Properties

Label 1100.3.f.f.901.8
Level 11001100
Weight 33
Character 1100.901
Analytic conductor 29.97329.973
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1100,3,Mod(901,1100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1100.901");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 1100=225211 1100 = 2^{2} \cdot 5^{2} \cdot 11
Weight: k k == 3 3
Character orbit: [χ][\chi] == 1100.f (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 29.972829079629.9728290796
Analytic rank: 00
Dimension: 88
Coefficient field: Q[x]/(x8+)\mathbb{Q}[x]/(x^{8} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+67x6+1356x4+9065x2+17275 x^{8} + 67x^{6} + 1356x^{4} + 9065x^{2} + 17275 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 265 2^{6}\cdot 5
Twist minimal: no (minimal twist has level 220)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 901.8
Root 2.68549i-2.68549i of defining polynomial
Character χ\chi == 1100.901
Dual form 1100.3.f.f.901.7

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+4.94892q3+13.1585iq7+15.4918q9+(3.18499+10.5288i)q1114.6396iq139.90801iq17+11.5333iq19+65.1206iq21+14.6044q23+32.1276q27+8.28275iq29+53.2285q31+(15.7623+52.1063i)q3341.1146q3772.4502iq39+74.6449iq41+30.4377iq430.697244q47124.147q4949.0340iq5117.0571q53+57.0773iq576.29242q59+50.6864iq61+203.850iq63+81.8378q67+72.2760q6962.4365q7111.5551iq73+(138.54441.9098i)q77+79.2397iq79+19.5705q8181.8105iq83+40.9907iq87+136.935q89+192.636q91+263.424q93+80.2686q97+(49.3414+163.111i)q99+O(q100)q+4.94892 q^{3} +13.1585i q^{7} +15.4918 q^{9} +(-3.18499 + 10.5288i) q^{11} -14.6396i q^{13} -9.90801i q^{17} +11.5333i q^{19} +65.1206i q^{21} +14.6044 q^{23} +32.1276 q^{27} +8.28275i q^{29} +53.2285 q^{31} +(-15.7623 + 52.1063i) q^{33} -41.1146 q^{37} -72.4502i q^{39} +74.6449i q^{41} +30.4377i q^{43} -0.697244 q^{47} -124.147 q^{49} -49.0340i q^{51} -17.0571 q^{53} +57.0773i q^{57} -6.29242 q^{59} +50.6864i q^{61} +203.850i q^{63} +81.8378 q^{67} +72.2760 q^{69} -62.4365 q^{71} -11.5551i q^{73} +(-138.544 - 41.9098i) q^{77} +79.2397i q^{79} +19.5705 q^{81} -81.8105i q^{83} +40.9907i q^{87} +136.935 q^{89} +192.636 q^{91} +263.424 q^{93} +80.2686 q^{97} +(-49.3414 + 163.111i) q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+8q3+28q9+24q1156q23+80q27+20q3188q3372q37+184q47244q49136q5316q59+264q6756q69220q71208q77224q81+40q99+O(q100) 8 q + 8 q^{3} + 28 q^{9} + 24 q^{11} - 56 q^{23} + 80 q^{27} + 20 q^{31} - 88 q^{33} - 72 q^{37} + 184 q^{47} - 244 q^{49} - 136 q^{53} - 16 q^{59} + 264 q^{67} - 56 q^{69} - 220 q^{71} - 208 q^{77} - 224 q^{81}+ \cdots - 40 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1100Z)×\left(\mathbb{Z}/1100\mathbb{Z}\right)^\times.

nn 101101 177177 551551
χ(n)\chi(n) 1-1 11 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 4.94892 1.64964 0.824820 0.565395i 0.191276π-0.191276\pi
0.824820 + 0.565395i 0.191276π0.191276\pi
44 0 0
55 0 0
66 0 0
77 13.1585i 1.87979i 0.341462 + 0.939896i 0.389078π0.389078\pi
−0.341462 + 0.939896i 0.610922π0.610922\pi
88 0 0
99 15.4918 1.72132
1010 0 0
1111 −3.18499 + 10.5288i −0.289545 + 0.957165i
1212 0 0
1313 14.6396i 1.12612i −0.826415 0.563061i 0.809624π-0.809624\pi
0.826415 0.563061i 0.190376π-0.190376\pi
1414 0 0
1515 0 0
1616 0 0
1717 9.90801i 0.582824i −0.956598 0.291412i 0.905875π-0.905875\pi
0.956598 0.291412i 0.0941251π-0.0941251\pi
1818 0 0
1919 11.5333i 0.607015i 0.952829 + 0.303507i 0.0981577π0.0981577\pi
−0.952829 + 0.303507i 0.901842π0.901842\pi
2020 0 0
2121 65.1206i 3.10098i
2222 0 0
2323 14.6044 0.634974 0.317487 0.948263i 0.397161π-0.397161\pi
0.317487 + 0.948263i 0.397161π0.397161\pi
2424 0 0
2525 0 0
2626 0 0
2727 32.1276 1.18991
2828 0 0
2929 8.28275i 0.285612i 0.989751 + 0.142806i 0.0456125π0.0456125\pi
−0.989751 + 0.142806i 0.954387π0.954387\pi
3030 0 0
3131 53.2285 1.71705 0.858524 0.512773i 0.171382π-0.171382\pi
0.858524 + 0.512773i 0.171382π0.171382\pi
3232 0 0
3333 −15.7623 + 52.1063i −0.477645 + 1.57898i
3434 0 0
3535 0 0
3636 0 0
3737 −41.1146 −1.11121 −0.555603 0.831448i 0.687512π-0.687512\pi
−0.555603 + 0.831448i 0.687512π0.687512\pi
3838 0 0
3939 72.4502i 1.85770i
4040 0 0
4141 74.6449i 1.82061i 0.413940 + 0.910304i 0.364152π0.364152\pi
−0.413940 + 0.910304i 0.635848π0.635848\pi
4242 0 0
4343 30.4377i 0.707855i 0.935273 + 0.353927i 0.115154π0.115154\pi
−0.935273 + 0.353927i 0.884846π0.884846\pi
