q^{19} - 6 q^{21} + 22 q^{23} + 5 q^{25} + 21 q^{27} + 12 q^{29} - 12 q^{31} + 30 q^{35} + 15 q^{37} - 20 q^{39} - 68 q^{43}+ \cdots - 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1100\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(551\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.722709 + 0.525079i 0.417256 + 0.303154i 0.776533 0.630077i \(-0.216977\pi\)
−0.359277 + 0.933231i \(0.616977\pi\)
\(4\) 0 0
\(5\) 1.39423 + 1.74818i 0.623517 + 0.781810i
\(6\) 0 0
\(7\) 1.78111 0.673197 0.336599 0.941648i \(-0.390723\pi\)
0.336599 + 0.941648i \(0.390723\pi\)
\(8\) 0 0
\(9\) −0.680451 2.09421i −0.226817 0.698071i
\(10\) 0 0
\(11\) −0.309017 + 0.951057i −0.0931721 + 0.286754i
\(12\) 0 0
\(13\) 1.61178 + 4.96054i 0.447026 + 1.37581i 0.880246 + 0.474518i \(0.157377\pi\)
−0.433220 + 0.901288i \(0.642623\pi\)
\(14\) 0 0
\(15\) 0.0896884 + 1.99550i 0.0231575 + 0.515237i
\(16\) 0 0
\(17\) 2.21980 1.61278i 0.538381 0.391157i −0.285103 0.958497i \(-0.592028\pi\)
0.823483 + 0.567341i \(0.192028\pi\)
\(18\) 0 0
\(19\) 0.400006 0.290622i 0.0917677 0.0666732i −0.540955 0.841051i \(-0.681937\pi\)
0.632723 + 0.774378i \(0.281937\pi\)
\(20\) 0 0
\(21\) 1.28723 + 0.935224i 0.280896 + 0.204083i
\(22\) 0 0
\(23\) −0.601937 + 1.85257i −0.125512 + 0.386288i −0.993994 0.109434i \(-0.965096\pi\)
0.868482 + 0.495721i \(0.165096\pi\)
\(24\) 0 0
\(25\) −1.11226 + 4.87472i −0.222452 + 0.974944i
\(26\) 0 0
\(27\) 1.43601 4.41958i 0.276360 0.850549i
\(28\) 0 0
\(29\) 0.705083 + 0.512273i 0.130931 + 0.0951267i 0.651323 0.758801i \(-0.274214\pi\)
−0.520392 + 0.853927i \(0.674214\pi\)
\(30\) 0 0
\(31\) 3.23288 2.34883i 0.580643 0.421862i −0.258313 0.966061i \(-0.583167\pi\)
0.838956 + 0.544200i \(0.183167\pi\)
\(32\) 0 0
\(33\) −0.722709 + 0.525079i −0.125807 + 0.0914045i
\(34\) 0 0
\(35\) 2.48327 + 3.11370i 0.419750 + 0.526312i
\(36\) 0 0
\(37\) 1.67890 + 5.16713i 0.276010 + 0.849471i 0.988950 + 0.148247i \(0.0473630\pi\)
−0.712940 + 0.701225i \(0.752637\pi\)
\(38\) 0 0
\(39\) −1.43983 + 4.43133i −0.230557 + 0.709581i
\(40\) 0 0
\(41\) −2.01543 6.20285i −0.314757 0.968722i −0.975854 0.218422i \(-0.929909\pi\)
0.661097 0.750300i \(-0.270091\pi\)
\(42\) 0 0
\(43\) −3.82844 −0.583832 −0.291916 0.956444i \(-0.594293\pi\)
−0.291916 + 0.956444i \(0.594293\pi\)
\(44\) 0 0
\(45\) 2.71236 4.10936i 0.404334 0.612587i
\(46\) 0 0
\(47\) 4.24705 + 3.08567i 0.619497 + 0.450091i 0.852746 0.522326i \(-0.174936\pi\)
−0.233249 + 0.972417i \(0.574936\pi\)
\(48\) 0 0
\(49\) −3.82764 −0.546806
\(50\) 0 0
\(51\) 2.45111 0.343223
\(52\) 0 0
\(53\) 2.54764 + 1.85097i 0.349945 + 0.254250i 0.748846 0.662744i \(-0.230608\pi\)
−0.398901 + 0.916994i \(0.630608\pi\)
\(54\) 0 0
\(55\) −2.09346 + 0.785772i −0.282282 + 0.105953i
\(56\) 0 0
\(57\) 0.441687 0.0585029
\(58\) 0 0
\(59\) −1.01123 3.11226i −0.131651 0.405181i 0.863403 0.504515i \(-0.168329\pi\)
−0.995054 + 0.0993340i \(0.968329\pi\)
\(60\) 0 0
\(61\) −2.80371 + 8.62892i −0.358978 + 1.10482i 0.594689 + 0.803956i \(0.297275\pi\)
−0.953667 + 0.300865i \(0.902725\pi\)
\(62\) 0 0
\(63\) −1.21196 3.73003i −0.152692 0.469939i
\(64\) 0 0
\(65\) −6.42473 + 9.73379i −0.796890 + 1.20733i
\(66\) 0 0
\(67\) −3.65535 + 2.65577i −0.446573 + 0.324454i −0.788241 0.615367i \(-0.789008\pi\)
0.341669 + 0.939821i \(0.389008\pi\)
\(68\) 0 0
\(69\) −1.40777 + 1.02280i −0.169476 + 0.123131i
\(70\) 0 0
\(71\) 3.86992 + 2.81166i 0.459275 + 0.333683i 0.793247 0.608900i \(-0.208389\pi\)
−0.333972 + 0.942583i \(0.608389\pi\)
\(72\) 0 0
\(73\) 2.51385 7.73684i 0.294224 0.905529i −0.689257 0.724517i \(-0.742063\pi\)
0.983481 0.181012i \(-0.0579372\pi\)
\(74\) 0 0
\(75\) −3.36345 + 2.93898i −0.388378 + 0.339364i
\(76\) 0 0
\(77\) −0.550394 + 1.69394i −0.0627232 + 0.193042i
\(78\) 0 0
\(79\) −5.06666 3.68114i −0.570043 0.414161i 0.265078 0.964227i \(-0.414602\pi\)
−0.835121 + 0.550066i \(0.814602\pi\)
\(80\) 0 0
\(81\) −1.98589 + 1.44283i −0.220654 + 0.160315i
\(82\) 0 0
\(83\) 1.96298 1.42619i 0.215465 0.156544i −0.474818 0.880084i \(-0.657486\pi\)
0.690283 + 0.723540i \(0.257486\pi\)
\(84\) 0 0
\(85\) 5.91433 + 1.63203i 0.641500 + 0.177018i
\(86\) 0 0
\(87\) 0.240586 + 0.740448i 0.0257935 + 0.0793844i
\(88\) 0 0
\(89\) −0.446707 + 1.37482i −0.0473509 + 0.145731i −0.971937 0.235243i \(-0.924411\pi\)
0.924586 + 0.380974i \(0.124411\pi\)
\(90\) 0 0
\(91\) 2.87076 + 8.83528i 0.300937 + 0.926189i
\(92\) 0 0
\(93\) 3.56975 0.370166
\(94\) 0 0
\(95\) 1.06576 + 0.294090i 0.109344 + 0.0301730i
\(96\) 0 0
\(97\) 3.05092 + 2.21662i 0.309774 + 0.225064i 0.731799 0.681520i \(-0.238681\pi\)
−0.422026 + 0.906584i \(0.638681\pi\)
\(98\) 0 0
\(99\) 2.20198 0.221308
\(100\) 0 0
\(101\) 10.8417 1.07878 0.539392 0.842055i \(-0.318654\pi\)
0.539392 + 0.842055i \(0.318654\pi\)
\(102\) 0 0
\(103\) −14.9081 10.8314i −1.46894 1.06725i −0.980919 0.194417i \(-0.937719\pi\)
−0.488022 0.872831i \(-0.662281\pi\)
\(104\) 0 0
\(105\) 0.159745 + 3.55421i 0.0155895 + 0.346856i
\(106\) 0 0
\(107\) 9.07446 0.877261 0.438630 0.898668i \(-0.355464\pi\)
0.438630 + 0.898668i \(0.355464\pi\)
\(108\) 0 0
\(109\) 4.42222 + 13.6102i 0.423572 + 1.30362i 0.904355 + 0.426780i \(0.140352\pi\)
