Properties

Label 1100.3.f.f.901.8
Level $1100$
Weight $3$
Character 1100.901
Analytic conductor $29.973$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1100,3,Mod(901,1100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1100.901");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1100.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.9728290796\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 67x^{6} + 1356x^{4} + 9065x^{2} + 17275 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6}\cdot 5 \)
Twist minimal: no (minimal twist has level 220)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 901.8
Root \(-2.68549i\) of defining polynomial
Character \(\chi\) \(=\) 1100.901
Dual form 1100.3.f.f.901.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.94892 q^{3} +13.1585i q^{7} +15.4918 q^{9} +(-3.18499 + 10.5288i) q^{11} -14.6396i q^{13} -9.90801i q^{17} +11.5333i q^{19} +65.1206i q^{21} +14.6044 q^{23} +32.1276 q^{27} +8.28275i q^{29} +53.2285 q^{31} +(-15.7623 + 52.1063i) q^{33} -41.1146 q^{37} -72.4502i q^{39} +74.6449i q^{41} +30.4377i q^{43} -0.697244 q^{47} -124.147 q^{49} -49.0340i q^{51} -17.0571 q^{53} +57.0773i q^{57} -6.29242 q^{59} +50.6864i q^{61} +203.850i q^{63} +81.8378 q^{67} +72.2760 q^{69} -62.4365 q^{71} -11.5551i q^{73} +(-138.544 - 41.9098i) q^{77} +79.2397i q^{79} +19.5705 q^{81} -81.8105i q^{83} +40.9907i q^{87} +136.935 q^{89} +192.636 q^{91} +263.424 q^{93} +80.2686 q^{97} +(-49.3414 + 163.111i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{3} + 28 q^{9} + 24 q^{11} - 56 q^{23} + 80 q^{27} + 20 q^{31} - 88 q^{33} - 72 q^{37} + 184 q^{47} - 244 q^{49} - 136 q^{53} - 16 q^{59} + 264 q^{67} - 56 q^{69} - 220 q^{71} - 208 q^{77} - 224 q^{81}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1100\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(551\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.94892 1.64964 0.824820 0.565395i \(-0.191276\pi\)
0.824820 + 0.565395i \(0.191276\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 13.1585i 1.87979i 0.341462 + 0.939896i \(0.389078\pi\)
−0.341462 + 0.939896i \(0.610922\pi\)
\(8\) 0 0
\(9\) 15.4918 1.72132
\(10\) 0 0
\(11\) −3.18499 + 10.5288i −0.289545 + 0.957165i
\(12\) 0 0
\(13\) 14.6396i 1.12612i −0.826415 0.563061i \(-0.809624\pi\)
0.826415 0.563061i \(-0.190376\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 9.90801i 0.582824i −0.956598 0.291412i \(-0.905875\pi\)
0.956598 0.291412i \(-0.0941251\pi\)
\(18\) 0 0
\(19\) 11.5333i 0.607015i 0.952829 + 0.303507i \(0.0981577\pi\)
−0.952829 + 0.303507i \(0.901842\pi\)
\(20\) 0 0
\(21\) 65.1206i 3.10098i
\(22\) 0 0
\(23\) 14.6044 0.634974 0.317487 0.948263i \(-0.397161\pi\)
0.317487 + 0.948263i \(0.397161\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 32.1276 1.18991
\(28\) 0 0
\(29\) 8.28275i 0.285612i 0.989751 + 0.142806i \(0.0456125\pi\)
−0.989751 + 0.142806i \(0.954387\pi\)
\(30\) 0 0
\(31\) 53.2285 1.71705 0.858524 0.512773i \(-0.171382\pi\)
0.858524 + 0.512773i \(0.171382\pi\)
\(32\) 0 0
\(33\) −15.7623 + 52.1063i −0.477645 + 1.57898i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −41.1146 −1.11121 −0.555603 0.831448i \(-0.687512\pi\)
−0.555603 + 0.831448i \(0.687512\pi\)
\(38\) 0 0
\(39\) 72.4502i 1.85770i
\(40\) 0 0
\(41\) 74.6449i 1.82061i 0.413940 + 0.910304i \(0.364152\pi\)
−0.413940 + 0.910304i \(0.635848\pi\)
\(42\) 0 0
\(43\) 30.4377i 0.707855i 0.935273 + 0.353927i \(0.115154\pi\)
−0.935273 + 0.353927i \(0.884846\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.697244 −0.0148350 −0.00741749 0.999972i \(-0.502361\pi\)
−0.00741749 + 0.999972i \(0.502361\pi\)
\(48\) 0 0
\(49\) −124.147 −2.53361
\(50\) 0 0
\(51\) 49.0340i 0.961451i
\(52\) 0 0
\(53\) −17.0571 −0.321831 −0.160916 0.986968i \(-0.551445\pi\)
−0.160916 + 0.986968i \(0.551445\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 57.0773i 1.00136i
\(58\) 0 0
\(59\) −6.29242 −0.106651 −0.0533256 0.998577i \(-0.516982\pi\)
−0.0533256 + 0.998577i \(0.516982\pi\)
\(60\) 0 0
\(61\) 50.6864i 0.830925i 0.909610 + 0.415462i \(0.136380\pi\)
−0.909610 + 0.415462i \(0.863620\pi\)
\(62\) 0 0
\(63\) 203.850i 3.23571i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 81.8378 1.22146 0.610730 0.791839i \(-0.290876\pi\)