4444 0 0
4545 0 0
4646 0 0
4747 −0.697244 −0.0148350 −0.00741749 0.999972i 0.502361π-0.502361\pi
−0.00741749 + 0.999972i 0.502361π0.502361\pi
4848 0 0
4949 −124.147 −2.53361
5050 0 0
5151 49.0340i 0.961451i
5252 0 0
5353 −17.0571 −0.321831 −0.160916 0.986968i 0.551445π-0.551445\pi
−0.160916 + 0.986968i 0.551445π0.551445\pi
5454 0 0
5555 0 0
5656 0 0
5757 57.0773i 1.00136i
5858 0 0
5959 −6.29242 −0.106651 −0.0533256 0.998577i 0.516982π-0.516982\pi
−0.0533256 + 0.998577i 0.516982π0.516982\pi
6060 0 0
6161 50.6864i 0.830925i 0.909610 + 0.415462i 0.136380π0.136380\pi
−0.909610 + 0.415462i 0.863620π0.863620\pi
6262 0 0
6363 203.850i 3.23571i
6464 0 0
6565 0 0
6666 0 0
6767 81.8378 1.22146 0.610730 0.791839i 0.290876π-0.290876\pi
0.610730 + 0.791839i 0.290876π0.290876\pi
6868 0 0
6969 72.2760 1.04748
7070 0 0
7171 −62.4365 −0.879387 −0.439694 0.898148i 0.644913π-0.644913\pi
−0.439694 + 0.898148i 0.644913π0.644913\pi
7272 0 0
7373 11.5551i 0.158289i −0.996863 0.0791445i 0.974781π-0.974781\pi
0.996863 0.0791445i 0.0252188π-0.0252188\pi
7474 0 0
7575 0 0
7676 0 0
7777 −138.544 41.9098i −1.79927 0.544283i
7878 0 0
7979 79.2397i 1.00303i 0.865148 + 0.501517i 0.167224π0.167224\pi
−0.865148 + 0.501517i 0.832776π0.832776\pi
8080 0 0
8181 19.5705 0.241611
8282 0 0
8383 81.8105i 0.985669i −0.870123 0.492834i 0.835961π-0.835961\pi
0.870123 0.492834i 0.164039π-0.164039\pi
8484 0 0
8585 0 0
8686 0 0
8787 40.9907i 0.471158i
8888 0 0
8989 136.935 1.53860 0.769300 0.638888i 0.220605π-0.220605\pi
0.769300 + 0.638888i 0.220605π0.220605\pi
9090 0 0
9191 192.636 2.11687
9292 0 0
9393 263.424 2.83251
9494 0 0
9595 0 0
9696 0 0
9797 80.2686 0.827511 0.413756 0.910388i 0.364217π-0.364217\pi
0.413756 + 0.910388i 0.364217π0.364217\pi
9898 0 0
9999 −49.3414 + 163.111i −0.498398 + 1.64758i
100100 0 0
101101 19.3173i 0.191261i −0.995417 0.0956303i 0.969513π-0.969513\pi
0.995417 0.0956303i 0.0304867π-0.0304867\pi
102102 0 0
103103 71.4905 0.694082 0.347041 0.937850i 0.387186π-0.387186\pi
0.347041 + 0.937850i 0.387186π0.387186\pi
104104 0 0
105105 0 0
106106 0 0
107107 148.254i 1.38555i −0.721154 0.692774i 0.756388π-0.756388\pi
0.721154 0.692774i 0.243612π-0.243612\pi
108108 0 0
109109 201.904i 1.85233i −0.377116 0.926166i 0.623084π-0.623084\pi
0.377116 0.926166i 0.376916π-0.376916\pi
110110 0 0
111111 −203.473 −1.83309
112112 0 0
113113 −179.659 −1.58990 −0.794951 0.606673i 0.792504π-0.792504\pi
−0.794951 + 0.606673i 0.792504π0.792504\pi
114114 0 0
115115 0 0
116116 0 0
117117 226.794i 1.93841i
118118 0 0
119119 130.375 1.09559
120120 0 0
121121 −100.712 67.0683i −0.832328 0.554284i
122122 0 0
123123 369.412i 3.00335i
124124 0 0
125125 0 0
126126 0 0
127127 173.681i 1.36757i −0.729685 0.683784i 0.760333π-0.760333\pi
0.729685 0.683784i 0.239667π-0.239667\pi
128128 0 0
129129 150.634i 1.16771i
130130 0 0
131131 99.4932i 0.759490i 0.925091 + 0.379745i 0.123988π0.123988\pi
−0.925091 + 0.379745i 0.876012π0.876012\pi
132132 0 0
133133 −151.761 −1.14106
134134 0 0
135135 0 0
136136 0 0
137137 155.034 1.13163 0.565816 0.824531i 0.308561π-0.308561\pi
0.565816 + 0.824531i 0.308561π0.308561\pi
138138 0 0
139139 62.7620i 0.451525i 0.974182 + 0.225763i 0.0724874π0.0724874\pi
−0.974182 + 0.225763i 0.927513π0.927513\pi
140140 0 0
141141 −3.45061 −0.0244724
142142 0 0
143143 154.137 + 46.6269i 1.07788 + 0.326063i
144144 0 0
145145 0 0
146146 0 0
147147 −614.395 −4.17955
148148 0 0
149149 137.649i 0.923818i −0.886927 0.461909i 0.847165π-0.847165\pi
0.886927 0.461909i 0.152835π-0.152835\pi
150150 0 0
151151 229.174i 1.51771i −0.651259 0.758856i 0.725759π-0.725759\pi
0.651259 0.758856i 0.274241π-0.274241\pi
152152 0 0
153153 153.493i 1.00322i
154154 0 0
155155 0 0
156156 0 0
157157 137.708 0.877118 0.438559 0.898702i 0.355489π-0.355489\pi
0.438559 + 0.898702i 0.355489π0.355489\pi
158158 0 0
159159 −84.4141 −0.530906
160160 0 0
161161 192.172i 1.19362i
162162 0 0
163163 38.9324 0.238849 0.119425 0.992843i 0.461895π-0.461895\pi
0.119425 + 0.992843i 0.461895π0.461895\pi
164164 0 0
165165 0 0
166166 0 0
167167 165.244i 0.989488i −0.869039 0.494744i 0.835262π-0.835262\pi
0.869039 0.494744i 0.164738π-0.164738\pi
168168 0 0
169169 −45.3175 −0.268151
170170 0 0
171171 178.672i 1.04486i
172172 0 0
173173 297.612i 1.72030i −0.510042 0.860149i 0.670370π-0.670370\pi
0.510042 0.860149i 0.329630π-0.329630\pi
