Properties

Label 1100.4.b.j.749.10
Level $1100$
Weight $4$
Character 1100.749
Analytic conductor $64.902$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1100,4,Mod(749,1100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1100.749");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1100.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(64.9021010063\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 187x^{8} + 12537x^{6} + 358849x^{4} + 3893659x^{2} + 7371225 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2}\cdot 5^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 749.10
Root \(8.44158i\) of defining polynomial
Character \(\chi\) \(=\) 1100.749
Dual form 1100.4.b.j.749.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.44158i q^{3} -27.8042i q^{7} -62.1434 q^{9} +11.0000 q^{11} +62.6157i q^{13} +101.549i q^{17} +113.764 q^{19} +262.516 q^{21} +94.7892i q^{23} -331.809i q^{27} -184.566 q^{29} +242.367 q^{31} +103.857i q^{33} +325.657i q^{37} -591.191 q^{39} -42.3024 q^{41} -241.298i q^{43} -294.119i q^{47} -430.075 q^{49} -958.781 q^{51} -330.830i q^{53} +1074.12i q^{57} -365.656 q^{59} -368.332 q^{61} +1727.85i q^{63} +996.600i q^{67} -894.959 q^{69} -831.332 q^{71} +349.642i q^{73} -305.847i q^{77} -473.373 q^{79} +1454.93 q^{81} -1059.45i q^{83} -1742.59i q^{87} +740.318 q^{89} +1740.98 q^{91} +2288.33i q^{93} -552.874i q^{97} -683.577 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 118 q^{9} + 110 q^{11} - 6 q^{19} + 316 q^{21} - 314 q^{29} + 114 q^{31} - 1036 q^{39} + 148 q^{41} - 1054 q^{49} - 2292 q^{51} - 1384 q^{59} - 1996 q^{61} - 2492 q^{69} - 3290 q^{71} - 2640 q^{79}+ \cdots - 1298 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1100\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(551\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.44158i 1.81703i 0.417850 + 0.908516i \(0.362784\pi\)
−0.417850 + 0.908516i \(0.637216\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 27.8042i − 1.50129i −0.660707 0.750644i \(-0.729743\pi\)
0.660707 0.750644i \(-0.270257\pi\)
\(8\) 0 0
\(9\) −62.1434 −2.30161
\(10\) 0 0
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) 62.6157i 1.33588i 0.744214 + 0.667941i \(0.232824\pi\)
−0.744214 + 0.667941i \(0.767176\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 101.549i 1.44878i 0.689392 + 0.724389i \(0.257878\pi\)
−0.689392 + 0.724389i \(0.742122\pi\)
\(18\) 0 0
\(19\) 113.764 1.37365 0.686825 0.726823i \(-0.259004\pi\)
0.686825 + 0.726823i \(0.259004\pi\)
\(20\) 0 0
\(21\) 262.516 2.72789
\(22\) 0 0
\(23\) 94.7892i 0.859344i 0.902985 + 0.429672i \(0.141371\pi\)
−0.902985 + 0.429672i \(0.858629\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 331.809i − 2.36506i
\(28\) 0 0
\(29\) −184.566 −1.18183 −0.590914 0.806734i \(-0.701233\pi\)
−0.590914 + 0.806734i \(0.701233\pi\)
\(30\) 0 0
\(31\) 242.367 1.40421 0.702103 0.712075i \(-0.252244\pi\)
0.702103 + 0.712075i \(0.252244\pi\)
\(32\) 0 0
\(33\) 103.857i 0.547856i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 325.657i 1.44696i 0.690344 + 0.723482i \(0.257459\pi\)
−0.690344 + 0.723482i \(0.742541\pi\)
\(38\) 0 0
\(39\) −591.191 −2.42734
\(40\) 0 0
\(41\) −42.3024 −0.161135 −0.0805673 0.996749i \(-0.525673\pi\)
−0.0805673 + 0.996749i \(0.525673\pi\)
\(42\) 0 0
\(43\) − 241.298i − 0.855760i −0.903836 0.427880i \(-0.859261\pi\)
0.903836 0.427880i \(-0.140739\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 294.119i − 0.912800i −0.889775 0.456400i \(-0.849139\pi\)
0.889775 0.456400i \(-0.150861\pi\)