−0.480784 + 0.876839i \(0.659648\pi\)
\(110\) 0 0
\(111\) −1.49979 + 4.61589i −0.142354 + 0.438121i
\(112\) 0 0
\(113\) −0.000908882 0.00279725i −8.55004e−5 0.000263143i 0.951014 0.309149i \(-0.100044\pi\)
−0.951099 + 0.308885i \(0.900044\pi\)
\(114\) 0 0
\(115\) −4.07786 + 1.53061i −0.380263 + 0.142730i
\(116\) 0 0
\(117\) 9.29168 6.75080i 0.859017 0.624112i
\(118\) 0 0
\(119\) 3.95371 2.87254i 0.362436 0.263325i
\(120\) 0 0
\(121\) −0.809017 0.587785i −0.0735470 0.0534350i
\(122\) 0 0
\(123\) 1.80042 5.54111i 0.162338 0.499625i
\(124\) 0 0
\(125\) −10.0726 + 4.85203i −0.900923 + 0.433979i
\(126\) 0 0
\(127\) 5.32151 16.3779i 0.472207 1.45330i −0.377480 0.926018i \(-0.623209\pi\)
0.849687 0.527287i \(-0.176791\pi\)
\(128\) 0 0
\(129\) −2.76685 2.01023i −0.243607 0.176991i
\(130\) 0 0
\(131\) 10.1056 7.34216i 0.882932 0.641488i −0.0510937 0.998694i \(-0.516271\pi\)
0.934025 + 0.357206i \(0.116271\pi\)
\(132\) 0 0
\(133\) 0.712456 0.517630i 0.0617778 0.0448842i
\(134\) 0 0
\(135\) 9.72834 3.65150i 0.837282 0.314271i
\(136\) 0 0
\(137\) −1.88364 5.79724i −0.160930 0.495292i 0.837783 0.546003i \(-0.183851\pi\)
−0.998713 + 0.0507112i \(0.983851\pi\)
\(138\) 0 0
\(139\) 4.67841 14.3987i 0.396817 1.22128i −0.530720 0.847547i \(-0.678078\pi\)
0.927537 0.373731i \(-0.121922\pi\)
\(140\) 0 0
\(141\) 1.44917 + 4.46007i 0.122042 + 0.375606i
\(142\) 0 0
\(143\) −5.21582 −0.436169
\(144\) 0 0
\(145\) 0.0875011 + 1.94684i 0.00726657 + 0.161676i
\(146\) 0 0
\(147\) −2.76627 2.00981i −0.228158 0.165766i
\(148\) 0 0
\(149\) −8.15553 −0.668127 −0.334063 0.942551i \(-0.608420\pi\)
−0.334063 + 0.942551i \(0.608420\pi\)
\(150\) 0 0
\(151\) 1.90530 0.155051 0.0775254 0.996990i \(-0.475298\pi\)
0.0775254 + 0.996990i \(0.475298\pi\)
\(152\) 0 0
\(153\) −4.88797 3.55132i −0.395169 0.287107i
\(154\) 0 0
\(155\) 8.61354 + 2.37686i 0.691856 + 0.190914i
\(156\) 0 0
\(157\) −5.04002 −0.402238 −0.201119 0.979567i \(-0.564458\pi\)
−0.201119 + 0.979567i \(0.564458\pi\)
\(158\) 0 0
\(159\) 0.869298 + 2.67542i 0.0689398 + 0.212175i
\(160\) 0 0
\(161\) −1.07212 + 3.29964i −0.0844946 + 0.260048i
\(162\) 0 0
\(163\) −2.20080 6.77335i −0.172380 0.530530i 0.827124 0.562019i \(-0.189975\pi\)
−0.999504 + 0.0314887i \(0.989975\pi\)
\(164\) 0 0
\(165\) −1.92555 0.531346i −0.149904 0.0413652i
\(166\) 0 0
\(167\) 3.61926 2.62954i 0.280067 0.203480i −0.438880 0.898546i \(-0.644625\pi\)
0.718946 + 0.695065i \(0.244625\pi\)
\(168\) 0 0
\(169\) −11.4919 + 8.34936i −0.883992 + 0.642258i
\(170\) 0 0
\(171\) −0.880808 0.639944i −0.0673570 0.0489378i
\(172\) 0 0
\(173\) 2.74310 8.44239i 0.208554 0.641863i −0.790995 0.611823i \(-0.790436\pi\)
0.999549 0.0300403i \(-0.00956356\pi\)
\(174\) 0 0
\(175\) −1.98106 + 8.68242i −0.149754 + 0.656329i
\(176\) 0 0
\(177\) 0.903352 2.78023i 0.0679001 0.208975i
\(178\) 0 0
\(179\) −13.4932 9.80337i −1.00853 0.732739i −0.0446283 0.999004i \(-0.514210\pi\)
−0.963900 + 0.266265i \(0.914210\pi\)
\(180\) 0 0
\(181\) −17.8674 + 12.9814i −1.32807 + 0.964903i −0.328281 + 0.944580i \(0.606469\pi\)
−0.999793 + 0.0203225i \(0.993531\pi\)
\(182\) 0 0
\(183\) −6.55713 + 4.76403i −0.484717 + 0.352167i
\(184\) 0 0
\(185\) −6.69230 + 10.1392i −0.492028 + 0.745447i
\(186\) 0 0
\(187\) 0.847888 + 2.60953i 0.0620037 + 0.190828i
\(188\) 0 0
\(189\) 2.55769 7.87177i 0.186045 0.572587i
\(190\) 0 0
\(191\) −2.97223 9.14758i −0.215063 0.661896i −0.999149 0.0412437i \(-0.986868\pi\)
0.784086 0.620652i \(-0.213132\pi\)
\(192\) 0 0
\(193\) −17.4383 −1.25524 −0.627619 0.778521i \(-0.715970\pi\)
−0.627619 + 0.778521i \(0.715970\pi\)
\(194\) 0 0
\(195\) −9.75421 + 3.66121i −0.698514 + 0.262185i
\(196\) 0 0
\(197\) 5.78387 + 4.20223i 0.412084 + 0.299396i 0.774445 0.632641i \(-0.218029\pi\)
−0.362361 + 0.932038i \(0.618029\pi\)
\(198\) 0 0
\(199\) −24.3258 −1.72441 −0.862206 0.506558i \(-0.830918\pi\)
−0.862206 + 0.506558i \(0.830918\pi\)
\(200\) 0 0
\(201\) −4.03624 −0.284695
\(202\) 0 0
\(203\) 1.25583 + 0.912415i 0.0881421 + 0.0640390i
\(204\) 0 0
\(205\) 8.03373 12.1715i 0.561100 0.850095i
\(206\) 0 0
\(207\) 4.28926 0.298124
\(208\) 0 0
\(209\) 0.152789 + 0.470236i 0.0105686 + 0.0325269i
\(210\) 0 0
\(211\) 0.0454974 0.140027i 0.00313217 0.00963984i −0.949478 0.313833i \(-0.898387\pi\)
0.952610 + 0.304193i \(0.0983868\pi\)
\(212\) 0 0
\(213\) 1.32048 + 4.06402i 0.0904779 + 0.278462i
\(214\) 0 0
\(215\) −5.33771 6.69280i −0.364029 0.456445i
\(216\) 0 0
\(217\) 5.75813 4.18352i 0.390887 0.283996i
\(218\) 0 0
\(219\) 5.87923 4.27151i 0.397282 0.288642i
\(220\) 0 0
\(221\) 11.5781 + 8.41197i 0.778826 + 0.565850i
\(222\) 0 0
\(223\) 5.60909 17.2630i 0.375613 1.15602i −0.567452 0.823407i \(-0.692071\pi\)
0.943064 0.332610i \(-0.107929\pi\)
\(224\) 0 0
\(225\) 10.9655 0.987693i 0.731035 0.0658462i
\(226\) 0 0
\(227\) 2.36311 7.27291i 0.156845 0.482720i −0.841498 0.540260i \(-0.818326\pi\)
0.998343 + 0.0575403i \(0.0183258\pi\)
\(228\) 0 0
\(229\) −0.958318 0.696259i −0.0633274 0.0460101i 0.555671 0.831402i \(-0.312461\pi\)
−0.618999 + 0.785392i \(0.712461\pi\)
\(230\) 0 0
\(231\) −1.28723 + 0.935224i −0.0846932 + 0.0615332i