174174 0 0
175175 0 0
176176 0 0
177177 −31.1407 −0.175936
178178 0 0
179179 −208.567 −1.16518 −0.582588 0.812767i 0.697960π-0.697960\pi
−0.582588 + 0.812767i 0.697960π0.697960\pi
180180 0 0
181181 234.341 1.29470 0.647351 0.762192i 0.275877π-0.275877\pi
0.647351 + 0.762192i 0.275877π0.275877\pi
182182 0 0
183183 250.843i 1.37073i
184184 0 0
185185 0 0
186186 0 0
187187 104.320 + 31.5569i 0.557859 + 0.168754i
188188 0 0
189189 422.752i 2.23678i
190190 0 0
191191 186.250 0.975128 0.487564 0.873087i 0.337885π-0.337885\pi
0.487564 + 0.873087i 0.337885π0.337885\pi
192192 0 0
193193 144.553i 0.748982i −0.927231 0.374491i 0.877818π-0.877818\pi
0.927231 0.374491i 0.122182π-0.122182\pi
194194 0 0
195195 0 0
196196 0 0
197197 159.129i 0.807762i −0.914812 0.403881i 0.867661π-0.867661\pi
0.914812 0.403881i 0.132339π-0.132339\pi
198198 0 0
199199 208.591 1.04820 0.524098 0.851658i 0.324402π-0.324402\pi
0.524098 + 0.851658i 0.324402π0.324402\pi
200200 0 0
201201 405.009 2.01497
202202 0 0
203203 −108.989 −0.536891
204204 0 0
205205 0 0
206206 0 0
207207 226.249 1.09299
208208 0 0
209209 −121.432 36.7334i −0.581013 0.175758i
210210 0 0
211211 249.692i 1.18337i 0.806168 + 0.591687i 0.201538π0.201538\pi
−0.806168 + 0.591687i 0.798462π0.798462\pi
212212 0 0
213213 −308.993 −1.45067
214214 0 0
215215 0 0
216216 0 0
217217 700.409i 3.22769i
218218 0 0
219219 57.1852i 0.261120i
220220 0 0
221221 −145.049 −0.656331
222222 0 0
223223 94.8922 0.425526 0.212763 0.977104i 0.431754π-0.431754\pi
0.212763 + 0.977104i 0.431754π0.431754\pi
224224 0 0
225225 0 0
226226 0 0
227227 365.237i 1.60897i 0.593970 + 0.804487i 0.297560π0.297560\pi
−0.593970 + 0.804487i 0.702440π0.702440\pi
228228 0 0
229229 −181.047 −0.790600 −0.395300 0.918552i 0.629359π-0.629359\pi
−0.395300 + 0.918552i 0.629359π0.629359\pi
230230 0 0
231231 −685.642 207.408i −2.96815 0.897872i
232232 0 0
233233 291.907i 1.25282i 0.779494 + 0.626410i 0.215476π0.215476\pi
−0.779494 + 0.626410i 0.784524π0.784524\pi
234234 0 0
235235 0 0
236236 0 0
237237 392.151i 1.65465i
238238 0 0
239239 43.0882i 0.180285i −0.995929 0.0901427i 0.971268π-0.971268\pi
0.995929 0.0901427i 0.0287323π-0.0287323\pi
240240 0 0
241241 77.0546i 0.319729i −0.987139 0.159864i 0.948894π-0.948894\pi
0.987139 0.159864i 0.0511057π-0.0511057\pi
242242 0 0
243243 −192.296 −0.791340
244244 0 0
245245 0 0
246246 0 0
247247 168.842 0.683572
248248 0 0
249249 404.874i 1.62600i
250250 0 0
251251 7.50457 0.0298987 0.0149494 0.999888i 0.495241π-0.495241\pi
0.0149494 + 0.999888i 0.495241π0.495241\pi
252252 0 0
253253 −46.5149 + 153.767i −0.183853 + 0.607774i
254254 0 0
255255 0 0
256256 0 0
257257 86.1842 0.335347 0.167674 0.985843i 0.446375π-0.446375\pi
0.167674 + 0.985843i 0.446375π0.446375\pi
258258 0 0
259259 541.008i 2.08883i
260260 0 0
261261 128.315i 0.491629i
262262 0 0
263263 328.758i 1.25003i −0.780612 0.625016i 0.785093π-0.785093\pi
0.780612 0.625016i 0.214907π-0.214907\pi
264264 0 0
265265 0 0
266266 0 0
267267 677.683 2.53814
268268 0 0
269269 −358.896 −1.33418 −0.667092 0.744975i 0.732461π-0.732461\pi
−0.667092 + 0.744975i 0.732461π0.732461\pi
270270 0 0
271271 223.030i 0.822989i 0.911412 + 0.411494i 0.134993π0.134993\pi
−0.911412 + 0.411494i 0.865007π0.865007\pi
272272 0 0
273273 953.339 3.49208
274274 0 0
275275 0 0
276276 0 0
277277 81.1615i 0.293002i 0.989211 + 0.146501i 0.0468011π0.0468011\pi
−0.989211 + 0.146501i 0.953199π0.953199\pi
278278 0 0
279279 824.607 2.95558
280280 0 0
281281 91.9342i 0.327168i −0.986529 0.163584i 0.947695π-0.947695\pi
0.986529 0.163584i 0.0523054π-0.0523054\pi
282282 0 0
283283 1.55872i 0.00550784i 0.999996 + 0.00275392i 0.000876601π0.000876601\pi
−0.999996 + 0.00275392i 0.999123π0.999123\pi
284284 0 0
285285 0 0
286286 0 0
287287 −982.218 −3.42236
288288 0 0
289289 190.831 0.660316
290290 0 0
291291 397.243 1.36510
292292 0 0
293293 361.504i 1.23380i −0.787041 0.616900i 0.788388π-0.788388\pi
0.787041 0.616900i 0.211612π-0.211612\pi
294294 0 0
295295 0 0
296296 0 0
297297 −102.326 + 338.265i −0.344532 + 1.13894i
298298 0 0
299299 213.802i 0.715058i
300300 0 0
301301 −400.516 −1.33062
302302 0 0
303303 95.5999i 0.315511i
304304 0 0
305305 0 0
306306 0 0
307307 51.3776i 0.167354i −0.996493 0.0836769i 0.973334π-0.973334\pi
0.996493 0.0836769i 0.0266664π-0.0266664\pi
308308 0 0
309309 353.801 1.14499
310310 0 0