\(48\) 0 0
\(49\) −430.075 −1.25386
\(50\) 0 0
\(51\) −958.781 −2.63248
\(52\) 0 0
\(53\) − 330.830i − 0.857415i −0.903443 0.428708i \(-0.858969\pi\)
0.903443 0.428708i \(-0.141031\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1074.12i 2.49597i
\(58\) 0 0
\(59\) −365.656 −0.806854 −0.403427 0.915012i \(-0.632181\pi\)
−0.403427 + 0.915012i \(0.632181\pi\)
\(60\) 0 0
\(61\) −368.332 −0.773116 −0.386558 0.922265i \(-0.626336\pi\)
−0.386558 + 0.922265i \(0.626336\pi\)
\(62\) 0 0
\(63\) 1727.85i 3.45537i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 996.600i 1.81722i 0.417641 + 0.908612i \(0.362857\pi\)
−0.417641 + 0.908612i \(0.637143\pi\)
\(68\) 0 0
\(69\) −894.959 −1.56146
\(70\) 0 0
\(71\) −831.332 −1.38959 −0.694795 0.719207i \(-0.744505\pi\)
−0.694795 + 0.719207i \(0.744505\pi\)
\(72\) 0 0
\(73\) 349.642i 0.560582i 0.959915 + 0.280291i \(0.0904310\pi\)
−0.959915 + 0.280291i \(0.909569\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 305.847i − 0.452655i
\(78\) 0 0
\(79\) −473.373 −0.674160 −0.337080 0.941476i \(-0.609439\pi\)
−0.337080 + 0.941476i \(0.609439\pi\)
\(80\) 0 0
\(81\) 1454.93 1.99579
\(82\) 0 0
\(83\) − 1059.45i − 1.40109i −0.713610 0.700543i \(-0.752941\pi\)
0.713610 0.700543i \(-0.247059\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 1742.59i − 2.14742i
\(88\) 0 0
\(89\) 740.318 0.881725 0.440863 0.897575i \(-0.354673\pi\)
0.440863 + 0.897575i \(0.354673\pi\)
\(90\) 0 0
\(91\) 1740.98 2.00554
\(92\) 0 0
\(93\) 2288.33i 2.55149i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 552.874i − 0.578720i −0.957220 0.289360i \(-0.906557\pi\)
0.957220 0.289360i \(-0.0934425\pi\)
\(98\) 0 0
\(99\) −683.577 −0.693961
\(100\) 0 0
\(101\) −828.889 −0.816610 −0.408305 0.912846i \(-0.633880\pi\)
−0.408305 + 0.912846i \(0.633880\pi\)
\(102\) 0 0
\(103\) 398.022i 0.380760i 0.981710 + 0.190380i \(0.0609720\pi\)
−0.981710 + 0.190380i \(0.939028\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 930.751i − 0.840926i −0.907310 0.420463i \(-0.861868\pi\)
0.907310 0.420463i \(-0.138132\pi\)
\(108\) 0 0
\(109\) −1684.66 −1.48037 −0.740187 0.672401i \(-0.765263\pi\)
−0.740187 + 0.672401i \(0.765263\pi\)
\(110\) 0 0
\(111\) −3074.71 −2.62918
\(112\) 0 0
\(113\) 1128.26i 0.939269i 0.882861 + 0.469634i \(0.155614\pi\)
−0.882861 + 0.469634i \(0.844386\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 3891.15i − 3.07467i
\(118\) 0 0
\(119\) 2823.49 2.17503
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 0 0
\(123\) − 399.401i − 0.292787i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 739.246i 0.516515i 0.966076 + 0.258258i \(0.0831483\pi\)
−0.966076 + 0.258258i \(0.916852\pi\)
\(128\) 0 0
\(129\) 2278.24 1.55494
\(130\) 0 0
\(131\) −2516.75 −1.67855 −0.839273 0.543710i \(-0.817019\pi\)
−0.839273 + 0.543710i \(0.817019\pi\)
\(132\) 0 0
\(133\) − 3163.13i − 2.06224i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 1044.87i − 0.651599i −0.945439 0.325799i \(-0.894367\pi\)
0.945439 0.325799i \(-0.105633\pi\)
\(138\) 0 0
\(139\) −1373.48 −0.838110 −0.419055 0.907961i \(-0.637639\pi\)
−0.419055 + 0.907961i \(0.637639\pi\)
\(140\) 0 0
\(141\) 2776.94 1.65859
\(142\) 0 0
\(143\) 688.772i 0.402783i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 4060.59i − 2.27831i
\(148\) 0 0
\(149\) −1927.76 −1.05992 −0.529960 0.848022i \(-0.677793\pi\)
−0.529960 + 0.848022i \(0.677793\pi\)
\(150\) 0 0
\(151\) 11.4208 0.00615505 0.00307753 0.999995i \(-0.499020\pi\)
0.00307753 + 0.999995i \(0.499020\pi\)
\(152\) 0 0