\(232\) 0 0
\(233\) 16.0295 11.6461i 1.05013 0.762962i 0.0778906 0.996962i \(-0.475182\pi\)
0.972237 + 0.234000i \(0.0751815\pi\)
\(234\) 0 0
\(235\) 0.527061 + 11.7267i 0.0343817 + 0.764968i
\(236\) 0 0
\(237\) −1.72883 5.32079i −0.112299 0.345622i
\(238\) 0 0
\(239\) 2.99542 9.21894i 0.193757 0.596324i −0.806231 0.591600i \(-0.798496\pi\)
0.999989 0.00472368i \(-0.00150360\pi\)
\(240\) 0 0
\(241\) −4.42040 13.6046i −0.284743 0.876350i −0.986475 0.163909i \(-0.947590\pi\)
0.701732 0.712441i \(-0.252410\pi\)
\(242\) 0 0
\(243\) −16.1339 −1.03499
\(244\) 0 0
\(245\) −5.33660 6.69140i −0.340943 0.427498i
\(246\) 0 0
\(247\) 2.08636 + 1.51583i 0.132752 + 0.0964499i
\(248\) 0 0
\(249\) 2.16752 0.137361
\(250\) 0 0
\(251\) 7.29984 0.460762 0.230381 0.973101i \(-0.426003\pi\)
0.230381 + 0.973101i \(0.426003\pi\)
\(252\) 0 0
\(253\) −1.57589 1.14495i −0.0990754 0.0719825i
\(254\) 0 0
\(255\) 3.41740 + 4.28497i 0.214006 + 0.268335i
\(256\) 0 0
\(257\) 2.60768 0.162663 0.0813313 0.996687i \(-0.474083\pi\)
0.0813313 + 0.996687i \(0.474083\pi\)
\(258\) 0 0
\(259\) 2.99031 + 9.20324i 0.185809 + 0.571862i
\(260\) 0 0
\(261\) 0.593034 1.82517i 0.0367079 0.112975i
\(262\) 0 0
\(263\) −5.47673 16.8556i −0.337709 1.03936i −0.965372 0.260877i \(-0.915988\pi\)
0.627663 0.778485i \(-0.284012\pi\)
\(264\) 0 0
\(265\) 0.316163 + 7.03440i 0.0194218 + 0.432120i
\(266\) 0 0
\(267\) −1.04473 + 0.759040i −0.0639364 + 0.0464525i
\(268\) 0 0
\(269\) −22.4976 + 16.3454i −1.37170 + 0.996599i −0.374099 + 0.927389i \(0.622048\pi\)
−0.997602 + 0.0692106i \(0.977952\pi\)
\(270\) 0 0
\(271\) 16.3054 + 11.8466i 0.990483 + 0.719628i 0.960027 0.279908i \(-0.0903040\pi\)
0.0304563 + 0.999536i \(0.490304\pi\)
\(272\) 0 0
\(273\) −2.56449 + 7.89270i −0.155210 + 0.477688i
\(274\) 0 0
\(275\) −4.29242 2.56419i −0.258843 0.154627i
\(276\) 0 0
\(277\) 9.17213 28.2289i 0.551100 1.69611i −0.154928 0.987926i \(-0.549515\pi\)
0.706027 0.708184i \(-0.250485\pi\)
\(278\) 0 0
\(279\) −7.11876 5.17208i −0.426189 0.309644i
\(280\) 0 0
\(281\) −1.57648 + 1.14538i −0.0940447 + 0.0683275i −0.633814 0.773486i \(-0.718512\pi\)
0.539769 + 0.841813i \(0.318512\pi\)
\(282\) 0 0
\(283\) 7.09409 5.15416i 0.421700 0.306383i −0.356621 0.934249i \(-0.616071\pi\)
0.778322 + 0.627866i \(0.216071\pi\)
\(284\) 0 0
\(285\) 0.615812 + 0.772148i 0.0364776 + 0.0457381i
\(286\) 0 0
\(287\) −3.58970 11.0480i −0.211893 0.652141i
\(288\) 0 0
\(289\) −2.92683 + 9.00786i −0.172167 + 0.529874i
\(290\) 0 0
\(291\) 1.04102 + 3.20394i 0.0610259 + 0.187818i
\(292\) 0 0
\(293\) −16.6811 −0.974519 −0.487260 0.873257i \(-0.662003\pi\)
−0.487260 + 0.873257i \(0.662003\pi\)
\(294\) 0 0
\(295\) 4.03089 6.10701i 0.234688 0.355564i
\(296\) 0 0
\(297\) 3.75952 + 2.73145i 0.218149 + 0.158495i
\(298\) 0 0
\(299\) −10.1599 −0.587564
\(300\) 0 0
\(301\) −6.81888 −0.393034
\(302\) 0 0
\(303\) 7.83536 + 5.69272i 0.450129 + 0.327038i
\(304\) 0 0
\(305\) −18.9939 + 7.12930i −1.08759 + 0.408222i
\(306\) 0 0
\(307\) 8.72717 0.498086 0.249043 0.968492i \(-0.419884\pi\)
0.249043 + 0.968492i \(0.419884\pi\)
\(308\) 0 0
\(309\) −5.08690 15.6559i −0.289384 0.890631i
\(310\) 0 0
\(311\) 8.84864 27.2333i 0.501761 1.54426i −0.304389 0.952548i \(-0.598452\pi\)
0.806149 0.591712i \(-0.201548\pi\)
\(312\) 0 0
\(313\) 3.98735 + 12.2718i 0.225378 + 0.693642i 0.998253 + 0.0590841i \(0.0188180\pi\)
−0.772875 + 0.634558i \(0.781182\pi\)
\(314\) 0 0
\(315\) 4.83101 7.31922i 0.272196 0.412392i
\(316\) 0 0
\(317\) 14.1322 10.2677i 0.793744 0.576689i −0.115328 0.993327i \(-0.536792\pi\)
0.909072 + 0.416639i \(0.136792\pi\)
\(318\) 0 0
\(319\) −0.705083 + 0.512273i −0.0394771 + 0.0286818i
\(320\) 0 0
\(321\) 6.55819 + 4.76480i 0.366042 + 0.265945i
\(322\) 0 0
\(323\) 0.419226 1.29024i 0.0233263 0.0717911i
\(324\) 0 0
\(325\) −25.9739 + 2.33954i −1.44078 + 0.129774i
\(326\) 0 0
\(327\) −3.95044 + 12.1582i −0.218460 + 0.672350i
\(328\) 0 0
\(329\) 7.56448 + 5.49592i 0.417043 + 0.303000i
\(330\) 0 0
\(331\) 3.06555 2.22726i 0.168498 0.122421i −0.500340 0.865829i \(-0.666792\pi\)
0.668838 + 0.743408i \(0.266792\pi\)
\(332\) 0 0
\(333\) 9.67866 7.03196i 0.530387 0.385349i
\(334\) 0 0
\(335\) −9.73916 2.68747i −0.532107 0.146832i
\(336\) 0 0
\(337\) 0.815897 + 2.51107i 0.0444447 + 0.136787i 0.970817 0.239823i \(-0.0770896\pi\)
−0.926372 + 0.376610i \(0.877090\pi\)
\(338\) 0 0
\(339\) 0.000811919 0.00249883i 4.40974e−5 0.000135718i
\(340\) 0 0
\(341\) 1.23485 + 3.80048i 0.0668709 + 0.205808i
\(342\) 0 0
\(343\) −19.2852 −1.04131
\(344\) 0 0
\(345\) −3.75080 1.03501i −0.201936 0.0557232i
\(346\) 0 0
\(347\) −24.0417 17.4673i −1.29063 0.937696i −0.290810 0.956781i \(-0.593925\pi\)
−0.999818 + 0.0190845i \(0.993925\pi\)
\(348\) 0 0
\(349\) −4.94331 −0.264610 −0.132305 0.991209i \(-0.542238\pi\)
−0.132305 + 0.991209i \(0.542238\pi\)
\(350\) 0 0
\(351\) 24.2380 1.29373
\(352\) 0 0
\(353\) −8.96195 6.51124i −0.476996 0.346558i 0.323165 0.946343i \(-0.395253\pi\)
−0.800162 + 0.599784i \(0.795253\pi\)
\(354\) 0 0
\(355\) 0.480259 + 10.6854i 0.0254895 + 0.567123i
\(356\) 0 0
\(357\) 4.36569 0.231057
\(358\) 0 0