311311 198.075 0.636898 0.318449 0.947940i 0.396838π-0.396838\pi
0.318449 + 0.947940i 0.396838π0.396838\pi
312312 0 0
313313 22.2970 0.0712365 0.0356183 0.999365i 0.488660π-0.488660\pi
0.0356183 + 0.999365i 0.488660π0.488660\pi
314314 0 0
315315 0 0
316316 0 0
317317 102.256 0.322574 0.161287 0.986908i 0.448436π-0.448436\pi
0.161287 + 0.986908i 0.448436π0.448436\pi
318318 0 0
319319 −87.2075 26.3805i −0.273378 0.0826975i
320320 0 0
321321 733.696i 2.28566i
322322 0 0
323323 114.272 0.353783
324324 0 0
325325 0 0
326326 0 0
327327 999.208i 3.05568i
328328 0 0
329329 9.17471i 0.0278867i
330330 0 0
331331 −353.647 −1.06842 −0.534211 0.845351i 0.679391π-0.679391\pi
−0.534211 + 0.845351i 0.679391π0.679391\pi
332332 0 0
333333 −636.941 −1.91273
334334 0 0
335335 0 0
336336 0 0
337337 237.983i 0.706182i 0.935589 + 0.353091i 0.114869π0.114869\pi
−0.935589 + 0.353091i 0.885131π0.885131\pi
338338 0 0
339339 −889.119 −2.62277
340340 0 0
341341 −169.532 + 560.433i −0.497162 + 1.64350i
342342 0 0
343343 988.826i 2.88288i
344344 0 0
345345 0 0
346346 0 0
347347 142.124i 0.409580i −0.978806 0.204790i 0.934349π-0.934349\pi
0.978806 0.204790i 0.0656512π-0.0656512\pi
348348 0 0
349349 25.4867i 0.0730278i 0.999333 + 0.0365139i 0.0116253π0.0116253\pi
−0.999333 + 0.0365139i 0.988375π0.988375\pi
350350 0 0
351351 470.335i 1.33999i
352352 0 0
353353 −155.144 −0.439502 −0.219751 0.975556i 0.570524π-0.570524\pi
−0.219751 + 0.975556i 0.570524π0.570524\pi
354354 0 0
355355 0 0
356356 0 0
357357 645.216 1.80733
358358 0 0
359359 6.51482i 0.0181471i 0.999959 + 0.00907357i 0.00288825π0.00288825\pi
−0.999959 + 0.00907357i 0.997112π0.997112\pi
360360 0 0
361361 227.984 0.631533
362362 0 0
363363 −498.414 331.916i −1.37304 0.914369i
364364 0 0
365365 0 0
366366 0 0
367367 −102.889 −0.280353 −0.140176 0.990127i 0.544767π-0.544767\pi
−0.140176 + 0.990127i 0.544767π0.544767\pi
368368 0 0
369369 1156.39i 3.13384i
370370 0 0
371371 224.446i 0.604976i
372372 0 0
373373 119.790i 0.321152i 0.987024 + 0.160576i 0.0513351π0.0513351\pi
−0.987024 + 0.160576i 0.948665π0.948665\pi
374374 0 0
375375 0 0
376376 0 0
377377 121.256 0.321634
378378 0 0
379379 175.693 0.463570 0.231785 0.972767i 0.425543π-0.425543\pi
0.231785 + 0.972767i 0.425543π0.425543\pi
380380 0 0
381381 859.534i 2.25599i
382382 0 0
383383 −225.422 −0.588570 −0.294285 0.955718i 0.595082π-0.595082\pi
−0.294285 + 0.955718i 0.595082π0.595082\pi
384384 0 0
385385 0 0
386386 0 0
387387 471.537i 1.21844i
388388 0 0
389389 91.2920 0.234684 0.117342 0.993092i 0.462563π-0.462563\pi
0.117342 + 0.993092i 0.462563π0.462563\pi
390390 0 0
391391 144.701i 0.370078i
392392 0 0
393393 492.384i 1.25289i
394394 0 0
395395 0 0
396396 0 0
397397 −602.789 −1.51836 −0.759181 0.650880i 0.774400π-0.774400\pi
−0.759181 + 0.650880i 0.774400π0.774400\pi
398398 0 0
399399 −751.054 −1.88234
400400 0 0
401401 277.075 0.690961 0.345480 0.938426i 0.387716π-0.387716\pi
0.345480 + 0.938426i 0.387716π0.387716\pi
402402 0 0
403403 779.243i 1.93361i
404404 0 0
405405 0 0
406406 0 0
407407 130.950 432.888i 0.321744 1.06361i
408408 0 0
409409 165.156i 0.403804i −0.979406 0.201902i 0.935288π-0.935288\pi
0.979406 0.201902i 0.0647122π-0.0647122\pi
410410 0 0
411411 767.249 1.86679
412412 0 0
413413 82.7990i 0.200482i
414414 0 0
415415 0 0
416416 0 0
417417 310.604i 0.744855i
418418 0 0
419419 −619.744 −1.47910 −0.739551 0.673100i 0.764962π-0.764962\pi
−0.739551 + 0.673100i 0.764962π0.764962\pi
420420 0 0
421421 232.190 0.551520 0.275760 0.961226i 0.411070π-0.411070\pi
0.275760 + 0.961226i 0.411070π0.411070\pi
422422 0 0
423423 −10.8016 −0.0255357
424424 0 0
425425 0 0
426426 0 0
427427 −666.959 −1.56197
428428 0 0
429429 762.814 + 230.753i 1.77812 + 0.537886i
430430 0 0
431431 606.608i 1.40744i −0.710476 0.703721i 0.751520π-0.751520\pi
0.710476 0.703721i 0.248480π-0.248480\pi
432432 0 0
433433 −85.1841 −0.196730 −0.0983650 0.995150i 0.531361π-0.531361\pi
−0.0983650 + 0.995150i 0.531361π0.531361\pi
434434 0 0
435435 0 0
436436 0 0
437437 168.436i 0.385438i
438438 0 0
439439 559.497i 1.27448i 0.770665 + 0.637240i 0.219924π0.219924\pi
−0.770665 + 0.637240i 0.780076π0.780076\pi
440440 0 0
441441 −1923.27 −4.36115
442442 0 0
443443 171.266 0.386606 0.193303 0.981139i 0.438080π-0.438080\pi
0.193303 + 0.981139i 0.438080π0.438080\pi
444444 0 0
445445 0 0
446446 0 0
447447 681.214i 1.52397i
448448 0 0
