Properties

Label 1100.4.a.j
Level $1100$
Weight $4$
Character orbit 1100.a
Self dual yes
Analytic conductor $64.902$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1100,4,Mod(1,1100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1100.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1100.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(64.9021010063\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 93x^{3} + 71x^{2} + 1873x - 2715 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 - 1) q^{3} + ( - \beta_{4} - \beta_1 - 10) q^{7} + (\beta_{2} + 2 \beta_1 + 11) q^{9} + 11 q^{11} + (\beta_{4} - \beta_{3} - \beta_{2} + \cdots - 8) q^{13} + (\beta_{4} + \beta_{3} + \beta_{2} + \cdots - 14) q^{17}+ \cdots + (11 \beta_{2} + 22 \beta_1 + 121) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 6 q^{3} - 50 q^{7} + 59 q^{9} + 55 q^{11} - 45 q^{13} - 62 q^{17} + 3 q^{19} + 158 q^{21} - 73 q^{23} - 312 q^{27} + 157 q^{29} + 57 q^{31} - 66 q^{33} + 72 q^{37} + 518 q^{39} + 74 q^{41} + 213 q^{43}+ \cdots + 649 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 93x^{3} + 71x^{2} + 1873x - 2715 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 37 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{4} + 6\nu^{3} + 54\nu^{2} - 260\nu - 69 ) / 9 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} + 3\nu^{3} - 81\nu^{2} - 226\nu + 1050 ) / 27 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 37 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{4} + \beta_{3} + 3\beta_{2} + 54\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 18\beta_{4} - 3\beta_{3} + 72\beta_{2} + 64\beta _1 + 1941 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
8.44158
4.57551
1.53918
−6.25411
−7.30216
0 −9.44158 0 0 0 −27.8042 0 62.1434 0
1.2 0 −5.57551 0 0 0 20.7640 0 4.08629 0
1.3 0 −2.53918 0 0 0 −31.0503 0 −20.5526 0
1.4 0 5.25411 0 0 0 −7.12487 0 0.605666 0
1.5 0 6.30216 0 0 0 −4.78461 0 12.7172 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1100.4.a.j 5
5.b even 2 1 1100.4.a.m yes 5
5.c odd 4 2 1100.4.b.j 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1100.4.a.j 5 1.a even 1 1 trivial
1100.4.a.m yes 5 5.b even 2 1
1100.4.b.j 10 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1100))\):

\( T_{3}^{5} + 6T_{3}^{4} - 79T_{3}^{3} - 334T_{3}^{2} + 1461T_{3} + 4426 \) Copy content Toggle raw display
\( T_{7}^{5} + 50T_{7}^{4} + 129T_{7}^{3} - 20900T_{7}^{2} - 225721T_{7} - 611100 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} \) Copy content Toggle raw display
$3$ \( T^{5} + 6 T^{4} + \cdots + 4426 \) Copy content Toggle raw display
$5$ \( T^{5} \) Copy content Toggle raw display
$7$ \( T^{5} + 50 T^{4} + \cdots - 611100 \) Copy content Toggle raw display
$11$ \( (T - 11)^{5} \) Copy content Toggle raw display
$13$ \( T^{5} + 45 T^{4} + \cdots + 569084405 \) Copy content Toggle raw display
$17$ \( T^{5} + 62 T^{4} + \cdots + 396700488 \) Copy content Toggle raw display
$19$ \( T^{5} + \cdots - 6579183679 \) Copy content Toggle raw display
$23$ \( T^{5} + \cdots + 12723171957 \) Copy content Toggle raw display
$29$ \( T^{5} + \cdots + 10780618347 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots - 9310638465 \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots - 81614105668 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots - 63070168860 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots - 610802827632 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots + 202438063440 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots + 2056072511250 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots - 2722880626524 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots - 1054285961106 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots + 46022015760384 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots + 90164424394224 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots + 2152972860072 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots - 235259377206772 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots + 207960430987629 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots - 749849927110839 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots - 1617345275343 \) Copy content Toggle raw display
show more
show less