\(359\) −0.622813 1.91682i −0.0328708 0.101166i 0.933275 0.359163i \(-0.116938\pi\)
−0.966146 + 0.257997i \(0.916938\pi\)
\(360\) 0 0
\(361\) −5.79578 + 17.8376i −0.305041 + 0.938820i
\(362\) 0 0
\(363\) −0.276050 0.849595i −0.0144889 0.0445922i
\(364\) 0 0
\(365\) 17.0303 6.39225i 0.891405 0.334586i
\(366\) 0 0
\(367\) −25.2227 + 18.3254i −1.31662 + 0.956577i −0.316648 + 0.948543i \(0.602557\pi\)
−0.999968 + 0.00803434i \(0.997443\pi\)
\(368\) 0 0
\(369\) −11.6187 + 8.44147i −0.604844 + 0.439445i
\(370\) 0 0
\(371\) 4.53763 + 3.29678i 0.235582 + 0.171160i
\(372\) 0 0
\(373\) 6.65298 20.4758i 0.344478 1.06020i −0.617384 0.786662i \(-0.711808\pi\)
0.961863 0.273533i \(-0.0881924\pi\)
\(374\) 0 0
\(375\) −9.82727 1.78232i −0.507478 0.0920384i
\(376\) 0 0
\(377\) −1.40471 + 4.32326i −0.0723464 + 0.222659i
\(378\) 0 0
\(379\) −18.3653 13.3432i −0.943363 0.685393i 0.00586519 0.999983i \(-0.498133\pi\)
−0.949228 + 0.314590i \(0.898133\pi\)
\(380\) 0 0
\(381\) 12.4456 9.04225i 0.637607 0.463249i
\(382\) 0 0
\(383\) 30.1246 21.8868i 1.53929 1.11836i 0.588517 0.808485i \(-0.299712\pi\)
0.950777 0.309877i \(-0.100288\pi\)
\(384\) 0 0
\(385\) −3.72868 + 1.39955i −0.190031 + 0.0713275i
\(386\) 0 0
\(387\) 2.60506 + 8.01756i 0.132423 + 0.407556i
\(388\) 0 0
\(389\) −1.42593 + 4.38856i −0.0722975 + 0.222509i −0.980676 0.195641i \(-0.937321\pi\)
0.908378 + 0.418150i \(0.137321\pi\)
\(390\) 0 0
\(391\) 1.65161 + 5.08313i 0.0835254 + 0.257065i
\(392\) 0 0
\(393\) 11.1586 0.562878
\(394\) 0 0
\(395\) −0.628774 13.9898i −0.0316371 0.703902i
\(396\) 0 0
\(397\) −2.77311 2.01478i −0.139178 0.101119i 0.516018 0.856578i \(-0.327414\pi\)
−0.655196 + 0.755459i \(0.727414\pi\)
\(398\) 0 0
\(399\) 0.786694 0.0393840
\(400\) 0 0
\(401\) −12.2691 −0.612690 −0.306345 0.951921i \(-0.599106\pi\)
−0.306345 + 0.951921i \(0.599106\pi\)
\(402\) 0 0
\(403\) 16.8621 + 12.2511i 0.839963 + 0.610269i
\(404\) 0 0
\(405\) −5.29110 1.46005i −0.262917 0.0725505i
\(406\) 0 0
\(407\) −5.43305 −0.269306
\(408\) 0 0
\(409\) 11.6088 + 35.7282i 0.574019 + 1.76665i 0.639496 + 0.768794i \(0.279143\pi\)
−0.0654776 + 0.997854i \(0.520857\pi\)
\(410\) 0 0
\(411\) 1.68269 5.17877i 0.0830007 0.255450i
\(412\) 0 0
\(413\) −1.80112 5.54328i −0.0886273 0.272767i
\(414\) 0 0
\(415\) 5.23007 + 1.44321i 0.256734 + 0.0708444i
\(416\) 0 0
\(417\) 10.9416 7.94950i 0.535810 0.389289i
\(418\) 0 0
\(419\) −18.7510 + 13.6234i −0.916046 + 0.665546i −0.942537 0.334103i \(-0.891567\pi\)
0.0264910 + 0.999649i \(0.491567\pi\)
\(420\) 0 0
\(421\) 27.5067 + 19.9848i 1.34059 + 0.973999i 0.999422 + 0.0339980i \(0.0108240\pi\)
0.341172 + 0.940001i \(0.389176\pi\)
\(422\) 0 0
\(423\) 3.57213 10.9939i 0.173683 0.534540i
\(424\) 0 0
\(425\) 5.39285 + 12.6147i 0.261591 + 0.611905i
\(426\) 0 0
\(427\) −4.99372 + 15.3691i −0.241663 + 0.743762i
\(428\) 0 0
\(429\) −3.76952 2.73872i −0.181994 0.132226i
\(430\) 0 0
\(431\) 5.56113 4.04040i 0.267870 0.194619i −0.445739 0.895163i \(-0.647059\pi\)
0.713609 + 0.700544i \(0.247059\pi\)
\(432\) 0 0
\(433\) −11.5807 + 8.41387i −0.556533 + 0.404345i −0.830188 0.557483i \(-0.811767\pi\)
0.273656 + 0.961828i \(0.411767\pi\)
\(434\) 0 0
\(435\) −0.959004 + 1.45294i −0.0459807 + 0.0696632i
\(436\) 0 0
\(437\) 0.297618 + 0.915976i 0.0142370 + 0.0438171i
\(438\) 0 0
\(439\) 0.859739 2.64600i 0.0410331 0.126287i −0.928442 0.371479i \(-0.878851\pi\)
0.969475 + 0.245192i \(0.0788509\pi\)
\(440\) 0 0
\(441\) 2.60452 + 8.01589i 0.124025 + 0.381709i
\(442\) 0 0
\(443\) −5.90139 −0.280383 −0.140192 0.990124i \(-0.544772\pi\)
−0.140192 + 0.990124i \(0.544772\pi\)
\(444\) 0 0
\(445\) −3.02625 + 1.13589i −0.143458 + 0.0538464i
\(446\) 0 0
\(447\) −5.89407 4.28229i −0.278780 0.202545i
\(448\) 0 0
\(449\) 42.2314 1.99302 0.996512 0.0834554i \(-0.0265956\pi\)
0.996512 + 0.0834554i \(0.0265956\pi\)
\(450\) 0 0
\(451\) 6.52206 0.307112
\(452\) 0 0
\(453\) 1.37697 + 1.00043i 0.0646959 + 0.0470043i
\(454\) 0 0
\(455\) −11.4432 + 17.3370i −0.536464 + 0.812770i
\(456\) 0 0
\(457\) −1.70577 −0.0797927 −0.0398964 0.999204i \(-0.512703\pi\)
−0.0398964 + 0.999204i \(0.512703\pi\)
\(458\) 0 0
\(459\) −3.94016 12.1266i −0.183911 0.566019i
\(460\) 0 0
\(461\) 8.76981 26.9907i 0.408451 1.25708i −0.509528 0.860454i \(-0.670180\pi\)
0.917979 0.396629i \(-0.129820\pi\)
\(462\) 0 0
\(463\) −0.391461 1.20479i −0.0181927 0.0559914i 0.941548 0.336879i \(-0.109371\pi\)
−0.959741 + 0.280887i \(0.909371\pi\)
\(464\) 0 0
\(465\) 4.97704 + 6.24056i 0.230805 + 0.289399i
\(466\) 0 0
\(467\) −5.15793 + 3.74746i −0.238681 + 0.173412i −0.700695 0.713461i \(-0.747127\pi\)
0.462015 + 0.886872i \(0.347127\pi\)
\(468\) 0 0
\(469\) −6.51060 + 4.73022i −0.300631 + 0.218421i
\(470\) 0 0
\(471\) −3.64247 2.64641i −0.167836 0.121940i
\(472\) 0 0
\(473\) 1.18305 3.64106i 0.0543968 0.167416i
\(474\) 0 0
\(475\) 0.971786 + 2.27316i 0.0445886 + 0.104300i
\(476\) 0 0
\(477\) 2.14278 6.59479i 0.0981111 0.301955i
\(478\) 0 0
\(479\) −7.04194 5.11627i −0.321754 0.233768i 0.415169 0.909744i \(-0.363722\pi\)
−0.736924 + 0.675976i \(0.763722\pi\)
\(480\) 0 0
\(481\) −22.9257 + 16.6565i −1.04532 + 0.759472i
\(482\) 0 0