449449 701.180 1.56165 0.780824 0.624751i 0.214800π-0.214800\pi
0.780824 + 0.624751i 0.214800π0.214800\pi
450450 0 0
451451 −785.922 237.743i −1.74262 0.527147i
452452 0 0
453453 1134.17i 2.50368i
454454 0 0
455455 0 0
456456 0 0
457457 94.6651i 0.207145i −0.994622 0.103572i 0.966973π-0.966973\pi
0.994622 0.103572i 0.0330273π-0.0330273\pi
458458 0 0
459459 318.321i 0.693509i
460460 0 0
461461 386.694i 0.838815i −0.907798 0.419408i 0.862238π-0.862238\pi
0.907798 0.419408i 0.137762π-0.137762\pi
462462 0 0
463463 −364.997 −0.788330 −0.394165 0.919040i 0.628966π-0.628966\pi
−0.394165 + 0.919040i 0.628966π0.628966\pi
464464 0 0
465465 0 0
466466 0 0
467467 719.317 1.54029 0.770147 0.637867i 0.220183π-0.220183\pi
0.770147 + 0.637867i 0.220183π0.220183\pi
468468 0 0
469469 1076.87i 2.29609i
470470 0 0
471471 681.504 1.44693
472472 0 0
473473 −320.473 96.9440i −0.677533 0.204955i
474474 0 0
475475 0 0
476476 0 0
477477 −264.245 −0.553973
478478 0 0
479479 373.191i 0.779104i −0.921004 0.389552i 0.872630π-0.872630\pi
0.921004 0.389552i 0.127370π-0.127370\pi
480480 0 0
481481 601.901i 1.25135i
482482 0 0
483483 951.047i 1.96904i
484484 0 0
485485 0 0
486486 0 0
487487 480.297 0.986237 0.493118 0.869962i 0.335857π-0.335857\pi
0.493118 + 0.869962i 0.335857π0.335857\pi
488488 0 0
489489 192.673 0.394015
490490 0 0
491491 107.055i 0.218035i 0.994040 + 0.109017i 0.0347704π0.0347704\pi
−0.994040 + 0.109017i 0.965230π0.965230\pi
492492 0 0
493493 82.0656 0.166462
494494 0 0
495495 0 0
496496 0 0
497497 821.573i 1.65306i
498498 0 0
499499 296.804 0.594798 0.297399 0.954753i 0.403881π-0.403881\pi
0.297399 + 0.954753i 0.403881π0.403881\pi
500500 0 0
501501 817.782i 1.63230i
502502 0 0
503503 538.023i 1.06963i −0.844969 0.534815i 0.820381π-0.820381\pi
0.844969 0.534815i 0.179619π-0.179619\pi
504504 0 0
505505 0 0
506506 0 0
507507 −224.273 −0.442353
508508 0 0
509509 −383.073 −0.752599 −0.376299 0.926498i 0.622804π-0.622804\pi
−0.376299 + 0.926498i 0.622804π0.622804\pi
510510 0 0
511511 152.048 0.297550
512512 0 0
513513 370.537i 0.722293i
514514 0 0
515515 0 0
516516 0 0
517517 2.22072 7.34115i 0.00429539 0.0141995i
518518 0 0
519519 1472.86i 2.83787i
520520 0 0
521521 −484.670 −0.930270 −0.465135 0.885240i 0.653994π-0.653994\pi
−0.465135 + 0.885240i 0.653994π0.653994\pi
522522 0 0
523523 481.382i 0.920424i 0.887809 + 0.460212i 0.152227π0.152227\pi
−0.887809 + 0.460212i 0.847773π0.847773\pi
524524 0 0
525525 0 0
526526 0 0
527527 527.389i 1.00074i
528528 0 0
529529 −315.712 −0.596809
530530 0 0
531531 −97.4811 −0.183580
532532 0 0
533533 1092.77 2.05023
534534 0 0
535535 0 0
536536 0 0
537537 −1032.18 −1.92212
538538 0 0
539539 395.407 1307.12i 0.733595 2.42509i
540540 0 0
541541 534.638i 0.988241i 0.869393 + 0.494121i 0.164510π0.164510\pi
−0.869393 + 0.494121i 0.835490π0.835490\pi
542542 0 0
543543 1159.74 2.13580
544544 0 0
545545 0 0
546546 0 0
547547 601.686i 1.09997i 0.835173 + 0.549987i 0.185367π0.185367\pi
−0.835173 + 0.549987i 0.814633π0.814633\pi
548548 0 0
549549 785.226i 1.43028i
550550 0 0
551551 −95.5273 −0.173371
552552 0 0
553553 −1042.68 −1.88549
554554 0 0
555555 0 0
556556 0 0
557557 802.187i 1.44019i 0.693874 + 0.720096i 0.255902π0.255902\pi
−0.693874 + 0.720096i 0.744098π0.744098\pi
558558 0 0
559559 445.596 0.797131
560560 0 0
561561 516.270 + 156.173i 0.920267 + 0.278383i
562562 0 0
563563 729.072i 1.29498i 0.762075 + 0.647489i 0.224181π0.224181\pi
−0.762075 + 0.647489i 0.775819π0.775819\pi
564564 0 0
565565 0 0
566566 0 0
567567 257.519i 0.454178i
568568 0 0
569569 629.473i 1.10628i −0.833089 0.553140i 0.813430π-0.813430\pi
0.833089 0.553140i 0.186570π-0.186570\pi
570570 0 0
571571 615.487i 1.07791i 0.842335 + 0.538955i 0.181181π0.181181\pi
−0.842335 + 0.538955i 0.818819π0.818819\pi
572572 0 0
573573 921.735 1.60861
574574 0 0
575575 0 0
576576 0 0
577577 162.104 0.280942 0.140471 0.990085i 0.455138π-0.455138\pi
0.140471 + 0.990085i 0.455138π0.455138\pi
578578 0 0
579579 715.384i 1.23555i
580580 0 0
581581 1076.51 1.85285
582582 0 0
583583 54.3266 179.591i 0.0931845 0.308046i
584584 0 0
585585 0 0
586586 0 0
587587 661.750 1.12734 0.563671 0.825999i 0.309389π-0.309389\pi
0.563671 + 0.825999i 0.309389π0.309389\pi
588588 0 0
589589 613.899i 1.04227i
590590 0 0
591591 787.518i 1.33252i
592592 0 0
593593 77.0827i 0.129988i −0.997886 0.0649939i 0.979297π-0.979297\pi
