Properties

Label 1100.3.f.f.901.6
Level $1100$
Weight $3$
Character 1100.901
Analytic conductor $29.973$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1100,3,Mod(901,1100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1100.901");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1100.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.9728290796\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 67x^{6} + 1356x^{4} + 9065x^{2} + 17275 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6}\cdot 5 \)
Twist minimal: no (minimal twist has level 220)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 901.6
Root \(-1.79638i\) of defining polynomial
Character \(\chi\) \(=\) 1100.901
Dual form 1100.3.f.f.901.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.41553 q^{3} +0.558647i q^{7} +2.66584 q^{9} +(2.82054 + 10.6322i) q^{11} +18.1072i q^{13} +32.0402i q^{17} -15.7408i q^{19} +1.90807i q^{21} -31.7468 q^{23} -21.6345 q^{27} -48.3396i q^{29} -43.3557 q^{31} +(9.63363 + 36.3147i) q^{33} -21.4366 q^{37} +61.8458i q^{39} +38.9133i q^{41} +23.3044i q^{43} +75.2975 q^{47} +48.6879 q^{49} +109.434i q^{51} +8.43533 q^{53} -53.7631i q^{57} -29.6094 q^{59} +64.1200i q^{61} +1.48926i q^{63} -18.8211 q^{67} -108.432 q^{69} +94.8085 q^{71} -0.945835i q^{73} +(-5.93967 + 1.57568i) q^{77} +73.2825i q^{79} -97.8859 q^{81} +161.659i q^{83} -165.105i q^{87} +91.5556 q^{89} -10.1155 q^{91} -148.083 q^{93} +33.1491 q^{97} +(7.51910 + 28.3438i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{3} + 28 q^{9} + 24 q^{11} - 56 q^{23} + 80 q^{27} + 20 q^{31} - 88 q^{33} - 72 q^{37} + 184 q^{47} - 244 q^{49} - 136 q^{53} - 16 q^{59} + 264 q^{67} - 56 q^{69} - 220 q^{71} - 208 q^{77} - 224 q^{81}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1100\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(551\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.41553 1.13851 0.569255 0.822161i \(-0.307232\pi\)
0.569255 + 0.822161i \(0.307232\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0.558647i 0.0798067i 0.999204 + 0.0399033i \(0.0127050\pi\)
−0.999204 + 0.0399033i \(0.987295\pi\)
\(8\) 0 0
\(9\) 2.66584 0.296204
\(10\) 0 0
\(11\) 2.82054 + 10.6322i 0.256413 + 0.966567i
\(12\) 0 0
\(13\) 18.1072i 1.39286i 0.717623 + 0.696432i \(0.245230\pi\)
−0.717623 + 0.696432i \(0.754770\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 32.0402i 1.88472i 0.334605 + 0.942359i \(0.391397\pi\)
−0.334605 + 0.942359i \(0.608603\pi\)
\(18\) 0 0
\(19\) 15.7408i 0.828462i −0.910172 0.414231i \(-0.864051\pi\)
0.910172 0.414231i \(-0.135949\pi\)
\(20\) 0 0
\(21\) 1.90807i 0.0908607i
\(22\) 0 0
\(23\) −31.7468 −1.38030 −0.690149 0.723667i \(-0.742455\pi\)
−0.690149 + 0.723667i \(0.742455\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −21.6345 −0.801278
\(28\) 0 0
\(29\) 48.3396i 1.66688i −0.552608 0.833442i \(-0.686367\pi\)
0.552608 0.833442i \(-0.313633\pi\)
\(30\) 0 0
\(31\) −43.3557 −1.39857 −0.699286 0.714842i \(-0.746498\pi\)
−0.699286 + 0.714842i \(0.746498\pi\)
\(32\) 0 0
\(33\) 9.63363 + 36.3147i 0.291928 + 1.10045i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −21.4366 −0.579367 −0.289683 0.957123i \(-0.593550\pi\)
−0.289683 + 0.957123i \(0.593550\pi\)
\(38\) 0 0
\(39\) 61.8458i 1.58579i
\(40\) 0 0
\(41\) 38.9133i 0.949106i 0.880227 + 0.474553i \(0.157390\pi\)
−0.880227 + 0.474553i \(0.842610\pi\)
\(42\) 0 0
\(43\) 23.3044i 0.541964i 0.962584 + 0.270982i \(0.0873483\pi\)
−0.962584 + 0.270982i \(0.912652\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 75.2975 1.60207 0.801037 0.598614i \(-0.204282\pi\)
0.801037 + 0.598614i \(0.204282\pi\)
\(48\) 0 0
\(49\) 48.6879 0.993631
\(50\) 0 0
\(51\) 109.434i 2.14577i
\(52\) 0 0
\(53\) 8.43533 0.159157 0.0795786 0.996829i \(-0.474643\pi\)
0.0795786 + 0.996829i \(0.474643\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 53.7631i 0.943212i
\(58\) 0 0
\(59\) −29.6094 −0.501854 −0.250927 0.968006i \(-0.580735\pi\)
−0.250927 + 0.968006i \(0.580735\pi\)
\(60\) 0 0
\(61\) 64.1200i 1.05115i 0.850748 + 0.525573i \(0.176149\pi\)
−0.850748 + 0.525573i \(0.823851\pi\)
\(62\) 0 0
\(63\) 1.48926i 0.0236391i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −18.8211 −0.280912 −0.140456 0.990087i \(-0.544857\pi\)
−0.140456 + 0.990087i \(0.544857\pi\)