\(483\) −2.50740 + 1.82173i −0.114090 + 0.0828916i
\(484\) 0 0
\(485\) 0.378620 + 8.42402i 0.0171922 + 0.382515i
\(486\) 0 0
\(487\) 7.61594 + 23.4394i 0.345111 + 1.06214i 0.961524 + 0.274720i \(0.0885851\pi\)
−0.616413 + 0.787423i \(0.711415\pi\)
\(488\) 0 0
\(489\) 1.96601 6.05075i 0.0889060 0.273625i
\(490\) 0 0
\(491\) 8.80966 + 27.1133i 0.397574 + 1.22361i 0.926939 + 0.375213i \(0.122430\pi\)
−0.529364 + 0.848395i \(0.677570\pi\)
\(492\) 0 0
\(493\) 2.39133 0.107700
\(494\) 0 0
\(495\) 3.07007 + 3.84946i 0.137989 + 0.173021i
\(496\) 0 0
\(497\) 6.89276 + 5.00788i 0.309183 + 0.224634i
\(498\) 0 0
\(499\) −16.4530 −0.736538 −0.368269 0.929719i \(-0.620049\pi\)
−0.368269 + 0.929719i \(0.620049\pi\)
\(500\) 0 0
\(501\) 3.99639 0.178545
\(502\) 0 0
\(503\) 22.5029 + 16.3493i 1.00335 + 0.728980i 0.962805 0.270198i \(-0.0870890\pi\)
0.0405500 + 0.999178i \(0.487089\pi\)
\(504\) 0 0
\(505\) 15.1157 + 18.9532i 0.672641 + 0.843404i
\(506\) 0 0
\(507\) −12.6894 −0.563554
\(508\) 0 0
\(509\) 3.71812 + 11.4432i 0.164803 + 0.507211i 0.999022 0.0442226i \(-0.0140811\pi\)
−0.834219 + 0.551433i \(0.814081\pi\)
\(510\) 0 0
\(511\) 4.47745 13.7802i 0.198071 0.609600i
\(512\) 0 0
\(513\) −0.710013 2.18519i −0.0313478 0.0964787i
\(514\) 0 0
\(515\) −1.85010 41.1635i −0.0815253 1.81388i
\(516\) 0 0
\(517\) −4.24705 + 3.08567i −0.186785 + 0.135707i
\(518\) 0 0
\(519\) 6.41538 4.66105i 0.281604 0.204597i
\(520\) 0 0
\(521\) 7.45112 + 5.41356i 0.326440 + 0.237172i 0.738918 0.673795i \(-0.235337\pi\)
−0.412479 + 0.910967i \(0.635337\pi\)
\(522\) 0 0
\(523\) −9.84712 + 30.3063i −0.430585 + 1.32520i 0.466960 + 0.884279i \(0.345349\pi\)
−0.897544 + 0.440924i \(0.854651\pi\)
\(524\) 0 0
\(525\) −5.99068 + 5.23465i −0.261455 + 0.228459i
\(526\) 0 0
\(527\) 3.38822 10.4279i 0.147593 0.454244i
\(528\) 0 0
\(529\) 15.5377 + 11.2888i 0.675552 + 0.490817i
\(530\) 0 0
\(531\) −5.82963 + 4.23547i −0.252984 + 0.183804i
\(532\) 0 0
\(533\) 27.5211 19.9952i 1.19207 0.866089i
\(534\) 0 0
\(535\) 12.6519 + 15.8638i 0.546987 + 0.685851i
\(536\) 0 0
\(537\) −4.60410 14.1700i −0.198682 0.611479i
\(538\) 0 0
\(539\) 1.18281 3.64030i 0.0509470 0.156799i
\(540\) 0 0
\(541\) 6.27016 + 19.2976i 0.269575 + 0.829667i 0.990604 + 0.136762i \(0.0436696\pi\)
−0.721029 + 0.692905i \(0.756330\pi\)
\(542\) 0 0
\(543\) −19.7292 −0.846661
\(544\) 0 0
\(545\) −17.6275 + 26.7065i −0.755078 + 1.14398i
\(546\) 0 0
\(547\) 7.18934 + 5.22336i 0.307394 + 0.223335i 0.730777 0.682616i \(-0.239158\pi\)
−0.423384 + 0.905951i \(0.639158\pi\)
\(548\) 0 0
\(549\) 19.9786 0.852665
\(550\) 0 0
\(551\) 0.430915 0.0183576
\(552\) 0 0
\(553\) −9.02428 6.55652i −0.383752 0.278812i
\(554\) 0 0
\(555\) −10.1605 + 3.81369i −0.431287 + 0.161882i
\(556\) 0 0
\(557\) 32.3214 1.36950 0.684751 0.728777i \(-0.259911\pi\)
0.684751 + 0.728777i \(0.259911\pi\)
\(558\) 0 0
\(559\) −6.17059 18.9911i −0.260988 0.803239i
\(560\) 0 0
\(561\) −0.757433 + 2.33114i −0.0319789 + 0.0984208i
\(562\) 0 0
\(563\) 1.82666 + 5.62189i 0.0769847 + 0.236935i 0.982142 0.188143i \(-0.0602468\pi\)
−0.905157 + 0.425078i \(0.860247\pi\)
\(564\) 0 0
\(565\) 0.00362291 0.00548889i 0.000152417 0.000230919i
\(566\) 0 0
\(567\) −3.53709 + 2.56984i −0.148544 + 0.107923i
\(568\) 0 0
\(569\) −16.9877 + 12.3423i −0.712161 + 0.517415i −0.883870 0.467733i \(-0.845071\pi\)
0.171709 + 0.985148i \(0.445071\pi\)
\(570\) 0 0
\(571\) 11.5793 + 8.41287i 0.484579 + 0.352068i 0.803096 0.595850i \(-0.203185\pi\)
−0.318516 + 0.947917i \(0.603185\pi\)
\(572\) 0 0
\(573\) 2.65514 8.17169i 0.110920 0.341377i
\(574\) 0 0
\(575\) −8.36125 4.99481i −0.348688 0.208298i
\(576\) 0 0
\(577\) −5.15954 + 15.8794i −0.214794 + 0.661069i 0.784374 + 0.620288i \(0.212984\pi\)
−0.999168 + 0.0407805i \(0.987016\pi\)
\(578\) 0 0
\(579\) −12.6028 9.15649i −0.523756 0.380531i
\(580\) 0 0
\(581\) 3.49628 2.54020i 0.145050 0.105385i
\(582\) 0 0
\(583\) −2.54764 + 1.85097i −0.105512 + 0.0766593i
\(584\) 0 0
\(585\) 24.7563 + 6.83138i 1.02355 + 0.282443i
\(586\) 0 0
\(587\) 0.711519 + 2.18983i 0.0293675 + 0.0903840i 0.964666 0.263476i \(-0.0848690\pi\)
−0.935298 + 0.353860i \(0.884869\pi\)
\(588\) 0 0
\(589\) 0.610554 1.87909i 0.0251574 0.0774266i
\(590\) 0 0
\(591\) 1.97355 + 6.07398i 0.0811812 + 0.249850i
\(592\) 0 0
\(593\) −4.55374 −0.187000 −0.0934999 0.995619i \(-0.529805\pi\)
−0.0934999 + 0.995619i \(0.529805\pi\)
\(594\) 0 0
\(595\) 10.5341 + 2.90683i 0.431856 + 0.119168i
\(596\) 0 0
\(597\) −17.5805 12.7730i −0.719521 0.522763i
\(598\) 0 0
\(599\) 23.7752 0.971427 0.485713 0.874118i \(-0.338560\pi\)
0.485713 + 0.874118i \(0.338560\pi\)
\(600\) 0 0
\(601\) −9.44908 −0.385436 −0.192718 0.981254i \(-0.561730\pi\)
−0.192718 + 0.981254i \(0.561730\pi\)
\(602\) 0 0
\(603\) 8.04903 + 5.84796i 0.327782 + 0.238148i
\(604\) 0 0
\(605\) −0.100399 2.23381i −0.00408181 0.0908174i
\(606\) 0 0
\(607\) 14.0296 0.569444 0.284722 0.958610i \(-0.408099\pi\)
0.284722 + 0.958610i \(0.408099\pi\)
\(608\) 0 0
\(609\) 0.428511 + 1.31882i 0.0173641 + 0.0534413i
\(610\) 0 0
\(611\) −8.46126 + 26.0411i −0.342306 + 1.05351i
\(612\) 0 0
\(613\) 5.89336 + 18.1379i 0.238030 + 0.732583i 0.996705 + 0.0811126i \(0.0258473\pi\)