0.610730 + 0.791839i \(0.290876\pi\)
\(68\) 0 0
\(69\) 72.2760 1.04748
\(70\) 0 0
\(71\) −62.4365 −0.879387 −0.439694 0.898148i \(-0.644913\pi\)
−0.439694 + 0.898148i \(0.644913\pi\)
\(72\) 0 0
\(73\) 11.5551i 0.158289i −0.996863 0.0791445i \(-0.974781\pi\)
0.996863 0.0791445i \(-0.0252188\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −138.544 41.9098i −1.79927 0.544283i
\(78\) 0 0
\(79\) 79.2397i 1.00303i 0.865148 + 0.501517i \(0.167224\pi\)
−0.865148 + 0.501517i \(0.832776\pi\)
\(80\) 0 0
\(81\) 19.5705 0.241611
\(82\) 0 0
\(83\) 81.8105i 0.985669i −0.870123 0.492834i \(-0.835961\pi\)
0.870123 0.492834i \(-0.164039\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 40.9907i 0.471158i
\(88\) 0 0
\(89\) 136.935 1.53860 0.769300 0.638888i \(-0.220605\pi\)
0.769300 + 0.638888i \(0.220605\pi\)
\(90\) 0 0
\(91\) 192.636 2.11687
\(92\) 0 0
\(93\) 263.424 2.83251
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 80.2686 0.827511 0.413756 0.910388i \(-0.364217\pi\)
0.413756 + 0.910388i \(0.364217\pi\)
\(98\) 0 0
\(99\) −49.3414 + 163.111i −0.498398 + 1.64758i
\(100\) 0 0
\(101\) 19.3173i 0.191261i −0.995417 0.0956303i \(-0.969513\pi\)
0.995417 0.0956303i \(-0.0304867\pi\)
\(102\) 0 0
\(103\) 71.4905 0.694082 0.347041 0.937850i \(-0.387186\pi\)
0.347041 + 0.937850i \(0.387186\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 148.254i 1.38555i −0.721154 0.692774i \(-0.756388\pi\)
0.721154 0.692774i \(-0.243612\pi\)
\(108\) 0 0
\(109\) 201.904i 1.85233i −0.377116 0.926166i \(-0.623084\pi\)
0.377116 0.926166i \(-0.376916\pi\)
\(110\) 0 0
\(111\) −203.473 −1.83309
\(112\) 0 0
\(113\) −179.659 −1.58990 −0.794951 0.606673i \(-0.792504\pi\)
−0.794951 + 0.606673i \(0.792504\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 226.794i 1.93841i
\(118\) 0 0
\(119\) 130.375 1.09559
\(120\) 0 0
\(121\) −100.712 67.0683i −0.832328 0.554284i
\(122\) 0 0
\(123\) 369.412i 3.00335i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 173.681i 1.36757i −0.729685 0.683784i \(-0.760333\pi\)
0.729685 0.683784i \(-0.239667\pi\)
\(128\) 0 0
\(129\) 150.634i 1.16771i
\(130\) 0 0
\(131\) 99.4932i 0.759490i 0.925091 + 0.379745i \(0.123988\pi\)
−0.925091 + 0.379745i \(0.876012\pi\)
\(132\) 0 0
\(133\) −151.761 −1.14106
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 155.034 1.13163 0.565816 0.824531i \(-0.308561\pi\)
0.565816 + 0.824531i \(0.308561\pi\)
\(138\) 0 0
\(139\) 62.7620i 0.451525i 0.974182 + 0.225763i \(0.0724874\pi\)
−0.974182 + 0.225763i \(0.927513\pi\)
\(140\) 0 0
\(141\) −3.45061 −0.0244724
\(142\) 0 0
\(143\) 154.137 + 46.6269i 1.07788 + 0.326063i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −614.395 −4.17955
\(148\) 0 0
\(149\) 137.649i 0.923818i −0.886927 0.461909i \(-0.847165\pi\)
0.886927 0.461909i \(-0.152835\pi\)
\(150\) 0 0
\(151\) 229.174i 1.51771i −0.651259 0.758856i \(-0.725759\pi\)
0.651259 0.758856i \(-0.274241\pi\)
\(152\) 0 0
\(153\) 153.493i 1.00322i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 137.708 0.877118 0.438559 0.898702i \(-0.355489\pi\)
0.438559 + 0.898702i \(0.355489\pi\)
\(158\) 0 0
\(159\) −84.4141 −0.530906
\(160\) 0 0
\(161\) 192.172i 1.19362i
\(162\) 0 0
\(163\) 38.9324 0.238849 0.119425 0.992843i \(-0.461895\pi\)
0.119425 + 0.992843i \(0.461895\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 165.244i 0.989488i −0.869039 0.494744i \(-0.835262\pi\)
0.869039 0.494744i \(-0.164738\pi\)
\(168\) 0 0
\(169\) −45.3175 −0.268151
\(170\) 0 0
\(171\) 178.672i 1.04486i
\(172\) 0 0
\(173\) 297.612i 1.72030i −0.510042 0.860149i \(-0.670370\pi\)
0.510042 0.860149i \(-0.329630\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −31.1407 −0.175936
\(178\) 0 0
\(179\) −208.567 −1.16518 −0.582588 0.812767i \(-0.697960\pi\)
−0.582588 + 0.812767i \(0.697960\pi\)
\(180\) 0 0
\(181\) 234.341 1.29470 0.647351 0.762192i \(-0.275877\pi\)
0.647351 + 0.762192i \(0.275877\pi\)
\(182\) 0 0
\(183\) 250.843i 1.37073i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 104.320 + 31.5569i 0.557859 + 0.168754i
\(188\) 0 0
\(189\) 422.752i 2.23678i
\(190\) 0 0
\(191\) 186.250 0.975128 0.487564 0.873087i \(-0.337885\pi\)
0.487564 + 0.873087i \(0.337885\pi\)
\(192\) 0 0
\(193\) 144.553i 0.748982i −0.927231 0.374491i \(-0.877818\pi\)