\(68\) 0 0
\(69\) −108.432 −1.57148
\(70\) 0 0
\(71\) 94.8085 1.33533 0.667666 0.744461i \(-0.267294\pi\)
0.667666 + 0.744461i \(0.267294\pi\)
\(72\) 0 0
\(73\) 0.945835i 0.0129566i −0.999979 0.00647832i \(-0.997938\pi\)
0.999979 0.00647832i \(-0.00206213\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −5.93967 + 1.57568i −0.0771385 + 0.0204634i
\(78\) 0 0
\(79\) 73.2825i 0.927626i 0.885933 + 0.463813i \(0.153519\pi\)
−0.885933 + 0.463813i \(0.846481\pi\)
\(80\) 0 0
\(81\) −97.8859 −1.20847
\(82\) 0 0
\(83\) 161.659i 1.94770i 0.227192 + 0.973850i \(0.427045\pi\)
−0.227192 + 0.973850i \(0.572955\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 165.105i 1.89776i
\(88\) 0 0
\(89\) 91.5556 1.02871 0.514357 0.857576i \(-0.328031\pi\)
0.514357 + 0.857576i \(0.328031\pi\)
\(90\) 0 0
\(91\) −10.1155 −0.111160
\(92\) 0 0
\(93\) −148.083 −1.59229
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 33.1491 0.341743 0.170872 0.985293i \(-0.445342\pi\)
0.170872 + 0.985293i \(0.445342\pi\)
\(98\) 0 0
\(99\) 7.51910 + 28.3438i 0.0759505 + 0.286301i
\(100\) 0 0
\(101\) 42.0879i 0.416712i −0.978053 0.208356i \(-0.933189\pi\)
0.978053 0.208356i \(-0.0668112\pi\)
\(102\) 0 0
\(103\) 75.9577 0.737453 0.368726 0.929538i \(-0.379794\pi\)
0.368726 + 0.929538i \(0.379794\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 36.5864i 0.341929i −0.985277 0.170965i \(-0.945312\pi\)
0.985277 0.170965i \(-0.0546884\pi\)
\(108\) 0 0
\(109\) 21.7920i 0.199927i 0.994991 + 0.0999633i \(0.0318725\pi\)
−0.994991 + 0.0999633i \(0.968127\pi\)
\(110\) 0 0
\(111\) −73.2172 −0.659615
\(112\) 0 0
\(113\) 47.1444 0.417207 0.208604 0.978000i \(-0.433108\pi\)
0.208604 + 0.978000i \(0.433108\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 48.2710i 0.412572i
\(118\) 0 0
\(119\) −17.8991 −0.150413
\(120\) 0 0
\(121\) −105.089 + 59.9773i −0.868505 + 0.495680i
\(122\) 0 0
\(123\) 132.910i 1.08057i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 157.516i 1.24028i −0.784490 0.620141i \(-0.787075\pi\)
0.784490 0.620141i \(-0.212925\pi\)
\(128\) 0 0
\(129\) 79.5970i 0.617031i
\(130\) 0 0
\(131\) 106.106i 0.809966i −0.914324 0.404983i \(-0.867277\pi\)
0.914324 0.404983i \(-0.132723\pi\)
\(132\) 0 0
\(133\) 8.79353 0.0661168
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −87.9617 −0.642057 −0.321028 0.947070i \(-0.604028\pi\)
−0.321028 + 0.947070i \(0.604028\pi\)
\(138\) 0 0
\(139\) 24.4159i 0.175654i −0.996136 0.0878268i \(-0.972008\pi\)
0.996136 0.0878268i \(-0.0279922\pi\)
\(140\) 0 0
\(141\) 257.181 1.82398
\(142\) 0 0
\(143\) −192.521 + 51.0722i −1.34630 + 0.357148i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 166.295 1.13126
\(148\) 0 0
\(149\) 186.092i 1.24894i −0.781050 0.624469i \(-0.785315\pi\)
0.781050 0.624469i \(-0.214685\pi\)
\(150\) 0 0
\(151\) 5.26044i 0.0348374i 0.999848 + 0.0174187i \(0.00554482\pi\)
−0.999848 + 0.0174187i \(0.994455\pi\)
\(152\) 0 0
\(153\) 85.4140i 0.558261i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 220.052 1.40161 0.700804 0.713354i \(-0.252825\pi\)
0.700804 + 0.713354i \(0.252825\pi\)
\(158\) 0 0
\(159\) 28.8111 0.181202
\(160\) 0 0
\(161\) 17.7353i 0.110157i
\(162\) 0 0
\(163\) 11.9134 0.0730881 0.0365441 0.999332i \(-0.488365\pi\)
0.0365441 + 0.999332i \(0.488365\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 10.5984i 0.0634633i 0.999496 + 0.0317317i \(0.0101022\pi\)
−0.999496 + 0.0317317i \(0.989898\pi\)
\(168\) 0 0
\(169\) −158.872 −0.940071
\(170\) 0 0
\(171\) 41.9624i 0.245394i
\(172\) 0 0
\(173\) 181.818i 1.05097i 0.850803 + 0.525485i \(0.176116\pi\)
−0.850803 + 0.525485i \(0.823884\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −101.132 −0.571366
\(178\) 0 0
\(179\) 72.6441 0.405833 0.202916 0.979196i \(-0.434958\pi\)
0.202916 + 0.979196i \(0.434958\pi\)
\(180\) 0 0
\(181\) 325.085 1.79605 0.898024 0.439946i \(-0.145003\pi\)
0.898024 + 0.439946i \(0.145003\pi\)
\(182\) 0 0
\(183\) 219.004i 1.19674i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −340.659 + 90.3706i −1.82171 + 0.483265i
\(188\) 0 0
\(189\) 12.0860i 0.0639473i
\(190\) 0 0
\(191\) −199.153 −1.04268 −0.521342 0.853348i \(-0.674568\pi\)
−0.521342 + 0.853348i \(0.674568\pi\)
\(192\) 0 0
\(193\) 284.097i 1.47201i −0.676978 0.736003i \(-0.736711\pi\)