−0.758674 + 0.651470i \(0.774153\pi\)
\(614\) 0 0
\(615\) 12.1970 4.57812i 0.491832 0.184607i
\(616\) 0 0
\(617\) 9.62986 6.99650i 0.387683 0.281669i −0.376822 0.926286i \(-0.622983\pi\)
0.764506 + 0.644617i \(0.222983\pi\)
\(618\) 0 0
\(619\) 24.3542 17.6944i 0.978878 0.711197i 0.0214205 0.999771i \(-0.493181\pi\)
0.957458 + 0.288574i \(0.0931811\pi\)
\(620\) 0 0
\(621\) 7.32320 + 5.32061i 0.293870 + 0.213509i
\(622\) 0 0
\(623\) −0.795636 + 2.44871i −0.0318765 + 0.0981057i
\(624\) 0 0
\(625\) −22.5257 10.8439i −0.901030 0.433757i
\(626\) 0 0
\(627\) −0.136489 + 0.420069i −0.00545084 + 0.0167760i
\(628\) 0 0
\(629\) 12.0603 + 8.76230i 0.480875 + 0.349376i
\(630\) 0 0
\(631\) −37.8243 + 27.4810i −1.50576 + 1.09400i −0.537747 + 0.843106i \(0.680725\pi\)
−0.968015 + 0.250894i \(0.919275\pi\)
\(632\) 0 0
\(633\) 0.106406 0.0773088i 0.00422928 0.00307275i
\(634\) 0 0
\(635\) 36.0509 13.5316i 1.43064 0.536985i
\(636\) 0 0
\(637\) −6.16930 18.9872i −0.244437 0.752298i
\(638\) 0 0
\(639\) 3.25492 10.0176i 0.128763 0.396291i
\(640\) 0 0
\(641\) −13.5353 41.6575i −0.534614 1.64537i −0.744482 0.667642i \(-0.767304\pi\)
0.209869 0.977730i \(-0.432696\pi\)
\(642\) 0 0
\(643\) −11.5909 −0.457099 −0.228550 0.973532i \(-0.573398\pi\)
−0.228550 + 0.973532i \(0.573398\pi\)
\(644\) 0 0
\(645\) −0.343367 7.63966i −0.0135201 0.300811i
\(646\) 0 0
\(647\) 34.6651 + 25.1857i 1.36283 + 0.990151i 0.998260 + 0.0589736i \(0.0187828\pi\)
0.364566 + 0.931177i \(0.381217\pi\)
\(648\) 0 0
\(649\) 3.27242 0.128454
\(650\) 0 0
\(651\) 6.35813 0.249195
\(652\) 0 0
\(653\) 12.7631 + 9.27293i 0.499458 + 0.362878i 0.808810 0.588070i \(-0.200112\pi\)
−0.309352 + 0.950948i \(0.600112\pi\)
\(654\) 0 0
\(655\) 26.9249 + 7.42979i 1.05204 + 0.290306i
\(656\) 0 0
\(657\) −17.9131 −0.698858
\(658\) 0 0
\(659\) 9.16898 + 28.2192i 0.357173 + 1.09926i 0.954739 + 0.297445i \(0.0961345\pi\)
−0.597566 + 0.801820i \(0.703866\pi\)
\(660\) 0 0
\(661\) 6.43490 19.8046i 0.250288 0.770309i −0.744433 0.667697i \(-0.767280\pi\)
0.994721 0.102612i \(-0.0327199\pi\)
\(662\) 0 0
\(663\) 3.95063 + 12.1588i 0.153430 + 0.472209i
\(664\) 0 0
\(665\) 1.89823 + 0.523808i 0.0736104 + 0.0203124i
\(666\) 0 0
\(667\) −1.37344 + 0.997860i −0.0531797 + 0.0386373i
\(668\) 0 0
\(669\) 13.1182 9.53091i 0.507178 0.368486i
\(670\) 0 0
\(671\) −7.34020 5.33297i −0.283365 0.205877i
\(672\) 0 0
\(673\) −7.46617 + 22.9785i −0.287800 + 0.885756i 0.697746 + 0.716345i \(0.254187\pi\)
−0.985545 + 0.169411i \(0.945813\pi\)
\(674\) 0 0
\(675\) 19.9470 + 11.9159i 0.767760 + 0.458642i
\(676\) 0 0
\(677\) −3.33256 + 10.2566i −0.128081 + 0.394192i −0.994450 0.105212i \(-0.966448\pi\)
0.866369 + 0.499404i \(0.166448\pi\)
\(678\) 0 0
\(679\) 5.43402 + 3.94805i 0.208539 + 0.151512i
\(680\) 0 0
\(681\) 5.52669 4.01538i 0.211783 0.153870i
\(682\) 0 0
\(683\) −16.2990 + 11.8419i −0.623662 + 0.453117i −0.854199 0.519946i \(-0.825952\pi\)
0.230536 + 0.973064i \(0.425952\pi\)
\(684\) 0 0
\(685\) 7.50839 11.3756i 0.286881 0.434639i
\(686\) 0 0
\(687\) −0.326994 1.00638i −0.0124756 0.0383960i
\(688\) 0 0
\(689\) −5.07558 + 15.6210i −0.193364 + 0.595113i
\(690\) 0 0
\(691\) 6.71038 + 20.6524i 0.255275 + 0.785655i 0.993775 + 0.111402i \(0.0355342\pi\)
−0.738501 + 0.674253i \(0.764466\pi\)
\(692\) 0 0
\(693\) 3.92198 0.148984
\(694\) 0 0
\(695\) 31.6942 11.8963i 1.20223 0.451252i
\(696\) 0 0
\(697\) −14.4777 10.5186i −0.548381 0.398422i
\(698\) 0 0
\(699\) 17.6998 0.669467
\(700\) 0 0
\(701\) −45.2417 −1.70875 −0.854377 0.519654i \(-0.826061\pi\)
−0.854377 + 0.519654i \(0.826061\pi\)
\(702\) 0 0
\(703\) 2.17325 + 1.57896i 0.0819657 + 0.0595516i
\(704\) 0 0
\(705\) −5.77654 + 8.75176i −0.217557 + 0.329610i
\(706\) 0 0
\(707\) 19.3102 0.726235
\(708\) 0 0
\(709\) −4.22676 13.0086i −0.158739 0.488549i 0.839781 0.542925i \(-0.182683\pi\)
−0.998521 + 0.0543755i \(0.982683\pi\)
\(710\) 0 0
\(711\) −4.26148 + 13.1155i −0.159818 + 0.491869i
\(712\) 0 0
\(713\) 2.40538 + 7.40299i 0.0900821 + 0.277244i
\(714\) 0 0
\(715\) −7.27204 9.11819i −0.271959 0.341001i
\(716\) 0 0
\(717\) 7.00548 5.08978i 0.261625 0.190081i
\(718\) 0 0
\(719\) −25.5082 + 18.5328i −0.951294 + 0.691155i −0.951113 0.308845i \(-0.900058\pi\)
−0.000181220 1.00000i \(0.500058\pi\)
\(720\) 0 0
\(721\) −26.5530 19.2919i −0.988887 0.718468i
\(722\) 0 0
\(723\) 3.94882 12.1532i 0.146858 0.451983i
\(724\) 0 0
\(725\) −3.28142 + 2.86730i −0.121869 + 0.106489i
\(726\) 0 0
\(727\) −13.6230 + 41.9273i −0.505250 + 1.55500i 0.295100 + 0.955466i \(0.404647\pi\)
−0.800350 + 0.599533i \(0.795353\pi\)
\(728\) 0 0
\(729\) −5.70244 4.14306i −0.211201 0.153447i
\(730\) 0 0
\(731\) −8.49837 + 6.17443i −0.314324 + 0.228370i
\(732\) 0 0
\(733\) 17.1767 12.4796i 0.634437 0.460946i −0.223497 0.974705i \(-0.571747\pi\)
0.857935 + 0.513759i \(0.171747\pi\)
\(734\) 0 0
\(735\) −0.343295 7.63807i −0.0126626 0.281734i
\(736\) 0 0
\(737\) −1.39622 4.29713i −0.0514305 0.158287i
\(738\) 0 0
\(739\) 5.25388 16.1698i 0.193267 0.594815i −0.806725 0.590927i \(-0.798762\pi\)
0.999992 0.00388833i \(-0.00123770\pi\)
\(740\) 0 0
\(741\) 0.711901 + 2.19101i 0.0261523 + 0.0804886i