0.927231 0.374491i \(-0.122182\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 159.129i 0.807762i −0.914812 0.403881i \(-0.867661\pi\)
0.914812 0.403881i \(-0.132339\pi\)
\(198\) 0 0
\(199\) 208.591 1.04820 0.524098 0.851658i \(-0.324402\pi\)
0.524098 + 0.851658i \(0.324402\pi\)
\(200\) 0 0
\(201\) 405.009 2.01497
\(202\) 0 0
\(203\) −108.989 −0.536891
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 226.249 1.09299
\(208\) 0 0
\(209\) −121.432 36.7334i −0.581013 0.175758i
\(210\) 0 0
\(211\) 249.692i 1.18337i 0.806168 + 0.591687i \(0.201538\pi\)
−0.806168 + 0.591687i \(0.798462\pi\)
\(212\) 0 0
\(213\) −308.993 −1.45067
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 700.409i 3.22769i
\(218\) 0 0
\(219\) 57.1852i 0.261120i
\(220\) 0 0
\(221\) −145.049 −0.656331
\(222\) 0 0
\(223\) 94.8922 0.425526 0.212763 0.977104i \(-0.431754\pi\)
0.212763 + 0.977104i \(0.431754\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 365.237i 1.60897i 0.593970 + 0.804487i \(0.297560\pi\)
−0.593970 + 0.804487i \(0.702440\pi\)
\(228\) 0 0
\(229\) −181.047 −0.790600 −0.395300 0.918552i \(-0.629359\pi\)
−0.395300 + 0.918552i \(0.629359\pi\)
\(230\) 0 0
\(231\) −685.642 207.408i −2.96815 0.897872i
\(232\) 0 0
\(233\) 291.907i 1.25282i 0.779494 + 0.626410i \(0.215476\pi\)
−0.779494 + 0.626410i \(0.784524\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 392.151i 1.65465i
\(238\) 0 0
\(239\) 43.0882i 0.180285i −0.995929 0.0901427i \(-0.971268\pi\)
0.995929 0.0901427i \(-0.0287323\pi\)
\(240\) 0 0
\(241\) 77.0546i 0.319729i −0.987139 0.159864i \(-0.948894\pi\)
0.987139 0.159864i \(-0.0511057\pi\)
\(242\) 0 0
\(243\) −192.296 −0.791340
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 168.842 0.683572
\(248\) 0 0
\(249\) 404.874i 1.62600i
\(250\) 0 0
\(251\) 7.50457 0.0298987 0.0149494 0.999888i \(-0.495241\pi\)
0.0149494 + 0.999888i \(0.495241\pi\)
\(252\) 0 0
\(253\) −46.5149 + 153.767i −0.183853 + 0.607774i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 86.1842 0.335347 0.167674 0.985843i \(-0.446375\pi\)
0.167674 + 0.985843i \(0.446375\pi\)
\(258\) 0 0
\(259\) 541.008i 2.08883i
\(260\) 0 0
\(261\) 128.315i 0.491629i
\(262\) 0 0
\(263\) 328.758i 1.25003i −0.780612 0.625016i \(-0.785093\pi\)
0.780612 0.625016i \(-0.214907\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 677.683 2.53814
\(268\) 0 0
\(269\) −358.896 −1.33418 −0.667092 0.744975i \(-0.732461\pi\)
−0.667092 + 0.744975i \(0.732461\pi\)
\(270\) 0 0
\(271\) 223.030i 0.822989i 0.911412 + 0.411494i \(0.134993\pi\)
−0.911412 + 0.411494i \(0.865007\pi\)
\(272\) 0 0
\(273\) 953.339 3.49208
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 81.1615i 0.293002i 0.989211 + 0.146501i \(0.0468011\pi\)
−0.989211 + 0.146501i \(0.953199\pi\)
\(278\) 0 0
\(279\) 824.607 2.95558
\(280\) 0 0
\(281\) 91.9342i 0.327168i −0.986529 0.163584i \(-0.947695\pi\)
0.986529 0.163584i \(-0.0523054\pi\)
\(282\) 0 0
\(283\) 1.55872i 0.00550784i 0.999996 + 0.00275392i \(0.000876601\pi\)
−0.999996 + 0.00275392i \(0.999123\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −982.218 −3.42236
\(288\) 0 0
\(289\) 190.831 0.660316
\(290\) 0 0
\(291\) 397.243 1.36510
\(292\) 0 0
\(293\) 361.504i 1.23380i −0.787041 0.616900i \(-0.788388\pi\)
0.787041 0.616900i \(-0.211612\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −102.326 + 338.265i −0.344532 + 1.13894i
\(298\) 0 0
\(299\) 213.802i 0.715058i
\(300\) 0 0
\(301\) −400.516 −1.33062
\(302\) 0 0
\(303\) 95.5999i 0.315511i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 51.3776i 0.167354i −0.996493 0.0836769i \(-0.973334\pi\)
0.996493 0.0836769i \(-0.0266664\pi\)
\(308\) 0 0
\(309\) 353.801 1.14499
\(310\) 0 0
\(311\) 198.075 0.636898 0.318449 0.947940i \(-0.396838\pi\)
0.318449 + 0.947940i \(0.396838\pi\)
\(312\) 0 0
\(313\) 22.2970 0.0712365 0.0356183 0.999365i \(-0.488660\pi\)
0.0356183 + 0.999365i \(0.488660\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 102.256 0.322574 0.161287 0.986908i \(-0.448436\pi\)
0.161287 + 0.986908i \(0.448436\pi\)
\(318\) 0 0
\(319\) −87.2075 26.3805i −0.273378 0.0826975i
\(320\) 0 0
\(321\) 733.696i 2.28566i
\(322\) 0 0
\(323\) 114.272 0.353783
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 999.208i 3.05568i
\(328\) 0 0
\(329\) 9.17471i 0.0278867i
\(330\) 0 0