0.676978 0.736003i \(-0.263289\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 230.008i 1.16755i 0.811914 + 0.583777i \(0.198426\pi\)
−0.811914 + 0.583777i \(0.801574\pi\)
\(198\) 0 0
\(199\) −123.328 −0.619740 −0.309870 0.950779i \(-0.600286\pi\)
−0.309870 + 0.950779i \(0.600286\pi\)
\(200\) 0 0
\(201\) −64.2841 −0.319822
\(202\) 0 0
\(203\) 27.0048 0.133028
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −84.6320 −0.408850
\(208\) 0 0
\(209\) 167.360 44.3975i 0.800764 0.212428i
\(210\) 0 0
\(211\) 214.886i 1.01842i 0.860643 + 0.509209i \(0.170062\pi\)
−0.860643 + 0.509209i \(0.829938\pi\)
\(212\) 0 0
\(213\) 323.821 1.52029
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 24.2205i 0.111615i
\(218\) 0 0
\(219\) 3.23053i 0.0147513i
\(220\) 0 0
\(221\) −580.159 −2.62516
\(222\) 0 0
\(223\) −59.8548 −0.268407 −0.134204 0.990954i \(-0.542848\pi\)
−0.134204 + 0.990954i \(0.542848\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 203.787i 0.897740i −0.893597 0.448870i \(-0.851827\pi\)
0.893597 0.448870i \(-0.148173\pi\)
\(228\) 0 0
\(229\) 265.375 1.15884 0.579421 0.815028i \(-0.303279\pi\)
0.579421 + 0.815028i \(0.303279\pi\)
\(230\) 0 0
\(231\) −20.2871 + 5.38180i −0.0878230 + 0.0232978i
\(232\) 0 0
\(233\) 313.018i 1.34343i −0.740812 0.671713i \(-0.765559\pi\)
0.740812 0.671713i \(-0.234441\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 250.298i 1.05611i
\(238\) 0 0
\(239\) 159.796i 0.668604i −0.942466 0.334302i \(-0.891499\pi\)
0.942466 0.334302i \(-0.108501\pi\)
\(240\) 0 0
\(241\) 467.884i 1.94143i 0.240242 + 0.970713i \(0.422773\pi\)
−0.240242 + 0.970713i \(0.577227\pi\)
\(242\) 0 0
\(243\) −139.621 −0.574574
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 285.022 1.15393
\(248\) 0 0
\(249\) 552.151i 2.21748i
\(250\) 0 0
\(251\) 312.122 1.24351 0.621757 0.783210i \(-0.286419\pi\)
0.621757 + 0.783210i \(0.286419\pi\)
\(252\) 0 0
\(253\) −89.5432 337.540i −0.353926 1.33415i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −139.735 −0.543714 −0.271857 0.962338i \(-0.587638\pi\)
−0.271857 + 0.962338i \(0.587638\pi\)
\(258\) 0 0
\(259\) 11.9755i 0.0462373i
\(260\) 0 0
\(261\) 128.866i 0.493738i
\(262\) 0 0
\(263\) 181.115i 0.688651i −0.938850 0.344326i \(-0.888108\pi\)
0.938850 0.344326i \(-0.111892\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 312.711 1.17120
\(268\) 0 0
\(269\) −96.4486 −0.358545 −0.179273 0.983799i \(-0.557374\pi\)
−0.179273 + 0.983799i \(0.557374\pi\)
\(270\) 0 0
\(271\) 296.758i 1.09505i −0.836790 0.547525i \(-0.815570\pi\)
0.836790 0.547525i \(-0.184430\pi\)
\(272\) 0 0
\(273\) −34.5499 −0.126557
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 165.044i 0.595826i 0.954593 + 0.297913i \(0.0962905\pi\)
−0.954593 + 0.297913i \(0.903709\pi\)
\(278\) 0 0
\(279\) −115.579 −0.414263
\(280\) 0 0
\(281\) 229.230i 0.815765i 0.913034 + 0.407883i \(0.133733\pi\)
−0.913034 + 0.407883i \(0.866267\pi\)
\(282\) 0 0
\(283\) 133.408i 0.471407i −0.971825 0.235703i \(-0.924261\pi\)
0.971825 0.235703i \(-0.0757394\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −21.7388 −0.0757449
\(288\) 0 0
\(289\) −737.574 −2.55216
\(290\) 0 0
\(291\) 113.222 0.389078
\(292\) 0 0
\(293\) 141.969i 0.484535i −0.970209 0.242268i \(-0.922109\pi\)
0.970209 0.242268i \(-0.0778912\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −61.0210 230.023i −0.205458 0.774489i
\(298\) 0 0
\(299\) 574.848i 1.92257i
\(300\) 0 0
\(301\) −13.0189 −0.0432523
\(302\) 0 0
\(303\) 143.752i 0.474430i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 405.167i 1.31976i 0.751370 + 0.659881i \(0.229393\pi\)
−0.751370 + 0.659881i \(0.770607\pi\)
\(308\) 0 0
\(309\) 259.436 0.839597
\(310\) 0 0
\(311\) 518.227 1.66633 0.833163 0.553028i \(-0.186528\pi\)
0.833163 + 0.553028i \(0.186528\pi\)
\(312\) 0 0
\(313\) 177.327 0.566539 0.283270 0.959040i \(-0.408581\pi\)
0.283270 + 0.959040i \(0.408581\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −509.414 −1.60698 −0.803492 0.595315i \(-0.797027\pi\)
−0.803492 + 0.595315i \(0.797027\pi\)
\(318\) 0 0
\(319\) 513.958 136.344i 1.61115 0.427410i
\(320\) 0 0
\(321\) 124.962i 0.389290i
\(322\) 0 0
\(323\) 504.337 1.56142
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 74.4312i 0.227618i
\(328\) 0 0
\(329\) 42.0647i 0.127856i