0.997886 0.0649939i 0.0207028π-0.0207028\pi
594594 0 0
595595 0 0
596596 0 0
597597 1032.30 1.72915
598598 0 0
599599 −414.443 −0.691891 −0.345945 0.938255i 0.612442π-0.612442\pi
−0.345945 + 0.938255i 0.612442π0.612442\pi
600600 0 0
601601 258.961i 0.430883i −0.976517 0.215441i 0.930881π-0.930881\pi
0.976517 0.215441i 0.0691191π-0.0691191\pi
602602 0 0
603603 1267.82 2.10252
604604 0 0
605605 0 0
606606 0 0
607607 447.958i 0.737986i 0.929432 + 0.368993i 0.120297π0.120297\pi
−0.929432 + 0.368993i 0.879703π0.879703\pi
608608 0 0
609609 −539.378 −0.885678
610610 0 0
611611 10.2074i 0.0167060i
612612 0 0
613613 762.804i 1.24438i −0.782867 0.622190i 0.786243π-0.786243\pi
0.782867 0.622190i 0.213757π-0.213757\pi
614614 0 0
615615 0 0
616616 0 0
617617 531.407 0.861276 0.430638 0.902525i 0.358289π-0.358289\pi
0.430638 + 0.902525i 0.358289π0.358289\pi
618618 0 0
619619 648.349 1.04741 0.523707 0.851898i 0.324549π-0.324549\pi
0.523707 + 0.851898i 0.324549π0.324549\pi
620620 0 0
621621 469.204 0.755562
622622 0 0
623623 1801.87i 2.89225i
624624 0 0
625625 0 0
626626 0 0
627627 −600.956 181.791i −0.958463 0.289937i
628628 0 0
629629 407.364i 0.647638i
630630 0 0
631631 −500.262 −0.792808 −0.396404 0.918076i 0.629742π-0.629742\pi
−0.396404 + 0.918076i 0.629742π0.629742\pi
632632 0 0
633633 1235.71i 1.95214i
634634 0 0
635635 0 0
636636 0 0
637637 1817.46i 2.85316i
638638 0 0
639639 −967.256 −1.51370
640640 0 0
641641 195.726 0.305345 0.152673 0.988277i 0.451212π-0.451212\pi
0.152673 + 0.988277i 0.451212π0.451212\pi
642642 0 0
643643 −1016.58 −1.58100 −0.790498 0.612465i 0.790178π-0.790178\pi
−0.790498 + 0.612465i 0.790178π0.790178\pi
644644 0 0
645645 0 0
646646 0 0
647647 −489.683 −0.756851 −0.378426 0.925632i 0.623534π-0.623534\pi
−0.378426 + 0.925632i 0.623534π0.623534\pi
648648 0 0
649649 20.0413 66.2517i 0.0308803 0.102083i
650650 0 0
651651 3466.27i 5.32453i
652652 0 0
653653 −293.173 −0.448964 −0.224482 0.974478i 0.572069π-0.572069\pi
−0.224482 + 0.974478i 0.572069π0.572069\pi
654654 0 0
655655 0 0
656656 0 0
657657 179.010i 0.272465i
658658 0 0
659659 590.485i 0.896032i −0.894026 0.448016i 0.852131π-0.852131\pi
0.894026 0.448016i 0.147869π-0.147869\pi
660660 0 0
661661 43.8951 0.0664072 0.0332036 0.999449i 0.489429π-0.489429\pi
0.0332036 + 0.999449i 0.489429π0.489429\pi
662662 0 0
663663 −717.837 −1.08271
664664 0 0
665665 0 0
666666 0 0
667667 120.965i 0.181356i
668668 0 0
669669 469.614 0.701964
670670 0 0
671671 −533.668 161.436i −0.795332 0.240590i
672672 0 0
673673 869.115i 1.29140i 0.763590 + 0.645702i 0.223435π0.223435\pi
−0.763590 + 0.645702i 0.776565π0.776565\pi
674674 0 0
675675 0 0
676676 0 0
677677 480.512i 0.709766i −0.934911 0.354883i 0.884521π-0.884521\pi
0.934911 0.354883i 0.115479π-0.115479\pi
678678 0 0
679679 1056.22i 1.55555i
680680 0 0
681681 1807.53i 2.65423i
682682 0 0
683683 −1111.42 −1.62726 −0.813632 0.581380i 0.802513π-0.802513\pi
−0.813632 + 0.581380i 0.802513π0.802513\pi
684684 0 0
685685 0 0
686686 0 0
687687 −895.989 −1.30421
688688 0 0
689689 249.708i 0.362421i
690690 0 0
691691 373.681 0.540783 0.270391 0.962750i 0.412847π-0.412847\pi
0.270391 + 0.962750i 0.412847π0.412847\pi
692692 0 0
693693 −2146.30 649.260i −3.09711 0.936883i
694694 0 0
695695 0 0
696696 0 0
697697 739.583 1.06109
698698 0 0
699699 1444.63i 2.06670i
700700 0 0
701701 732.819i 1.04539i 0.852520 + 0.522695i 0.175073π0.175073\pi
−0.852520 + 0.522695i 0.824927π0.824927\pi
702702 0 0
703703 474.186i 0.674518i
704704 0 0
705705 0 0
706706 0 0
707707 254.188 0.359530
708708 0 0
709709 −799.109 −1.12709 −0.563547 0.826084i 0.690563π-0.690563\pi
−0.563547 + 0.826084i 0.690563π0.690563\pi
710710 0 0
711711 1227.57i 1.72654i
712712 0 0
713713 777.370 1.09028
714714 0 0
715715 0 0
716716 0 0
717717 213.240i 0.297406i
718718 0 0
719719 −375.329 −0.522015 −0.261008 0.965337i 0.584055π-0.584055\pi
−0.261008 + 0.965337i 0.584055π0.584055\pi
720720 0 0
721721 940.710i 1.30473i
722722 0 0
723723 381.337i 0.527438i
724724 0 0
725725 0 0
726726 0 0
727727 21.7939 0.0299779 0.0149889 0.999888i 0.495229π-0.495229\pi
0.0149889 + 0.999888i 0.495229π0.495229\pi
728728 0 0
729729 −1127.79 −1.54704
730730 0 0
731731 301.578 0.412555
732732 0 0
733733 34.7783i 0.0474466i 0.999719 + 0.0237233i 0.00755206π0.00755206\pi
−0.999719 + 0.0237233i 0.992448π0.992448\pi
734734 0 0
735735 0 0
736736 0 0