\(331\) −353.647 −1.06842 −0.534211 0.845351i \(-0.679391\pi\)
−0.534211 + 0.845351i \(0.679391\pi\)
\(332\) 0 0
\(333\) −636.941 −1.91273
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 237.983i 0.706182i 0.935589 + 0.353091i \(0.114869\pi\)
−0.935589 + 0.353091i \(0.885131\pi\)
\(338\) 0 0
\(339\) −889.119 −2.62277
\(340\) 0 0
\(341\) −169.532 + 560.433i −0.497162 + 1.64350i
\(342\) 0 0
\(343\) 988.826i 2.88288i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 142.124i 0.409580i −0.978806 0.204790i \(-0.934349\pi\)
0.978806 0.204790i \(-0.0656512\pi\)
\(348\) 0 0
\(349\) 25.4867i 0.0730278i 0.999333 + 0.0365139i \(0.0116253\pi\)
−0.999333 + 0.0365139i \(0.988375\pi\)
\(350\) 0 0
\(351\) 470.335i 1.33999i
\(352\) 0 0
\(353\) −155.144 −0.439502 −0.219751 0.975556i \(-0.570524\pi\)
−0.219751 + 0.975556i \(0.570524\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 645.216 1.80733
\(358\) 0 0
\(359\) 6.51482i 0.0181471i 0.999959 + 0.00907357i \(0.00288825\pi\)
−0.999959 + 0.00907357i \(0.997112\pi\)
\(360\) 0 0
\(361\) 227.984 0.631533
\(362\) 0 0
\(363\) −498.414 331.916i −1.37304 0.914369i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −102.889 −0.280353 −0.140176 0.990127i \(-0.544767\pi\)
−0.140176 + 0.990127i \(0.544767\pi\)
\(368\) 0 0
\(369\) 1156.39i 3.13384i
\(370\) 0 0
\(371\) 224.446i 0.604976i
\(372\) 0 0
\(373\) 119.790i 0.321152i 0.987024 + 0.160576i \(0.0513351\pi\)
−0.987024 + 0.160576i \(0.948665\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 121.256 0.321634
\(378\) 0 0
\(379\) 175.693 0.463570 0.231785 0.972767i \(-0.425543\pi\)
0.231785 + 0.972767i \(0.425543\pi\)
\(380\) 0 0
\(381\) 859.534i 2.25599i
\(382\) 0 0
\(383\) −225.422 −0.588570 −0.294285 0.955718i \(-0.595082\pi\)
−0.294285 + 0.955718i \(0.595082\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 471.537i 1.21844i
\(388\) 0 0
\(389\) 91.2920 0.234684 0.117342 0.993092i \(-0.462563\pi\)
0.117342 + 0.993092i \(0.462563\pi\)
\(390\) 0 0
\(391\) 144.701i 0.370078i
\(392\) 0 0
\(393\) 492.384i 1.25289i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −602.789 −1.51836 −0.759181 0.650880i \(-0.774400\pi\)
−0.759181 + 0.650880i \(0.774400\pi\)
\(398\) 0 0
\(399\) −751.054 −1.88234
\(400\) 0 0
\(401\) 277.075 0.690961 0.345480 0.938426i \(-0.387716\pi\)
0.345480 + 0.938426i \(0.387716\pi\)
\(402\) 0 0
\(403\) 779.243i 1.93361i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 130.950 432.888i 0.321744 1.06361i
\(408\) 0 0
\(409\) 165.156i 0.403804i −0.979406 0.201902i \(-0.935288\pi\)
0.979406 0.201902i \(-0.0647122\pi\)
\(410\) 0 0
\(411\) 767.249 1.86679
\(412\) 0 0
\(413\) 82.7990i 0.200482i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 310.604i 0.744855i
\(418\) 0 0
\(419\) −619.744 −1.47910 −0.739551 0.673100i \(-0.764962\pi\)
−0.739551 + 0.673100i \(0.764962\pi\)
\(420\) 0 0
\(421\) 232.190 0.551520 0.275760 0.961226i \(-0.411070\pi\)
0.275760 + 0.961226i \(0.411070\pi\)
\(422\) 0 0
\(423\) −10.8016 −0.0255357
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −666.959 −1.56197
\(428\) 0 0
\(429\) 762.814 + 230.753i 1.77812 + 0.537886i
\(430\) 0 0
\(431\) 606.608i 1.40744i −0.710476 0.703721i \(-0.751520\pi\)
0.710476 0.703721i \(-0.248480\pi\)
\(432\) 0 0
\(433\) −85.1841 −0.196730 −0.0983650 0.995150i \(-0.531361\pi\)
−0.0983650 + 0.995150i \(0.531361\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 168.436i 0.385438i
\(438\) 0 0
\(439\) 559.497i 1.27448i 0.770665 + 0.637240i \(0.219924\pi\)
−0.770665 + 0.637240i \(0.780076\pi\)
\(440\) 0 0
\(441\) −1923.27 −4.36115
\(442\) 0 0
\(443\) 171.266 0.386606 0.193303 0.981139i \(-0.438080\pi\)
0.193303 + 0.981139i \(0.438080\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 681.214i 1.52397i
\(448\) 0 0
\(449\) 701.180 1.56165 0.780824 0.624751i \(-0.214800\pi\)
0.780824 + 0.624751i \(0.214800\pi\)
\(450\) 0 0
\(451\) −785.922 237.743i −1.74262 0.527147i
\(452\) 0 0
\(453\) 1134.17i 2.50368i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 94.6651i 0.207145i −0.994622 0.103572i \(-0.966973\pi\)
0.994622 0.103572i \(-0.0330273\pi\)
\(458\) 0 0
\(459\) 318.321i 0.693509i
\(460\) 0 0
\(461\) 386.694i 0.838815i −0.907798 0.419408i \(-0.862238\pi\)
0.907798 0.419408i \(-0.137762\pi\)
\(462\) 0 0