\(330\) 0 0
\(331\) −360.510 −1.08915 −0.544577 0.838711i \(-0.683310\pi\)
−0.544577 + 0.838711i \(0.683310\pi\)
\(332\) 0 0
\(333\) −57.1464 −0.171611
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 419.994i 1.24627i 0.782113 + 0.623136i \(0.214142\pi\)
−0.782113 + 0.623136i \(0.785858\pi\)
\(338\) 0 0
\(339\) 161.023 0.474995
\(340\) 0 0
\(341\) −122.286 460.968i −0.358611 1.35181i
\(342\) 0 0
\(343\) 54.5730i 0.159105i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 278.399i 0.802303i −0.916012 0.401151i \(-0.868610\pi\)
0.916012 0.401151i \(-0.131390\pi\)
\(348\) 0 0
\(349\) 426.489i 1.22203i 0.791618 + 0.611016i \(0.209239\pi\)
−0.791618 + 0.611016i \(0.790761\pi\)
\(350\) 0 0
\(351\) 391.741i 1.11607i
\(352\) 0 0
\(353\) 114.688 0.324894 0.162447 0.986717i \(-0.448061\pi\)
0.162447 + 0.986717i \(0.448061\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −61.1351 −0.171247
\(358\) 0 0
\(359\) 545.543i 1.51962i −0.650147 0.759809i \(-0.725293\pi\)
0.650147 0.759809i \(-0.274707\pi\)
\(360\) 0 0
\(361\) 113.228 0.313651
\(362\) 0 0
\(363\) −358.935 + 204.854i −0.988802 + 0.564337i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −265.619 −0.723759 −0.361879 0.932225i \(-0.617865\pi\)
−0.361879 + 0.932225i \(0.617865\pi\)
\(368\) 0 0
\(369\) 103.737i 0.281129i
\(370\) 0 0
\(371\) 4.71237i 0.0127018i
\(372\) 0 0
\(373\) 202.250i 0.542225i −0.962548 0.271113i \(-0.912608\pi\)
0.962548 0.271113i \(-0.0873916\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 875.297 2.32174
\(378\) 0 0
\(379\) 114.650 0.302506 0.151253 0.988495i \(-0.451669\pi\)
0.151253 + 0.988495i \(0.451669\pi\)
\(380\) 0 0
\(381\) 538.000i 1.41207i
\(382\) 0 0
\(383\) 373.418 0.974982 0.487491 0.873128i \(-0.337912\pi\)
0.487491 + 0.873128i \(0.337912\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 62.1259i 0.160532i
\(388\) 0 0
\(389\) 241.139 0.619896 0.309948 0.950754i \(-0.399688\pi\)
0.309948 + 0.950754i \(0.399688\pi\)
\(390\) 0 0
\(391\) 1017.18i 2.60147i
\(392\) 0 0
\(393\) 362.406i 0.922154i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −467.321 −1.17713 −0.588566 0.808449i \(-0.700307\pi\)
−0.588566 + 0.808449i \(0.700307\pi\)
\(398\) 0 0
\(399\) 30.0346 0.0752746
\(400\) 0 0
\(401\) 680.945 1.69812 0.849059 0.528298i \(-0.177170\pi\)
0.849059 + 0.528298i \(0.177170\pi\)
\(402\) 0 0
\(403\) 785.052i 1.94802i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −60.4627 227.919i −0.148557 0.559997i
\(408\) 0 0
\(409\) 599.500i 1.46577i 0.680353 + 0.732885i \(0.261827\pi\)
−0.680353 + 0.732885i \(0.738173\pi\)
\(410\) 0 0
\(411\) −300.436 −0.730988
\(412\) 0 0
\(413\) 16.5412i 0.0400513i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 83.3931i 0.199983i
\(418\) 0 0
\(419\) −256.808 −0.612906 −0.306453 0.951886i \(-0.599142\pi\)
−0.306453 + 0.951886i \(0.599142\pi\)
\(420\) 0 0
\(421\) 23.4654 0.0557373 0.0278686 0.999612i \(-0.491128\pi\)
0.0278686 + 0.999612i \(0.491128\pi\)
\(422\) 0 0
\(423\) 200.731 0.474541
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −35.8204 −0.0838885
\(428\) 0 0
\(429\) −657.559 + 174.438i −1.53277 + 0.406616i
\(430\) 0 0
\(431\) 228.370i 0.529860i −0.964268 0.264930i \(-0.914651\pi\)
0.964268 0.264930i \(-0.0853488\pi\)
\(432\) 0 0
\(433\) −564.969 −1.30478 −0.652389 0.757884i \(-0.726233\pi\)
−0.652389 + 0.757884i \(0.726233\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 499.720i 1.14352i
\(438\) 0 0
\(439\) 500.617i 1.14036i −0.821521 0.570178i \(-0.806874\pi\)
0.821521 0.570178i \(-0.193126\pi\)
\(440\) 0 0
\(441\) 129.794 0.294318
\(442\) 0 0
\(443\) −365.948 −0.826069 −0.413034 0.910715i \(-0.635531\pi\)
−0.413034 + 0.910715i \(0.635531\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 635.602i 1.42193i
\(448\) 0 0
\(449\) −316.528 −0.704963 −0.352481 0.935819i \(-0.614662\pi\)
−0.352481 + 0.935819i \(0.614662\pi\)
\(450\) 0 0
\(451\) −413.736 + 109.757i −0.917375 + 0.243363i
\(452\) 0 0
\(453\) 17.9672i 0.0396627i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 291.964i 0.638870i 0.947608 + 0.319435i \(0.103493\pi\)
−0.947608 + 0.319435i \(0.896507\pi\)
\(458\) 0 0
\(459\) 693.174i 1.51018i
\(460\) 0 0
\(461\) 431.260i 0.935489i −0.883864 0.467744i \(-0.845067\pi\)
0.883864 0.467744i \(-0.154933\pi\)
\(462\) 0 0