737737 −260.653 + 861.654i −0.353667 + 1.16914i
738738 0 0
739739 332.608i 0.450079i −0.974350 0.225039i 0.927749π-0.927749\pi
0.974350 0.225039i 0.0722511π-0.0722511\pi
740740 0 0
741741 835.588 1.12765
742742 0 0
743743 999.033i 1.34459i 0.740282 + 0.672297i 0.234692π0.234692\pi
−0.740282 + 0.672297i 0.765308π0.765308\pi
744744 0 0
745745 0 0
746746 0 0
747747 1267.40i 1.69665i
748748 0 0
749749 1950.80 2.60454
750750 0 0
751751 −218.656 −0.291153 −0.145576 0.989347i 0.546504π-0.546504\pi
−0.145576 + 0.989347i 0.546504π0.546504\pi
752752 0 0
753753 37.1396 0.0493221
754754 0 0
755755 0 0
756756 0 0
757757 158.061 0.208800 0.104400 0.994535i 0.466708π-0.466708\pi
0.104400 + 0.994535i 0.466708π0.466708\pi
758758 0 0
759759 −230.198 + 760.980i −0.303292 + 1.00261i
760760 0 0
761761 389.588i 0.511942i −0.966684 0.255971i 0.917605π-0.917605\pi
0.966684 0.255971i 0.0823952π-0.0823952\pi
762762 0 0
763763 2656.76 3.48200
764764 0 0
765765 0 0
766766 0 0
767767 92.1184i 0.120102i
768768 0 0
769769 687.354i 0.893828i 0.894577 + 0.446914i 0.147477π0.147477\pi
−0.894577 + 0.446914i 0.852523π0.852523\pi
770770 0 0
771771 426.519 0.553202
772772 0 0
773773 934.266 1.20862 0.604312 0.796748i 0.293448π-0.293448\pi
0.604312 + 0.796748i 0.293448π0.293448\pi
774774 0 0
775775 0 0
776776 0 0
777777 2677.41i 3.44583i
778778 0 0
779779 −860.901 −1.10514
780780 0 0
781781 198.860 657.382i 0.254622 0.841718i
782782 0 0
783783 266.105i 0.339853i
784784 0 0
785785 0 0
786786 0 0
787787 793.478i 1.00823i 0.863636 + 0.504116i 0.168181π0.168181\pi
−0.863636 + 0.504116i 0.831819π0.831819\pi
788788 0 0
789789 1627.00i 2.06210i
790790 0 0
791791 2364.05i 2.98869i
792792 0 0
793793 742.028 0.935723
794794 0 0
795795 0 0
796796 0 0
797797 −1015.43 −1.27407 −0.637033 0.770837i 0.719838π-0.719838\pi
−0.637033 + 0.770837i 0.719838π0.719838\pi
798798 0 0
799799 6.90831i 0.00864619i
800800 0 0
801801 2121.38 2.64842
802802 0 0
803803 121.661 + 36.8029i 0.151509 + 0.0458317i
804804 0 0
805805 0 0
806806 0 0
807807 −1776.15 −2.20093
808808 0 0
809809 759.906i 0.939316i −0.882849 0.469658i 0.844377π-0.844377\pi
0.882849 0.469658i 0.155623π-0.155623\pi
810810 0 0
811811 626.134i 0.772052i 0.922488 + 0.386026i 0.126152π0.126152\pi
−0.922488 + 0.386026i 0.873848π0.873848\pi
812812 0 0
813813 1103.76i 1.35764i
814814 0 0
815815 0 0
816816 0 0
817817 −351.047 −0.429678
818818 0 0
819819 2984.28 3.64381
820820 0 0
821821 677.557i 0.825283i 0.910894 + 0.412641i 0.135394π0.135394\pi
−0.910894 + 0.412641i 0.864606π0.864606\pi
822822 0 0
823823 −55.0463 −0.0668850 −0.0334425 0.999441i 0.510647π-0.510647\pi
−0.0334425 + 0.999441i 0.510647π0.510647\pi
824824 0 0
825825 0 0
826826 0 0
827827 198.508i 0.240034i −0.992772 0.120017i 0.961705π-0.961705\pi
0.992772 0.120017i 0.0382950π-0.0382950\pi
828828 0 0
829829 −1191.24 −1.43696 −0.718481 0.695547i 0.755162π-0.755162\pi
−0.718481 + 0.695547i 0.755162π0.755162\pi
830830 0 0
831831 401.662i 0.483348i
832832 0 0
833833 1230.05i 1.47665i
834834 0 0
835835 0 0
836836 0 0
837837 1710.10 2.04313
838838 0 0
839839 159.788 0.190450 0.0952252 0.995456i 0.469643π-0.469643\pi
0.0952252 + 0.995456i 0.469643π0.469643\pi
840840 0 0
841841 772.396 0.918426
842842 0 0
843843 454.975i 0.539709i
844844 0 0
845845 0 0
846846 0 0
847847 882.521 1325.22i 1.04194 1.56460i
848848 0 0
849849 7.71398i 0.00908596i
850850 0 0
851851 −600.454 −0.705586
852852 0 0
853853 214.501i 0.251467i −0.992064 0.125733i 0.959872π-0.959872\pi
0.992064 0.125733i 0.0401284π-0.0401284\pi
854854 0 0
855855 0 0
856856 0 0
857857 773.417i 0.902471i −0.892405 0.451235i 0.850983π-0.850983\pi
0.892405 0.451235i 0.149017π-0.149017\pi
858858 0 0
859859 497.526 0.579193 0.289596 0.957149i 0.406479π-0.406479\pi
0.289596 + 0.957149i 0.406479π0.406479\pi
860860 0 0
861861 −4860.92 −5.64567
862862 0 0
863863 −476.209 −0.551807 −0.275903 0.961185i 0.588977π-0.588977\pi
−0.275903 + 0.961185i 0.588977π0.588977\pi
864864 0 0
865865 0 0
866866 0 0
867867 944.409 1.08928
868868 0 0
869869 −834.299 252.378i −0.960068 0.290423i
870870 0 0
871871 1198.07i 1.37551i
872872 0 0
873873 1243.51 1.42441
874874 0 0
875875 0 0
876876 0 0
877877 329.549i 0.375768i −0.982191 0.187884i 0.939837π-0.939837\pi
0.982191 0.187884i 0.0601629π-0.0601629\pi
878878 0 0
879879 1789.05i 2.03533i
880880 0 0
881881 4.25551 0.00483031 0.00241516 0.999997i 0.499231π-0.499231\pi