\(463\) −364.997 −0.788330 −0.394165 0.919040i \(-0.628966\pi\)
−0.394165 + 0.919040i \(0.628966\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 719.317 1.54029 0.770147 0.637867i \(-0.220183\pi\)
0.770147 + 0.637867i \(0.220183\pi\)
\(468\) 0 0
\(469\) 1076.87i 2.29609i
\(470\) 0 0
\(471\) 681.504 1.44693
\(472\) 0 0
\(473\) −320.473 96.9440i −0.677533 0.204955i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −264.245 −0.553973
\(478\) 0 0
\(479\) 373.191i 0.779104i −0.921004 0.389552i \(-0.872630\pi\)
0.921004 0.389552i \(-0.127370\pi\)
\(480\) 0 0
\(481\) 601.901i 1.25135i
\(482\) 0 0
\(483\) 951.047i 1.96904i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 480.297 0.986237 0.493118 0.869962i \(-0.335857\pi\)
0.493118 + 0.869962i \(0.335857\pi\)
\(488\) 0 0
\(489\) 192.673 0.394015
\(490\) 0 0
\(491\) 107.055i 0.218035i 0.994040 + 0.109017i \(0.0347704\pi\)
−0.994040 + 0.109017i \(0.965230\pi\)
\(492\) 0 0
\(493\) 82.0656 0.166462
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 821.573i 1.65306i
\(498\) 0 0
\(499\) 296.804 0.594798 0.297399 0.954753i \(-0.403881\pi\)
0.297399 + 0.954753i \(0.403881\pi\)
\(500\) 0 0
\(501\) 817.782i 1.63230i
\(502\) 0 0
\(503\) 538.023i 1.06963i −0.844969 0.534815i \(-0.820381\pi\)
0.844969 0.534815i \(-0.179619\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −224.273 −0.442353
\(508\) 0 0
\(509\) −383.073 −0.752599 −0.376299 0.926498i \(-0.622804\pi\)
−0.376299 + 0.926498i \(0.622804\pi\)
\(510\) 0 0
\(511\) 152.048 0.297550
\(512\) 0 0
\(513\) 370.537i 0.722293i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 2.22072 7.34115i 0.00429539 0.0141995i
\(518\) 0 0
\(519\) 1472.86i 2.83787i
\(520\) 0 0
\(521\) −484.670 −0.930270 −0.465135 0.885240i \(-0.653994\pi\)
−0.465135 + 0.885240i \(0.653994\pi\)
\(522\) 0 0
\(523\) 481.382i 0.920424i 0.887809 + 0.460212i \(0.152227\pi\)
−0.887809 + 0.460212i \(0.847773\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 527.389i 1.00074i
\(528\) 0 0
\(529\) −315.712 −0.596809
\(530\) 0 0
\(531\) −97.4811 −0.183580
\(532\) 0 0
\(533\) 1092.77 2.05023
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −1032.18 −1.92212
\(538\) 0 0
\(539\) 395.407 1307.12i 0.733595 2.42509i
\(540\) 0 0
\(541\) 534.638i 0.988241i 0.869393 + 0.494121i \(0.164510\pi\)
−0.869393 + 0.494121i \(0.835490\pi\)
\(542\) 0 0
\(543\) 1159.74 2.13580
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 601.686i 1.09997i 0.835173 + 0.549987i \(0.185367\pi\)
−0.835173 + 0.549987i \(0.814633\pi\)
\(548\) 0 0
\(549\) 785.226i 1.43028i
\(550\) 0 0
\(551\) −95.5273 −0.173371
\(552\) 0 0
\(553\) −1042.68 −1.88549
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 802.187i 1.44019i 0.693874 + 0.720096i \(0.255902\pi\)
−0.693874 + 0.720096i \(0.744098\pi\)
\(558\) 0 0
\(559\) 445.596 0.797131
\(560\) 0 0
\(561\) 516.270 + 156.173i 0.920267 + 0.278383i
\(562\) 0 0
\(563\) 729.072i 1.29498i 0.762075 + 0.647489i \(0.224181\pi\)
−0.762075 + 0.647489i \(0.775819\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 257.519i 0.454178i
\(568\) 0 0
\(569\) 629.473i 1.10628i −0.833089 0.553140i \(-0.813430\pi\)
0.833089 0.553140i \(-0.186570\pi\)
\(570\) 0 0
\(571\) 615.487i 1.07791i 0.842335 + 0.538955i \(0.181181\pi\)
−0.842335 + 0.538955i \(0.818819\pi\)
\(572\) 0 0
\(573\) 921.735 1.60861
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 162.104 0.280942 0.140471 0.990085i \(-0.455138\pi\)
0.140471 + 0.990085i \(0.455138\pi\)
\(578\) 0 0
\(579\) 715.384i 1.23555i
\(580\) 0 0
\(581\) 1076.51 1.85285
\(582\) 0 0
\(583\) 54.3266 179.591i 0.0931845 0.308046i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 661.750 1.12734 0.563671 0.825999i \(-0.309389\pi\)
0.563671 + 0.825999i \(0.309389\pi\)
\(588\) 0 0
\(589\) 613.899i 1.04227i
\(590\) 0 0
\(591\) 787.518i 1.33252i
\(592\) 0 0
\(593\) 77.0827i 0.129988i −0.997886 0.0649939i \(-0.979297\pi\)
0.997886 0.0649939i \(-0.0207028\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1032.30 1.72915
\(598\) 0 0
\(599\) −414.443 −0.691891 −0.345945 0.938255i \(-0.612442\pi\)
−0.345945 + 0.938255i \(0.612442\pi\)
\(600\) 0 0
\(601\) 258.961i 0.430883i −0.976517 0.215441i \(-0.930881\pi\)
0.976517 0.215441i \(-0.0691191\pi\)
\(602\) 0 0
\(603\) 1267.82 2.10252