\(742\) 0 0
\(743\) −52.7509 −1.93524 −0.967622 0.252404i \(-0.918779\pi\)
−0.967622 + 0.252404i \(0.918779\pi\)
\(744\) 0 0
\(745\) −11.3707 14.2573i −0.416589 0.522348i
\(746\) 0 0
\(747\) −4.32245 3.14044i −0.158150 0.114903i
\(748\) 0 0
\(749\) 16.1626 0.590569
\(750\) 0 0
\(751\) 8.58038 0.313103 0.156551 0.987670i \(-0.449962\pi\)
0.156551 + 0.987670i \(0.449962\pi\)
\(752\) 0 0
\(753\) 5.27566 + 3.83299i 0.192256 + 0.139682i
\(754\) 0 0
\(755\) 2.65641 + 3.33080i 0.0966768 + 0.121220i
\(756\) 0 0
\(757\) 17.9822 0.653572 0.326786 0.945098i \(-0.394034\pi\)
0.326786 + 0.945098i \(0.394034\pi\)
\(758\) 0 0
\(759\) −0.537720 1.65493i −0.0195180 0.0600703i
\(760\) 0 0
\(761\) 12.3873 38.1241i 0.449039 1.38200i −0.428954 0.903326i \(-0.641118\pi\)
0.877993 0.478673i \(-0.158882\pi\)
\(762\) 0 0
\(763\) 7.87646 + 24.2413i 0.285147 + 0.877593i
\(764\) 0 0
\(765\) −0.606599 13.4964i −0.0219316 0.487963i
\(766\) 0 0
\(767\) 13.8086 10.0325i 0.498599 0.362253i
\(768\) 0 0
\(769\) −34.5036 + 25.0683i −1.24423 + 0.903988i −0.997873 0.0651907i \(-0.979234\pi\)
−0.246360 + 0.969178i \(0.579234\pi\)
\(770\) 0 0
\(771\) 1.88459 + 1.36924i 0.0678720 + 0.0493119i
\(772\) 0 0
\(773\) 15.1667 46.6783i 0.545508 1.67890i −0.174269 0.984698i \(-0.555756\pi\)
0.719778 0.694204i \(-0.244244\pi\)
\(774\) 0 0
\(775\) 7.85405 + 18.3719i 0.282126 + 0.659938i
\(776\) 0 0
\(777\) −2.67130 + 8.22141i −0.0958323 + 0.294942i
\(778\) 0 0
\(779\) −2.60887 1.89545i −0.0934723 0.0679116i
\(780\) 0 0
\(781\) −3.86992 + 2.81166i −0.138477 + 0.100609i
\(782\) 0 0
\(783\) 3.27654 2.38054i 0.117094 0.0850737i
\(784\) 0 0
\(785\) −7.02694 8.81087i −0.250802 0.314473i
\(786\) 0 0
\(787\) 1.74124 + 5.35898i 0.0620684 + 0.191027i 0.977282 0.211941i \(-0.0679785\pi\)
−0.915214 + 0.402968i \(0.867979\pi\)
\(788\) 0 0
\(789\) 4.89245 15.0574i 0.174176 0.536058i
\(790\) 0 0
\(791\) −0.00161882 0.00498222i −5.75586e−5 0.000177147i
\(792\) 0 0
\(793\) −47.3231 −1.68049
\(794\) 0 0
\(795\) −3.46512 + 5.24983i −0.122895 + 0.186192i
\(796\) 0 0
\(797\) 29.1579 + 21.1844i 1.03283 + 0.750392i 0.968872 0.247561i \(-0.0796291\pi\)
0.0639533 + 0.997953i \(0.479629\pi\)
\(798\) 0 0
\(799\) 14.4041 0.509581
\(800\) 0 0
\(801\) 3.18313 0.112471
\(802\) 0 0
\(803\) 6.58135 + 4.78163i 0.232251 + 0.168740i
\(804\) 0 0
\(805\) −7.26313 + 2.72619i −0.255992 + 0.0960855i
\(806\) 0 0
\(807\) −24.8418 −0.874474
\(808\) 0 0
\(809\) 11.6262 + 35.7817i 0.408755 + 1.25802i 0.917719 + 0.397230i \(0.130029\pi\)
−0.508964 + 0.860788i \(0.669971\pi\)
\(810\) 0 0
\(811\) −3.40132 + 10.4682i −0.119436 + 0.367587i −0.992846 0.119398i \(-0.961904\pi\)
0.873410 + 0.486985i \(0.161904\pi\)
\(812\) 0 0
\(813\) 5.56368 + 17.1232i 0.195127 + 0.600538i
\(814\) 0 0
\(815\) 8.77263 13.2910i 0.307292 0.465563i
\(816\) 0 0
\(817\) −1.53140 + 1.11263i −0.0535769 + 0.0389259i
\(818\) 0 0
\(819\) 16.5495 12.0239i 0.578287 0.420150i
\(820\) 0 0
\(821\) −44.9307 32.6440i −1.56809 1.13928i −0.928956 0.370190i \(-0.879293\pi\)
−0.639135 0.769095i \(-0.720707\pi\)
\(822\) 0 0
\(823\) 4.15702 12.7940i 0.144905 0.445970i −0.852094 0.523389i \(-0.824668\pi\)
0.996999 + 0.0774181i \(0.0246676\pi\)
\(824\) 0 0
\(825\) −1.75577 4.10703i −0.0611280 0.142988i
\(826\) 0 0
\(827\) 8.66844 26.6787i 0.301431 0.927710i −0.679554 0.733626i \(-0.737827\pi\)
0.980985 0.194084i \(-0.0621734\pi\)
\(828\) 0 0
\(829\) −41.3452 30.0390i −1.43598 1.04330i −0.988864 0.148822i \(-0.952452\pi\)
−0.447114 0.894477i \(-0.647548\pi\)
\(830\) 0 0
\(831\) 21.4512 15.5852i 0.744133 0.540644i
\(832\) 0 0
\(833\) −8.49660 + 6.17314i −0.294390 + 0.213887i
\(834\) 0 0
\(835\) 9.64298 + 2.66093i 0.333709 + 0.0920853i
\(836\) 0 0
\(837\) −5.73838 17.6609i −0.198347 0.610451i
\(838\) 0 0
\(839\) −6.60569 + 20.3302i −0.228054 + 0.701878i 0.769913 + 0.638148i \(0.220299\pi\)
−0.997967 + 0.0637292i \(0.979701\pi\)
\(840\) 0 0
\(841\) −8.72677 26.8582i −0.300923 0.926147i
\(842\) 0 0
\(843\) −1.74075 −0.0599545
\(844\) 0 0
\(845\) −30.6185 8.44901i −1.05331 0.290655i
\(846\) 0 0
\(847\) −1.44095 1.04691i −0.0495116 0.0359723i
\(848\) 0 0
\(849\) 7.83330 0.268838
\(850\) 0 0
\(851\) −10.5831 −0.362783
\(852\) 0 0
\(853\) −15.8065 11.4841i −0.541204 0.393208i 0.283328 0.959023i \(-0.408562\pi\)
−0.824532 + 0.565815i \(0.808562\pi\)
\(854\) 0 0
\(855\) −0.109309 2.43204i −0.00373827 0.0831739i
\(856\) 0 0
\(857\) −26.9227 −0.919661 −0.459831 0.888007i \(-0.652090\pi\)
−0.459831 + 0.888007i \(0.652090\pi\)
\(858\) 0 0
\(859\) 15.3541 + 47.2551i 0.523875 + 1.61232i 0.766529 + 0.642209i \(0.221982\pi\)
−0.242654 + 0.970113i \(0.578018\pi\)
\(860\) 0 0
\(861\) 3.20674 9.86934i 0.109286 0.336346i
\(862\) 0 0
\(863\) 9.13390 + 28.1113i 0.310922 + 0.956918i 0.977401 + 0.211395i \(0.0678006\pi\)
−0.666479 + 0.745524i \(0.732199\pi\)
\(864\) 0 0
\(865\) 18.5833 6.97518i 0.631852 0.237163i
\(866\) 0 0
\(867\) −6.84508 + 4.97324i −0.232471 + 0.168900i
\(868\) 0 0
\(869\) 5.06666 3.68114i 0.171875 0.124874i
\(870\) 0 0
\(871\) −19.0657 13.8520i −0.646015 0.469358i
\(872\) 0 0
\(873\) 2.56607 7.89756i 0.0868484 0.267292i
\(874\) 0 0