\(463\) −264.022 −0.570243 −0.285121 0.958491i \(-0.592034\pi\)
−0.285121 + 0.958491i \(0.592034\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 477.602 1.02270 0.511351 0.859372i \(-0.329145\pi\)
0.511351 + 0.859372i \(0.329145\pi\)
\(468\) 0 0
\(469\) 10.5144i 0.0224187i
\(470\) 0 0
\(471\) 751.595 1.59574
\(472\) 0 0
\(473\) −247.778 + 65.7311i −0.523844 + 0.138966i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 22.4872 0.0471430
\(478\) 0 0
\(479\) 279.214i 0.582909i 0.956585 + 0.291455i \(0.0941393\pi\)
−0.956585 + 0.291455i \(0.905861\pi\)
\(480\) 0 0
\(481\) 388.157i 0.806979i
\(482\) 0 0
\(483\) 60.5753i 0.125415i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 279.655 0.574241 0.287121 0.957894i \(-0.407302\pi\)
0.287121 + 0.957894i \(0.407302\pi\)
\(488\) 0 0
\(489\) 40.6904 0.0832115
\(490\) 0 0
\(491\) 442.142i 0.900493i 0.892904 + 0.450246i \(0.148664\pi\)
−0.892904 + 0.450246i \(0.851336\pi\)
\(492\) 0 0
\(493\) 1548.81 3.14160
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 52.9645i 0.106568i
\(498\) 0 0
\(499\) 430.853 0.863432 0.431716 0.902010i \(-0.357908\pi\)
0.431716 + 0.902010i \(0.357908\pi\)
\(500\) 0 0
\(501\) 36.1991i 0.0722536i
\(502\) 0 0
\(503\) 293.745i 0.583985i −0.956421 0.291993i \(-0.905682\pi\)
0.956421 0.291993i \(-0.0943183\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −542.632 −1.07028
\(508\) 0 0
\(509\) 276.608 0.543434 0.271717 0.962377i \(-0.412408\pi\)
0.271717 + 0.962377i \(0.412408\pi\)
\(510\) 0 0
\(511\) 0.528388 0.00103403
\(512\) 0 0
\(513\) 340.544i 0.663828i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 212.380 + 800.581i 0.410792 + 1.54851i
\(518\) 0 0
\(519\) 621.004i 1.19654i
\(520\) 0 0
\(521\) 571.383 1.09670 0.548352 0.836248i \(-0.315255\pi\)
0.548352 + 0.836248i \(0.315255\pi\)
\(522\) 0 0
\(523\) 255.631i 0.488778i 0.969677 + 0.244389i \(0.0785874\pi\)
−0.969677 + 0.244389i \(0.921413\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1389.13i 2.63591i
\(528\) 0 0
\(529\) 478.862 0.905222
\(530\) 0 0
\(531\) −78.9339 −0.148651
\(532\) 0 0
\(533\) −704.613 −1.32198
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 248.118 0.462045
\(538\) 0 0
\(539\) 137.326 + 517.662i 0.254780 + 0.960411i
\(540\) 0 0
\(541\) 214.227i 0.395983i −0.980204 0.197991i \(-0.936558\pi\)
0.980204 0.197991i \(-0.0634418\pi\)
\(542\) 0 0
\(543\) 1110.34 2.04482
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 552.014i 1.00917i −0.863363 0.504584i \(-0.831646\pi\)
0.863363 0.504584i \(-0.168354\pi\)
\(548\) 0 0
\(549\) 170.933i 0.311354i
\(550\) 0 0
\(551\) −760.903 −1.38095
\(552\) 0 0
\(553\) −40.9390 −0.0740308
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 159.593i 0.286523i −0.989685 0.143261i \(-0.954241\pi\)
0.989685 0.143261i \(-0.0457590\pi\)
\(558\) 0 0
\(559\) −421.979 −0.754882
\(560\) 0 0
\(561\) −1163.53 + 308.663i −2.07403 + 0.550202i
\(562\) 0 0
\(563\) 603.391i 1.07174i −0.844300 0.535871i \(-0.819983\pi\)
0.844300 0.535871i \(-0.180017\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 54.6836i 0.0964437i
\(568\) 0 0
\(569\) 228.804i 0.402115i 0.979579 + 0.201058i \(0.0644379\pi\)
−0.979579 + 0.201058i \(0.935562\pi\)
\(570\) 0 0
\(571\) 682.868i 1.19592i 0.801527 + 0.597958i \(0.204021\pi\)
−0.801527 + 0.597958i \(0.795979\pi\)
\(572\) 0 0
\(573\) −680.212 −1.18711
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −486.375 −0.842937 −0.421468 0.906843i \(-0.638485\pi\)
−0.421468 + 0.906843i \(0.638485\pi\)
\(578\) 0 0
\(579\) 970.342i 1.67589i
\(580\) 0 0
\(581\) −90.3103 −0.155439
\(582\) 0 0
\(583\) 23.7922 + 89.6864i 0.0408099 + 0.153836i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −411.640 −0.701260 −0.350630 0.936514i \(-0.614033\pi\)
−0.350630 + 0.936514i \(0.614033\pi\)
\(588\) 0 0
\(589\) 682.452i 1.15866i
\(590\) 0 0
\(591\) 785.599i 1.32927i
\(592\) 0 0
\(593\) 495.443i 0.835486i 0.908565 + 0.417743i \(0.137179\pi\)
−0.908565 + 0.417743i \(0.862821\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −421.231 −0.705580
\(598\) 0 0
\(599\) −482.567 −0.805621 −0.402811 0.915283i \(-0.631967\pi\)
−0.402811 + 0.915283i \(0.631967\pi\)
\(600\) 0 0
\(601\) 1171.94i 1.94999i 0.222237 + 0.974993i \(0.428664\pi\)
−0.222237 + 0.974993i \(0.571336\pi\)
\(602\) 0 0