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 447.958i 0.737986i 0.929432 + 0.368993i \(0.120297\pi\)
−0.929432 + 0.368993i \(0.879703\pi\)
\(608\) 0 0
\(609\) −539.378 −0.885678
\(610\) 0 0
\(611\) 10.2074i 0.0167060i
\(612\) 0 0
\(613\) 762.804i 1.24438i −0.782867 0.622190i \(-0.786243\pi\)
0.782867 0.622190i \(-0.213757\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 531.407 0.861276 0.430638 0.902525i \(-0.358289\pi\)
0.430638 + 0.902525i \(0.358289\pi\)
\(618\) 0 0
\(619\) 648.349 1.04741 0.523707 0.851898i \(-0.324549\pi\)
0.523707 + 0.851898i \(0.324549\pi\)
\(620\) 0 0
\(621\) 469.204 0.755562
\(622\) 0 0
\(623\) 1801.87i 2.89225i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −600.956 181.791i −0.958463 0.289937i
\(628\) 0 0
\(629\) 407.364i 0.647638i
\(630\) 0 0
\(631\) −500.262 −0.792808 −0.396404 0.918076i \(-0.629742\pi\)
−0.396404 + 0.918076i \(0.629742\pi\)
\(632\) 0 0
\(633\) 1235.71i 1.95214i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 1817.46i 2.85316i
\(638\) 0 0
\(639\) −967.256 −1.51370
\(640\) 0 0
\(641\) 195.726 0.305345 0.152673 0.988277i \(-0.451212\pi\)
0.152673 + 0.988277i \(0.451212\pi\)
\(642\) 0 0
\(643\) −1016.58 −1.58100 −0.790498 0.612465i \(-0.790178\pi\)
−0.790498 + 0.612465i \(0.790178\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −489.683 −0.756851 −0.378426 0.925632i \(-0.623534\pi\)
−0.378426 + 0.925632i \(0.623534\pi\)
\(648\) 0 0
\(649\) 20.0413 66.2517i 0.0308803 0.102083i
\(650\) 0 0
\(651\) 3466.27i 5.32453i
\(652\) 0 0
\(653\) −293.173 −0.448964 −0.224482 0.974478i \(-0.572069\pi\)
−0.224482 + 0.974478i \(0.572069\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 179.010i 0.272465i
\(658\) 0 0
\(659\) 590.485i 0.896032i −0.894026 0.448016i \(-0.852131\pi\)
0.894026 0.448016i \(-0.147869\pi\)
\(660\) 0 0
\(661\) 43.8951 0.0664072 0.0332036 0.999449i \(-0.489429\pi\)
0.0332036 + 0.999449i \(0.489429\pi\)
\(662\) 0 0
\(663\) −717.837 −1.08271
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 120.965i 0.181356i
\(668\) 0 0
\(669\) 469.614 0.701964
\(670\) 0 0
\(671\) −533.668 161.436i −0.795332 0.240590i
\(672\) 0 0
\(673\) 869.115i 1.29140i 0.763590 + 0.645702i \(0.223435\pi\)
−0.763590 + 0.645702i \(0.776565\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 480.512i 0.709766i −0.934911 0.354883i \(-0.884521\pi\)
0.934911 0.354883i \(-0.115479\pi\)
\(678\) 0 0
\(679\) 1056.22i 1.55555i
\(680\) 0 0
\(681\) 1807.53i 2.65423i
\(682\) 0 0
\(683\) −1111.42 −1.62726 −0.813632 0.581380i \(-0.802513\pi\)
−0.813632 + 0.581380i \(0.802513\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −895.989 −1.30421
\(688\) 0 0
\(689\) 249.708i 0.362421i
\(690\) 0 0
\(691\) 373.681 0.540783 0.270391 0.962750i \(-0.412847\pi\)
0.270391 + 0.962750i \(0.412847\pi\)
\(692\) 0 0
\(693\) −2146.30 649.260i −3.09711 0.936883i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 739.583 1.06109
\(698\) 0 0
\(699\) 1444.63i 2.06670i
\(700\) 0 0
\(701\) 732.819i 1.04539i 0.852520 + 0.522695i \(0.175073\pi\)
−0.852520 + 0.522695i \(0.824927\pi\)
\(702\) 0 0
\(703\) 474.186i 0.674518i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 254.188 0.359530
\(708\) 0 0
\(709\) −799.109 −1.12709 −0.563547 0.826084i \(-0.690563\pi\)
−0.563547 + 0.826084i \(0.690563\pi\)
\(710\) 0 0
\(711\) 1227.57i 1.72654i
\(712\) 0 0
\(713\) 777.370 1.09028
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 213.240i 0.297406i
\(718\) 0 0
\(719\) −375.329 −0.522015 −0.261008 0.965337i \(-0.584055\pi\)
−0.261008 + 0.965337i \(0.584055\pi\)
\(720\) 0 0
\(721\) 940.710i 1.30473i
\(722\) 0 0
\(723\) 381.337i 0.527438i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 21.7939 0.0299779 0.0149889 0.999888i \(-0.495229\pi\)
0.0149889 + 0.999888i \(0.495229\pi\)
\(728\) 0 0
\(729\) −1127.79 −1.54704
\(730\) 0 0
\(731\) 301.578 0.412555
\(732\) 0 0
\(733\) 34.7783i 0.0474466i 0.999719 + 0.0237233i \(0.00755206\pi\)
−0.999719 + 0.0237233i \(0.992448\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −260.653 + 861.654i −0.353667 + 1.16914i
\(738\) 0 0
\(739\) 332.608i 0.450079i −0.974350 0.225039i \(-0.927749\pi\)
0.974350 0.225039i \(-0.0722511\pi\)
\(740\) 0 0
\(741\) 835.588 1.12765
\(742\) 0 0
\(743\) 999.033i 1.34459i 0.740282 + 0.672297i \(0.234692\pi\)