\(875\) −17.9405 + 8.64201i −0.606499 + 0.292153i
\(876\) 0 0
\(877\) −12.5209 + 38.5354i −0.422802 + 1.30125i 0.482282 + 0.876016i \(0.339808\pi\)
−0.905084 + 0.425233i \(0.860192\pi\)
\(878\) 0 0
\(879\) −12.0556 8.75888i −0.406624 0.295430i
\(880\) 0 0
\(881\) 5.92864 4.30741i 0.199741 0.145120i −0.483419 0.875389i \(-0.660605\pi\)
0.683160 + 0.730269i \(0.260605\pi\)
\(882\) 0 0
\(883\) −21.8011 + 15.8395i −0.733667 + 0.533040i −0.890721 0.454550i \(-0.849800\pi\)
0.157054 + 0.987590i \(0.449800\pi\)
\(884\) 0 0
\(885\) 6.11982 2.29705i 0.205716 0.0772146i
\(886\) 0 0
\(887\) 0.0713442 + 0.219575i 0.00239550 + 0.00737260i 0.952247 0.305328i \(-0.0987662\pi\)
−0.949852 + 0.312701i \(0.898766\pi\)
\(888\) 0 0
\(889\) 9.47820 29.1709i 0.317889 0.978361i
\(890\) 0 0
\(891\) −0.758541 2.33455i −0.0254121 0.0782103i
\(892\) 0 0
\(893\) 2.59561 0.0868587
\(894\) 0 0
\(895\) −1.67451 37.2566i −0.0559727 1.24535i
\(896\) 0 0
\(897\) −7.34267 5.33476i −0.245165 0.178123i
\(898\) 0 0
\(899\) 3.48269 0.116154
\(900\) 0 0
\(901\) 8.64046 0.287855
\(902\) 0 0
\(903\) −4.92806 3.58045i −0.163996 0.119150i
\(904\) 0 0
\(905\) −47.6051 13.1364i −1.58245 0.436668i
\(906\) 0 0
\(907\) −37.7167 −1.25236 −0.626181 0.779678i \(-0.715383\pi\)
−0.626181 + 0.779678i \(0.715383\pi\)
\(908\) 0 0
\(909\) −7.37721 22.7047i −0.244687 0.753068i
\(910\) 0 0
\(911\) −11.5944 + 35.6840i −0.384141 + 1.18226i 0.552961 + 0.833207i \(0.313498\pi\)
−0.937102 + 0.349057i \(0.886502\pi\)
\(912\) 0 0
\(913\) 0.749791 + 2.30762i 0.0248145 + 0.0763711i
\(914\) 0 0
\(915\) −17.4705 4.82089i −0.577557 0.159374i
\(916\) 0 0
\(917\) 17.9992 13.0772i 0.594387 0.431848i
\(918\) 0 0
\(919\) −10.7330 + 7.79799i −0.354049 + 0.257232i −0.750566 0.660796i \(-0.770219\pi\)
0.396516 + 0.918028i \(0.370219\pi\)
\(920\) 0 0
\(921\) 6.30720 + 4.58245i 0.207829 + 0.150997i
\(922\) 0 0
\(923\) −7.70991 + 23.7287i −0.253775 + 0.781038i
\(924\) 0 0
\(925\) −27.0557 + 2.43697i −0.889586 + 0.0801272i
\(926\) 0 0
\(927\) −12.5390 + 38.5910i −0.411834 + 1.26749i
\(928\) 0 0
\(929\) 13.8501 + 10.0627i 0.454408 + 0.330147i 0.791334 0.611384i \(-0.209387\pi\)
−0.336925 + 0.941531i \(0.609387\pi\)
\(930\) 0 0
\(931\) −1.53108 + 1.11239i −0.0501791 + 0.0364573i
\(932\) 0 0
\(933\) 20.6946 15.0355i 0.677512 0.492241i
\(934\) 0 0
\(935\) −3.37978 + 5.12054i −0.110531 + 0.167460i
\(936\) 0 0
\(937\) −15.7405 48.4442i −0.514219 1.58260i −0.784699 0.619877i \(-0.787182\pi\)
0.270480 0.962726i \(-0.412818\pi\)
\(938\) 0 0
\(939\) −3.56196 + 10.9626i −0.116240 + 0.357751i
\(940\) 0 0
\(941\) −14.2795 43.9479i −0.465499 1.43266i −0.858353 0.513059i \(-0.828512\pi\)
0.392854 0.919601i \(-0.371488\pi\)
\(942\) 0 0
\(943\) 12.7044 0.413711
\(944\) 0 0
\(945\) 17.3273 6.50373i 0.563656 0.211566i
\(946\) 0 0
\(947\) 1.30639 + 0.949149i 0.0424520 + 0.0308432i 0.608809 0.793317i \(-0.291648\pi\)
−0.566357 + 0.824160i \(0.691648\pi\)
\(948\) 0 0
\(949\) 42.4307 1.37736
\(950\) 0 0
\(951\) 15.6048 0.506020
\(952\) 0 0
\(953\) 43.2550 + 31.4266i 1.40117 + 1.01801i 0.994534 + 0.104417i \(0.0332978\pi\)
0.406635 + 0.913591i \(0.366702\pi\)
\(954\) 0 0
\(955\) 11.8476 17.9498i 0.383381 0.580842i
\(956\) 0 0
\(957\) −0.778553 −0.0251670
\(958\) 0 0
\(959\) −3.35497 10.3255i −0.108338 0.333429i
\(960\) 0 0
\(961\) −4.64498 + 14.2958i −0.149838 + 0.461155i
\(962\) 0 0
\(963\) −6.17472 19.0038i −0.198978 0.612390i
\(964\) 0 0
\(965\) −24.3130 30.4853i −0.782662 0.981357i
\(966\) 0 0
\(967\) −17.5370 + 12.7414i −0.563951 + 0.409734i −0.832903 0.553419i \(-0.813323\pi\)
0.268952 + 0.963154i \(0.413323\pi\)
\(968\) 0 0
\(969\) 0.980457 0.712344i 0.0314968 0.0228838i
\(970\) 0 0
\(971\) 3.98749 + 2.89708i 0.127965 + 0.0929717i 0.649926 0.759997i \(-0.274800\pi\)
−0.521962 + 0.852969i \(0.674800\pi\)
\(972\) 0 0
\(973\) 8.33277 25.6456i 0.267136 0.822161i
\(974\) 0 0
\(975\) −20.0000 11.9476i −0.640514 0.382628i
\(976\) 0 0
\(977\) −4.38084 + 13.4828i −0.140155 + 0.431354i −0.996356 0.0852891i \(-0.972819\pi\)
0.856201 + 0.516643i \(0.172819\pi\)
\(978\) 0 0
\(979\) −1.16949 0.849688i −0.0373772 0.0271561i
\(980\) 0 0
\(981\) 25.4935 18.5221i 0.813945 0.591366i
\(982\) 0 0
\(983\) −22.4669 + 16.3232i −0.716583 + 0.520628i −0.885291 0.465038i \(-0.846041\pi\)
0.168707 + 0.985666i \(0.446041\pi\)
\(984\) 0 0
\(985\) 0.717781 + 15.9701i 0.0228704 + 0.508850i
\(986\) 0 0
\(987\) 2.58113 + 7.94389i 0.0821582 + 0.252857i
\(988\) 0 0
\(989\) 2.30448 7.09245i 0.0732781 0.225527i
\(990\) 0 0
\(991\) −10.0111 30.8109i −0.318012 0.978739i −0.974497 0.224401i \(-0.927958\pi\)
0.656485 0.754339i \(-0.272042\pi\)
\(992\) 0 0
\(993\) 3.38499 0.107419
\(994\) 0 0
\(995\) −33.9157 42.5259i −1.07520 1.34816i
\(996\) 0 0
\(997\) −23.2003 16.8560i −0.734760 0.533835i 0.156305 0.987709i \(-0.450042\pi\)
−0.891066 + 0.453874i \(0.850042\pi\)
\(998\) 0 0
\(999\) 25.2475 0.798795
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1100.2.q.b.221.8 52
25.6 even 5 inner 1100.2.q.b.881.8 yes 52
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1100.2.q.b.221.8 52 1.1 even 1 trivial
1100.2.q.b.881.8 yes 52 25.6 even 5 inner