\(603\) −50.1741 −0.0832075
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 22.6334i 0.0372873i −0.999826 0.0186437i \(-0.994065\pi\)
0.999826 0.0186437i \(-0.00593481\pi\)
\(608\) 0 0
\(609\) 92.2355 0.151454
\(610\) 0 0
\(611\) 1363.43i 2.23147i
\(612\) 0 0
\(613\) 257.299i 0.419738i −0.977730 0.209869i \(-0.932696\pi\)
0.977730 0.209869i \(-0.0673037\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 250.845 0.406555 0.203278 0.979121i \(-0.434841\pi\)
0.203278 + 0.979121i \(0.434841\pi\)
\(618\) 0 0
\(619\) −454.630 −0.734459 −0.367230 0.930130i \(-0.619694\pi\)
−0.367230 + 0.930130i \(0.619694\pi\)
\(620\) 0 0
\(621\) 686.828 1.10600
\(622\) 0 0
\(623\) 51.1472i 0.0820982i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 571.622 151.641i 0.911678 0.241851i
\(628\) 0 0
\(629\) 686.832i 1.09194i
\(630\) 0 0
\(631\) 1097.79 1.73977 0.869883 0.493257i \(-0.164194\pi\)
0.869883 + 0.493257i \(0.164194\pi\)
\(632\) 0 0
\(633\) 733.950i 1.15948i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 881.604i 1.38399i
\(638\) 0 0
\(639\) 252.744 0.395531
\(640\) 0 0
\(641\) −931.874 −1.45378 −0.726891 0.686753i \(-0.759035\pi\)
−0.726891 + 0.686753i \(0.759035\pi\)
\(642\) 0 0
\(643\) 462.937 0.719963 0.359982 0.932959i \(-0.382783\pi\)
0.359982 + 0.932959i \(0.382783\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 337.698 0.521944 0.260972 0.965346i \(-0.415957\pi\)
0.260972 + 0.965346i \(0.415957\pi\)
\(648\) 0 0
\(649\) −83.5144 314.814i −0.128682 0.485076i
\(650\) 0 0
\(651\) 82.7259i 0.127075i
\(652\) 0 0
\(653\) −237.239 −0.363307 −0.181653 0.983363i \(-0.558145\pi\)
−0.181653 + 0.983363i \(0.558145\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 2.52144i 0.00383782i
\(658\) 0 0
\(659\) 482.840i 0.732686i 0.930480 + 0.366343i \(0.119390\pi\)
−0.930480 + 0.366343i \(0.880610\pi\)
\(660\) 0 0
\(661\) −649.514 −0.982624 −0.491312 0.870984i \(-0.663483\pi\)
−0.491312 + 0.870984i \(0.663483\pi\)
\(662\) 0 0
\(663\) −1981.55 −2.98876
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1534.63i 2.30079i
\(668\) 0 0
\(669\) −204.436 −0.305584
\(670\) 0 0
\(671\) −681.739 + 180.853i −1.01600 + 0.269527i
\(672\) 0 0
\(673\) 1077.34i 1.60080i 0.599467 + 0.800400i \(0.295379\pi\)
−0.599467 + 0.800400i \(0.704621\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 82.8635i 0.122398i 0.998126 + 0.0611990i \(0.0194924\pi\)
−0.998126 + 0.0611990i \(0.980508\pi\)
\(678\) 0 0
\(679\) 18.5186i 0.0272734i
\(680\) 0 0
\(681\) 696.041i 1.02209i
\(682\) 0 0
\(683\) −388.525 −0.568851 −0.284426 0.958698i \(-0.591803\pi\)
−0.284426 + 0.958698i \(0.591803\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 906.396 1.31935
\(688\) 0 0
\(689\) 152.740i 0.221684i
\(690\) 0 0
\(691\) 764.841 1.10686 0.553430 0.832896i \(-0.313319\pi\)
0.553430 + 0.832896i \(0.313319\pi\)
\(692\) 0 0
\(693\) −15.8342 + 4.20052i −0.0228488 + 0.00606136i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −1246.79 −1.78880
\(698\) 0 0
\(699\) 1069.12i 1.52950i
\(700\) 0 0
\(701\) 229.490i 0.327375i 0.986512 + 0.163688i \(0.0523389\pi\)
−0.986512 + 0.163688i \(0.947661\pi\)
\(702\) 0 0
\(703\) 337.428i 0.479983i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 23.5122 0.0332564
\(708\) 0 0
\(709\) −197.960 −0.279210 −0.139605 0.990207i \(-0.544583\pi\)
−0.139605 + 0.990207i \(0.544583\pi\)
\(710\) 0 0
\(711\) 195.359i 0.274767i
\(712\) 0 0
\(713\) 1376.41 1.93045
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 545.789i 0.761213i
\(718\) 0 0
\(719\) 955.392 1.32878 0.664390 0.747386i \(-0.268692\pi\)
0.664390 + 0.747386i \(0.268692\pi\)
\(720\) 0 0
\(721\) 42.4335i 0.0588537i
\(722\) 0 0
\(723\) 1598.07i 2.21033i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −149.231 −0.205270 −0.102635 0.994719i \(-0.532727\pi\)
−0.102635 + 0.994719i \(0.532727\pi\)
\(728\) 0 0
\(729\) 404.092 0.554310
\(730\) 0 0
\(731\) −746.679 −1.02145
\(732\) 0 0
\(733\) 884.031i 1.20604i 0.797724 + 0.603022i \(0.206037\pi\)
−0.797724 + 0.603022i \(0.793963\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −53.0857 200.111i −0.0720295 0.271521i
\(738\) 0 0
\(739\) 185.448i 0.250944i −0.992097 0.125472i \(-0.959955\pi\)
0.992097 0.125472i \(-0.0400445\pi\)
\(740\) 0 0
\(741\) 973.501 1.31377
\(742\) 0 0