−0.740282 + 0.672297i \(0.765308\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 1267.40i 1.69665i
\(748\) 0 0
\(749\) 1950.80 2.60454
\(750\) 0 0
\(751\) −218.656 −0.291153 −0.145576 0.989347i \(-0.546504\pi\)
−0.145576 + 0.989347i \(0.546504\pi\)
\(752\) 0 0
\(753\) 37.1396 0.0493221
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 158.061 0.208800 0.104400 0.994535i \(-0.466708\pi\)
0.104400 + 0.994535i \(0.466708\pi\)
\(758\) 0 0
\(759\) −230.198 + 760.980i −0.303292 + 1.00261i
\(760\) 0 0
\(761\) 389.588i 0.511942i −0.966684 0.255971i \(-0.917605\pi\)
0.966684 0.255971i \(-0.0823952\pi\)
\(762\) 0 0
\(763\) 2656.76 3.48200
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 92.1184i 0.120102i
\(768\) 0 0
\(769\) 687.354i 0.893828i 0.894577 + 0.446914i \(0.147477\pi\)
−0.894577 + 0.446914i \(0.852523\pi\)
\(770\) 0 0
\(771\) 426.519 0.553202
\(772\) 0 0
\(773\) 934.266 1.20862 0.604312 0.796748i \(-0.293448\pi\)
0.604312 + 0.796748i \(0.293448\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 2677.41i 3.44583i
\(778\) 0 0
\(779\) −860.901 −1.10514
\(780\) 0 0
\(781\) 198.860 657.382i 0.254622 0.841718i
\(782\) 0 0
\(783\) 266.105i 0.339853i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 793.478i 1.00823i 0.863636 + 0.504116i \(0.168181\pi\)
−0.863636 + 0.504116i \(0.831819\pi\)
\(788\) 0 0
\(789\) 1627.00i 2.06210i
\(790\) 0 0
\(791\) 2364.05i 2.98869i
\(792\) 0 0
\(793\) 742.028 0.935723
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1015.43 −1.27407 −0.637033 0.770837i \(-0.719838\pi\)
−0.637033 + 0.770837i \(0.719838\pi\)
\(798\) 0 0
\(799\) 6.90831i 0.00864619i
\(800\) 0 0
\(801\) 2121.38 2.64842
\(802\) 0 0
\(803\) 121.661 + 36.8029i 0.151509 + 0.0458317i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −1776.15 −2.20093
\(808\) 0 0
\(809\) 759.906i 0.939316i −0.882849 0.469658i \(-0.844377\pi\)
0.882849 0.469658i \(-0.155623\pi\)
\(810\) 0 0
\(811\) 626.134i 0.772052i 0.922488 + 0.386026i \(0.126152\pi\)
−0.922488 + 0.386026i \(0.873848\pi\)
\(812\) 0 0
\(813\) 1103.76i 1.35764i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −351.047 −0.429678
\(818\) 0 0
\(819\) 2984.28 3.64381
\(820\) 0 0
\(821\) 677.557i 0.825283i 0.910894 + 0.412641i \(0.135394\pi\)
−0.910894 + 0.412641i \(0.864606\pi\)
\(822\) 0 0
\(823\) −55.0463 −0.0668850 −0.0334425 0.999441i \(-0.510647\pi\)
−0.0334425 + 0.999441i \(0.510647\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 198.508i 0.240034i −0.992772 0.120017i \(-0.961705\pi\)
0.992772 0.120017i \(-0.0382950\pi\)
\(828\) 0 0
\(829\) −1191.24 −1.43696 −0.718481 0.695547i \(-0.755162\pi\)
−0.718481 + 0.695547i \(0.755162\pi\)
\(830\) 0 0
\(831\) 401.662i 0.483348i
\(832\) 0 0
\(833\) 1230.05i 1.47665i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 1710.10 2.04313
\(838\) 0 0
\(839\) 159.788 0.190450 0.0952252 0.995456i \(-0.469643\pi\)
0.0952252 + 0.995456i \(0.469643\pi\)
\(840\) 0 0
\(841\) 772.396 0.918426
\(842\) 0 0
\(843\) 454.975i 0.539709i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 882.521 1325.22i 1.04194 1.56460i
\(848\) 0 0
\(849\) 7.71398i 0.00908596i
\(850\) 0 0
\(851\) −600.454 −0.705586
\(852\) 0 0
\(853\) 214.501i 0.251467i −0.992064 0.125733i \(-0.959872\pi\)
0.992064 0.125733i \(-0.0401284\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 773.417i 0.902471i −0.892405 0.451235i \(-0.850983\pi\)
0.892405 0.451235i \(-0.149017\pi\)
\(858\) 0 0
\(859\) 497.526 0.579193 0.289596 0.957149i \(-0.406479\pi\)
0.289596 + 0.957149i \(0.406479\pi\)
\(860\) 0 0
\(861\) −4860.92 −5.64567
\(862\) 0 0
\(863\) −476.209 −0.551807 −0.275903 0.961185i \(-0.588977\pi\)
−0.275903 + 0.961185i \(0.588977\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 944.409 1.08928
\(868\) 0 0
\(869\) −834.299 252.378i −0.960068 0.290423i
\(870\) 0 0
\(871\) 1198.07i 1.37551i
\(872\) 0 0
\(873\) 1243.51 1.42441
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 329.549i 0.375768i −0.982191 0.187884i \(-0.939837\pi\)
0.982191 0.187884i \(-0.0601629\pi\)
\(878\) 0 0
\(879\) 1789.05i 2.03533i
\(880\) 0 0
\(881\) 4.25551 0.00483031 0.00241516 0.999997i \(-0.499231\pi\)
0.00241516 + 0.999997i \(0.499231\pi\)
\(882\) 0 0
\(883\) −288.392 −0.326605 −0.163302 0.986576i \(-0.552215\pi\)