0.00241516 + 0.999997i 0.499231π0.499231\pi
882882 0 0
883883 −288.392 −0.326605 −0.163302 0.986576i 0.552215π-0.552215\pi
−0.163302 + 0.986576i 0.552215π0.552215\pi
884884 0 0
885885 0 0
886886 0 0
887887 437.564i 0.493308i 0.969104 + 0.246654i 0.0793312π0.0793312\pi
−0.969104 + 0.246654i 0.920669π0.920669\pi
888888 0 0
889889 2285.39 2.57074
890890 0 0
891891 −62.3319 + 206.054i −0.0699572 + 0.231262i
892892 0 0
893893 8.04151i 0.00900505i
894894 0 0
895895 0 0
896896 0 0
897897 1058.09i 1.17959i
898898 0 0
899899 440.878i 0.490410i
900900 0 0
901901 169.002i 0.187571i
902902 0 0
903903 −1982.12 −2.19504
904904 0 0
905905 0 0
906906 0 0
907907 −1071.31 −1.18115 −0.590576 0.806982i 0.701100π-0.701100\pi
−0.590576 + 0.806982i 0.701100π0.701100\pi
908908 0 0
909909 299.261i 0.329220i
910910 0 0
911911 −503.288 −0.552457 −0.276228 0.961092i 0.589085π-0.589085\pi
−0.276228 + 0.961092i 0.589085π0.589085\pi
912912 0 0
913913 861.367 + 260.566i 0.943447 + 0.285395i
914914 0 0
915915 0 0
916916 0 0
917917 −1309.19 −1.42768
918918 0 0
919919 1781.27i 1.93827i 0.246534 + 0.969134i 0.420708π0.420708\pi
−0.246534 + 0.969134i 0.579292π0.579292\pi
920920 0 0
921921 254.264i 0.276074i
922922 0 0
923923 914.045i 0.990297i
924924 0 0
925925 0 0
926926 0 0
927927 1107.52 1.19473
928928 0 0
929929 −879.394 −0.946603 −0.473301 0.880901i 0.656938π-0.656938\pi
−0.473301 + 0.880901i 0.656938π0.656938\pi
930930 0 0
931931 1431.82i 1.53794i
932932 0 0
933933 980.260 1.05065
934934 0 0
935935 0 0
936936 0 0
937937 446.198i 0.476198i 0.971241 + 0.238099i 0.0765243π0.0765243\pi
−0.971241 + 0.238099i 0.923476π0.923476\pi
938938 0 0
939939 110.346 0.117515
940940 0 0
941941 245.275i 0.260653i −0.991471 0.130327i 0.958397π-0.958397\pi
0.991471 0.130327i 0.0416026π-0.0416026\pi
942942 0 0
943943 1090.14i 1.15604i
944944 0 0
945945 0 0
946946 0 0
947947 236.400 0.249631 0.124815 0.992180i 0.460166π-0.460166\pi
0.124815 + 0.992180i 0.460166π0.460166\pi
948948 0 0
949949 −169.162 −0.178253
950950 0 0
951951 506.056 0.532131
952952 0 0
953953 1049.09i 1.10083i −0.834892 0.550414i 0.814470π-0.814470\pi
0.834892 0.550414i 0.185530π-0.185530\pi
954954 0 0
955955 0 0
956956 0 0
957957 −431.583 130.555i −0.450975 0.136421i
958958 0 0
959959 2040.02i 2.12723i
960960 0 0
961961 1872.27 1.94825
962962 0 0
963963 2296.72i 2.38497i
964964 0 0
965965 0 0
966966 0 0
967967 523.118i 0.540970i 0.962724 + 0.270485i 0.0871840π0.0871840\pi
−0.962724 + 0.270485i 0.912816π0.912816\pi
968968 0 0
969969 565.523 0.583615
970970 0 0
971971 −1692.15 −1.74268 −0.871341 0.490677i 0.836749π-0.836749\pi
−0.871341 + 0.490677i 0.836749π0.836749\pi
972972 0 0
973973 −825.857 −0.848773
974974 0 0
975975 0 0
976976 0 0
977977 −998.995 −1.02251 −0.511257 0.859428i 0.670820π-0.670820\pi
−0.511257 + 0.859428i 0.670820π0.670820\pi
978978 0 0
979979 −436.138 + 1441.77i −0.445493 + 1.47269i
980980 0 0
981981 3127.87i 3.18845i
982982 0 0
983983 1768.79 1.79938 0.899691 0.436528i 0.143792π-0.143792\pi
0.899691 + 0.436528i 0.143792π0.143792\pi
984984 0 0
985985 0 0
986986 0 0
987987 45.4050i 0.0460030i
988988 0 0
989989 444.525i 0.449469i
990990 0 0
991991 854.135 0.861892 0.430946 0.902378i 0.358180π-0.358180\pi
0.430946 + 0.902378i 0.358180π0.358180\pi
992992 0 0
993993 −1750.17 −1.76251
994994 0 0
995995 0 0
996996 0 0
997997 1362.72i 1.36682i 0.730036 + 0.683408i 0.239503π0.239503\pi
−0.730036 + 0.683408i 0.760497π0.760497\pi
998998 0 0
999999 −1320.91 −1.32224
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1100.3.f.f.901.8 8
5.2 odd 4 1100.3.e.b.549.1 16
5.3 odd 4 1100.3.e.b.549.16 16
5.4 even 2 220.3.f.a.21.1 8
11.10 odd 2 inner 1100.3.f.f.901.7 8
15.14 odd 2 1980.3.b.a.901.5 8
20.19 odd 2 880.3.j.b.241.8 8
55.32 even 4 1100.3.e.b.549.2 16
55.43 even 4 1100.3.e.b.549.15 16
55.54 odd 2 220.3.f.a.21.2 yes 8
165.164 even 2 1980.3.b.a.901.8 8
220.219 even 2 880.3.j.b.241.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.3.f.a.21.1 8 5.4 even 2
220.3.f.a.21.2 yes 8 55.54 odd 2
880.3.j.b.241.7 8 220.219 even 2
880.3.j.b.241.8 8 20.19 odd 2
1100.3.e.b.549.1 16 5.2 odd 4
1100.3.e.b.549.2 16 55.32 even 4
1100.3.e.b.549.15 16 55.43 even 4
1100.3.e.b.549.16 16 5.3 odd 4
1100.3.f.f.901.7 8 11.10 odd 2 inner
1100.3.f.f.901.8 8 1.1 even 1 trivial
1980.3.b.a.901.5 8 15.14 odd 2
1980.3.b.a.901.8 8 165.164 even 2