\(743\) 114.936i 0.154691i 0.997004 + 0.0773457i \(0.0246445\pi\)
−0.997004 + 0.0773457i \(0.975355\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 430.957i 0.576917i
\(748\) 0 0
\(749\) 20.4389 0.0272882
\(750\) 0 0
\(751\) −440.004 −0.585891 −0.292945 0.956129i \(-0.594635\pi\)
−0.292945 + 0.956129i \(0.594635\pi\)
\(752\) 0 0
\(753\) 1066.06 1.41575
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 434.602 0.574112 0.287056 0.957914i \(-0.407323\pi\)
0.287056 + 0.957914i \(0.407323\pi\)
\(758\) 0 0
\(759\) −305.837 1152.88i −0.402948 1.51894i
\(760\) 0 0
\(761\) 1172.82i 1.54116i 0.637346 + 0.770578i \(0.280032\pi\)
−0.637346 + 0.770578i \(0.719968\pi\)
\(762\) 0 0
\(763\) −12.1740 −0.0159555
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 536.144i 0.699015i
\(768\) 0 0
\(769\) 947.915i 1.23266i 0.787488 + 0.616330i \(0.211381\pi\)
−0.787488 + 0.616330i \(0.788619\pi\)
\(770\) 0 0
\(771\) −477.268 −0.619024
\(772\) 0 0
\(773\) −1281.52 −1.65785 −0.828925 0.559359i \(-0.811047\pi\)
−0.828925 + 0.559359i \(0.811047\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 40.9026i 0.0526416i
\(778\) 0 0
\(779\) 612.526 0.786298
\(780\) 0 0
\(781\) 267.411 + 1008.03i 0.342396 + 1.29069i
\(782\) 0 0
\(783\) 1045.80i 1.33564i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 707.698i 0.899235i 0.893221 + 0.449617i \(0.148440\pi\)
−0.893221 + 0.449617i \(0.851560\pi\)
\(788\) 0 0
\(789\) 618.604i 0.784036i
\(790\) 0 0
\(791\) 26.3371i 0.0332959i
\(792\) 0 0
\(793\) −1161.04 −1.46411
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −241.596 −0.303132 −0.151566 0.988447i \(-0.548432\pi\)
−0.151566 + 0.988447i \(0.548432\pi\)
\(798\) 0 0
\(799\) 2412.55i 3.01946i
\(800\) 0 0
\(801\) 244.072 0.304710
\(802\) 0 0
\(803\) 10.0563 2.66777i 0.0125235 0.00332225i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −329.423 −0.408207
\(808\) 0 0
\(809\) 1063.62i 1.31473i −0.753571 0.657366i \(-0.771670\pi\)
0.753571 0.657366i \(-0.228330\pi\)
\(810\) 0 0
\(811\) 976.484i 1.20405i −0.798477 0.602025i \(-0.794361\pi\)
0.798477 0.602025i \(-0.205639\pi\)
\(812\) 0 0
\(813\) 1013.59i 1.24672i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 366.830 0.448996
\(818\) 0 0
\(819\) −26.9664 −0.0329260
\(820\) 0 0
\(821\) 189.653i 0.231003i −0.993307 0.115501i \(-0.963153\pi\)
0.993307 0.115501i \(-0.0368475\pi\)
\(822\) 0 0
\(823\) 155.966 0.189510 0.0947548 0.995501i \(-0.469793\pi\)
0.0947548 + 0.995501i \(0.469793\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1612.24i 1.94950i −0.223292 0.974752i \(-0.571680\pi\)
0.223292 0.974752i \(-0.428320\pi\)
\(828\) 0 0
\(829\) −555.833 −0.670486 −0.335243 0.942132i \(-0.608818\pi\)
−0.335243 + 0.942132i \(0.608818\pi\)
\(830\) 0 0
\(831\) 563.712i 0.678354i
\(832\) 0 0
\(833\) 1559.97i 1.87271i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 937.980 1.12064
\(838\) 0 0
\(839\) 622.115 0.741496 0.370748 0.928733i \(-0.379101\pi\)
0.370748 + 0.928733i \(0.379101\pi\)
\(840\) 0 0
\(841\) −1495.72 −1.77850
\(842\) 0 0
\(843\) 782.942i 0.928757i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −33.5061 58.7077i −0.0395586 0.0693125i
\(848\) 0 0
\(849\) 455.659i 0.536701i
\(850\) 0 0
\(851\) 680.543 0.799698
\(852\) 0 0
\(853\) 1205.37i 1.41309i −0.707668 0.706545i \(-0.750253\pi\)
0.707668 0.706545i \(-0.249747\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 884.739i 1.03237i −0.856478 0.516184i \(-0.827352\pi\)
0.856478 0.516184i \(-0.172648\pi\)
\(858\) 0 0
\(859\) −1362.42 −1.58605 −0.793024 0.609191i \(-0.791494\pi\)
−0.793024 + 0.609191i \(0.791494\pi\)
\(860\) 0 0
\(861\) −74.2495 −0.0862364
\(862\) 0 0
\(863\) 1254.23 1.45333 0.726667 0.686990i \(-0.241068\pi\)
0.726667 + 0.686990i \(0.241068\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −2519.20 −2.90566
\(868\) 0 0
\(869\) −779.157 + 206.696i −0.896613 + 0.237855i
\(870\) 0 0
\(871\) 340.799i 0.391273i
\(872\) 0 0
\(873\) 88.3701 0.101226
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 86.1504i 0.0982331i −0.998793 0.0491165i \(-0.984359\pi\)
0.998793 0.0491165i \(-0.0156406\pi\)
\(878\) 0 0
\(879\) 484.899i 0.551648i
\(880\) 0 0
\(881\) 1011.19 1.14778 0.573888 0.818934i \(-0.305434\pi\)
0.573888 + 0.818934i \(0.305434\pi\)
\(882\) 0 0