−0.163302 + 0.986576i \(0.552215\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 437.564i 0.493308i 0.969104 + 0.246654i \(0.0793312\pi\)
−0.969104 + 0.246654i \(0.920669\pi\)
\(888\) 0 0
\(889\) 2285.39 2.57074
\(890\) 0 0
\(891\) −62.3319 + 206.054i −0.0699572 + 0.231262i
\(892\) 0 0
\(893\) 8.04151i 0.00900505i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 1058.09i 1.17959i
\(898\) 0 0
\(899\) 440.878i 0.490410i
\(900\) 0 0
\(901\) 169.002i 0.187571i
\(902\) 0 0
\(903\) −1982.12 −2.19504
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −1071.31 −1.18115 −0.590576 0.806982i \(-0.701100\pi\)
−0.590576 + 0.806982i \(0.701100\pi\)
\(908\) 0 0
\(909\) 299.261i 0.329220i
\(910\) 0 0
\(911\) −503.288 −0.552457 −0.276228 0.961092i \(-0.589085\pi\)
−0.276228 + 0.961092i \(0.589085\pi\)
\(912\) 0 0
\(913\) 861.367 + 260.566i 0.943447 + 0.285395i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1309.19 −1.42768
\(918\) 0 0
\(919\) 1781.27i 1.93827i 0.246534 + 0.969134i \(0.420708\pi\)
−0.246534 + 0.969134i \(0.579292\pi\)
\(920\) 0 0
\(921\) 254.264i 0.276074i
\(922\) 0 0
\(923\) 914.045i 0.990297i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 1107.52 1.19473
\(928\) 0 0
\(929\) −879.394 −0.946603 −0.473301 0.880901i \(-0.656938\pi\)
−0.473301 + 0.880901i \(0.656938\pi\)
\(930\) 0 0
\(931\) 1431.82i 1.53794i
\(932\) 0 0
\(933\) 980.260 1.05065
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 446.198i 0.476198i 0.971241 + 0.238099i \(0.0765243\pi\)
−0.971241 + 0.238099i \(0.923476\pi\)
\(938\) 0 0
\(939\) 110.346 0.117515
\(940\) 0 0
\(941\) 245.275i 0.260653i −0.991471 0.130327i \(-0.958397\pi\)
0.991471 0.130327i \(-0.0416026\pi\)
\(942\) 0 0
\(943\) 1090.14i 1.15604i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 236.400 0.249631 0.124815 0.992180i \(-0.460166\pi\)
0.124815 + 0.992180i \(0.460166\pi\)
\(948\) 0 0
\(949\) −169.162 −0.178253
\(950\) 0 0
\(951\) 506.056 0.532131
\(952\) 0 0
\(953\) 1049.09i 1.10083i −0.834892 0.550414i \(-0.814470\pi\)
0.834892 0.550414i \(-0.185530\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −431.583 130.555i −0.450975 0.136421i
\(958\) 0 0
\(959\) 2040.02i 2.12723i
\(960\) 0 0
\(961\) 1872.27 1.94825
\(962\) 0 0
\(963\) 2296.72i 2.38497i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 523.118i 0.540970i 0.962724 + 0.270485i \(0.0871840\pi\)
−0.962724 + 0.270485i \(0.912816\pi\)
\(968\) 0 0
\(969\) 565.523 0.583615
\(970\) 0 0
\(971\) −1692.15 −1.74268 −0.871341 0.490677i \(-0.836749\pi\)
−0.871341 + 0.490677i \(0.836749\pi\)
\(972\) 0 0
\(973\) −825.857 −0.848773
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −998.995 −1.02251 −0.511257 0.859428i \(-0.670820\pi\)
−0.511257 + 0.859428i \(0.670820\pi\)
\(978\) 0 0
\(979\) −436.138 + 1441.77i −0.445493 + 1.47269i
\(980\) 0 0
\(981\) 3127.87i 3.18845i
\(982\) 0 0
\(983\) 1768.79 1.79938 0.899691 0.436528i \(-0.143792\pi\)
0.899691 + 0.436528i \(0.143792\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 45.4050i 0.0460030i
\(988\) 0 0
\(989\) 444.525i 0.449469i
\(990\) 0 0
\(991\) 854.135 0.861892 0.430946 0.902378i \(-0.358180\pi\)
0.430946 + 0.902378i \(0.358180\pi\)
\(992\) 0 0
\(993\) −1750.17 −1.76251
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1362.72i 1.36682i 0.730036 + 0.683408i \(0.239503\pi\)
−0.730036 + 0.683408i \(0.760497\pi\)
\(998\) 0 0
\(999\) −1320.91 −1.32224
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1100.3.f.f.901.8 8
5.2 odd 4 1100.3.e.b.549.1 16
5.3 odd 4 1100.3.e.b.549.16 16
5.4 even 2 220.3.f.a.21.1 8
11.10 odd 2 inner 1100.3.f.f.901.7 8
15.14 odd 2 1980.3.b.a.901.5 8
20.19 odd 2 880.3.j.b.241.8 8
55.32 even 4 1100.3.e.b.549.2 16
55.43 even 4 1100.3.e.b.549.15 16
55.54 odd 2 220.3.f.a.21.2 yes 8
165.164 even 2 1980.3.b.a.901.8 8
220.219 even 2 880.3.j.b.241.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.3.f.a.21.1 8 5.4 even 2
220.3.f.a.21.2 yes 8 55.54 odd 2
880.3.j.b.241.7 8 220.219 even 2
880.3.j.b.241.8 8 20.19 odd 2
1100.3.e.b.549.1 16 5.2 odd 4
1100.3.e.b.549.2 16 55.32 even 4
1100.3.e.b.549.15 16 55.43 even 4
1100.3.e.b.549.16 16 5.3 odd 4
1100.3.f.f.901.7 8 11.10 odd 2 inner
1100.3.f.f.901.8 8 1.1 even 1 trivial
1980.3.b.a.901.5 8 15.14 odd 2
1980.3.b.a.901.8 8 165.164 even 2