\(883\) −442.707 −0.501367 −0.250683 0.968069i \(-0.580655\pi\)
−0.250683 + 0.968069i \(0.580655\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 706.419i 0.796414i −0.917296 0.398207i \(-0.869633\pi\)
0.917296 0.398207i \(-0.130367\pi\)
\(888\) 0 0
\(889\) 87.9957 0.0989828
\(890\) 0 0
\(891\) −276.091 1040.75i −0.309866 1.16807i
\(892\) 0 0
\(893\) 1185.24i 1.32726i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 1963.41i 2.18886i
\(898\) 0 0
\(899\) 2095.80i 2.33126i
\(900\) 0 0
\(901\) 270.270i 0.299966i
\(902\) 0 0
\(903\) −44.4666 −0.0492432
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 963.841 1.06267 0.531335 0.847162i \(-0.321691\pi\)
0.531335 + 0.847162i \(0.321691\pi\)
\(908\) 0 0
\(909\) 112.199i 0.123432i
\(910\) 0 0
\(911\) 859.938 0.943949 0.471975 0.881612i \(-0.343541\pi\)
0.471975 + 0.881612i \(0.343541\pi\)
\(912\) 0 0
\(913\) −1718.80 + 455.966i −1.88258 + 0.499415i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 59.2755 0.0646407
\(918\) 0 0
\(919\) 884.874i 0.962866i 0.876483 + 0.481433i \(0.159884\pi\)
−0.876483 + 0.481433i \(0.840116\pi\)
\(920\) 0 0
\(921\) 1383.86i 1.50256i
\(922\) 0 0
\(923\) 1716.72i 1.85994i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 202.491 0.218437
\(928\) 0 0
\(929\) −537.098 −0.578146 −0.289073 0.957307i \(-0.593347\pi\)
−0.289073 + 0.957307i \(0.593347\pi\)
\(930\) 0 0
\(931\) 766.385i 0.823185i
\(932\) 0 0
\(933\) 1770.02 1.89713
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1151.99i 1.22945i 0.788742 + 0.614724i \(0.210733\pi\)
−0.788742 + 0.614724i \(0.789267\pi\)
\(938\) 0 0
\(939\) 605.665 0.645010
\(940\) 0 0
\(941\) 1358.32i 1.44349i −0.692161 0.721743i \(-0.743341\pi\)
0.692161 0.721743i \(-0.256659\pi\)
\(942\) 0 0
\(943\) 1235.38i 1.31005i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1834.97 1.93767 0.968834 0.247710i \(-0.0796781\pi\)
0.968834 + 0.247710i \(0.0796781\pi\)
\(948\) 0 0
\(949\) 17.1265 0.0180469
\(950\) 0 0
\(951\) −1739.92 −1.82957
\(952\) 0 0
\(953\) 249.548i 0.261856i −0.991392 0.130928i \(-0.958204\pi\)
0.991392 0.130928i \(-0.0417956\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 1755.44 465.686i 1.83432 0.486610i
\(958\) 0 0
\(959\) 49.1395i 0.0512404i
\(960\) 0 0
\(961\) 918.718 0.956002
\(962\) 0 0
\(963\) 97.5336i 0.101281i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 903.841i 0.934686i 0.884076 + 0.467343i \(0.154789\pi\)
−0.884076 + 0.467343i \(0.845211\pi\)
\(968\) 0 0
\(969\) 1722.58 1.77769
\(970\) 0 0
\(971\) −500.888 −0.515847 −0.257924 0.966165i \(-0.583038\pi\)
−0.257924 + 0.966165i \(0.583038\pi\)
\(972\) 0 0
\(973\) 13.6398 0.0140183
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 549.099 0.562026 0.281013 0.959704i \(-0.409330\pi\)
0.281013 + 0.959704i \(0.409330\pi\)
\(978\) 0 0
\(979\) 258.236 + 973.441i 0.263775 + 0.994322i
\(980\) 0 0
\(981\) 58.0940i 0.0592191i
\(982\) 0 0
\(983\) 245.607 0.249855 0.124927 0.992166i \(-0.460130\pi\)
0.124927 + 0.992166i \(0.460130\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 143.673i 0.145566i
\(988\) 0 0
\(989\) 739.842i 0.748071i
\(990\) 0 0
\(991\) 1154.02 1.16450 0.582251 0.813009i \(-0.302172\pi\)
0.582251 + 0.813009i \(0.302172\pi\)
\(992\) 0 0
\(993\) −1231.33 −1.24001
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1220.05i 1.22372i −0.790966 0.611861i \(-0.790421\pi\)
0.790966 0.611861i \(-0.209579\pi\)
\(998\) 0 0
\(999\) 463.770 0.464234
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1100.3.f.f.901.6 8
5.2 odd 4 1100.3.e.b.549.5 16
5.3 odd 4 1100.3.e.b.549.12 16
5.4 even 2 220.3.f.a.21.3 8
11.10 odd 2 inner 1100.3.f.f.901.5 8
15.14 odd 2 1980.3.b.a.901.2 8
20.19 odd 2 880.3.j.b.241.6 8
55.32 even 4 1100.3.e.b.549.6 16
55.43 even 4 1100.3.e.b.549.11 16
55.54 odd 2 220.3.f.a.21.4 yes 8
165.164 even 2 1980.3.b.a.901.3 8
220.219 even 2 880.3.j.b.241.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.3.f.a.21.3 8 5.4 even 2
220.3.f.a.21.4 yes 8 55.54 odd 2
880.3.j.b.241.5 8 220.219 even 2
880.3.j.b.241.6 8 20.19 odd 2
1100.3.e.b.549.5 16 5.2 odd 4
1100.3.e.b.549.6 16 55.32 even 4
1100.3.e.b.549.11 16 55.43 even 4
1100.3.e.b.549.12 16 5.3 odd 4
1100.3.f.f.901.5 8 11.10 odd 2 inner
1100.3.f.f.901.6 8 1.1 even 1 trivial
1980.3.b.a.901.2 8 15.14 odd 2
1980.3.b.a.901.3 8 165.164 even 2