\(153\) − 6310.59i − 3.33452i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 1368.98i − 0.695902i −0.937513 0.347951i \(-0.886878\pi\)
0.937513 0.347951i \(-0.113122\pi\)
\(158\) 0 0
\(159\) 3123.56 1.55795
\(160\) 0 0
\(161\) 2635.54 1.29012
\(162\) 0 0
\(163\) 3789.78i 1.82110i 0.413402 + 0.910549i \(0.364340\pi\)
−0.413402 + 0.910549i \(0.635660\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1399.89i 0.648664i 0.945943 + 0.324332i \(0.105140\pi\)
−0.945943 + 0.324332i \(0.894860\pi\)
\(168\) 0 0
\(169\) −1723.72 −0.784579
\(170\) 0 0
\(171\) −7069.71 −3.16160
\(172\) 0 0
\(173\) − 1267.69i − 0.557114i −0.960420 0.278557i \(-0.910144\pi\)
0.960420 0.278557i \(-0.0898562\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 3452.37i − 1.46608i
\(178\) 0 0
\(179\) 4692.84 1.95955 0.979774 0.200108i \(-0.0641294\pi\)
0.979774 + 0.200108i \(0.0641294\pi\)
\(180\) 0 0
\(181\) −1268.84 −0.521060 −0.260530 0.965466i \(-0.583897\pi\)
−0.260530 + 0.965466i \(0.583897\pi\)
\(182\) 0 0
\(183\) − 3477.63i − 1.40478i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1117.04i 0.436823i
\(188\) 0 0
\(189\) −9225.70 −3.55064
\(190\) 0 0
\(191\) 2321.50 0.879466 0.439733 0.898129i \(-0.355073\pi\)
0.439733 + 0.898129i \(0.355073\pi\)
\(192\) 0 0
\(193\) 1594.22i 0.594584i 0.954787 + 0.297292i \(0.0960835\pi\)
−0.954787 + 0.297292i \(0.903916\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 624.197i 0.225747i 0.993609 + 0.112874i \(0.0360055\pi\)
−0.993609 + 0.112874i \(0.963994\pi\)
\(198\) 0 0
\(199\) −588.116 −0.209500 −0.104750 0.994499i \(-0.533404\pi\)
−0.104750 + 0.994499i \(0.533404\pi\)
\(200\) 0 0
\(201\) −9409.47 −3.30196
\(202\) 0 0
\(203\) 5131.71i 1.77426i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 5890.52i − 1.97787i
\(208\) 0 0
\(209\) 1251.41 0.414171
\(210\) 0 0
\(211\) −2037.99 −0.664935 −0.332467 0.943115i \(-0.607881\pi\)
−0.332467 + 0.943115i \(0.607881\pi\)
\(212\) 0 0
\(213\) − 7849.09i − 2.52493i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 6738.83i − 2.10812i
\(218\) 0 0
\(219\) −3301.17 −1.01860
\(220\) 0 0
\(221\) −6358.55 −1.93539
\(222\) 0 0
\(223\) 6589.78i 1.97885i 0.145035 + 0.989427i \(0.453671\pi\)
−0.145035 + 0.989427i \(0.546329\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3910.85i 1.14349i 0.820432 + 0.571744i \(0.193733\pi\)
−0.820432 + 0.571744i \(0.806267\pi\)
\(228\) 0 0
\(229\) 2419.21 0.698105 0.349053 0.937103i \(-0.386503\pi\)
0.349053 + 0.937103i \(0.386503\pi\)
\(230\) 0 0
\(231\) 2887.67 0.822489
\(232\) 0 0
\(233\) 1783.41i 0.501439i 0.968060 + 0.250720i \(0.0806672\pi\)
−0.968060 + 0.250720i \(0.919333\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 4469.39i − 1.22497i
\(238\) 0 0
\(239\) 5127.37 1.38771 0.693854 0.720116i \(-0.255911\pi\)
0.693854 + 0.720116i \(0.255911\pi\)
\(240\) 0 0
\(241\) 1919.76 0.513123 0.256561 0.966528i \(-0.417410\pi\)
0.256561 + 0.966528i \(0.417410\pi\)
\(242\) 0 0
\(243\) 4777.98i 1.26135i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 7123.43i 1.83503i
\(248\) 0 0
\(249\) 10002.9 2.54582
\(250\) 0 0
\(251\) −2206.32 −0.554828 −0.277414 0.960750i \(-0.589477\pi\)
−0.277414 + 0.960750i \(0.589477\pi\)
\(252\) 0 0
\(253\) 1042.68i 0.259102i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 1265.61i − 0.307185i −0.988134 0.153592i \(-0.950916\pi\)
0.988134 0.153592i \(-0.0490842\pi\)
\(258\) 0 0
\(259\) 9054.64 2.17231
\(260\) 0 0
\(261\) 11469.6 2.72011
\(262\) 0 0
\(263\) − 5409.05i − 1.26820i −0.773252 0.634099i \(-0.781371\pi\)
0.773252 0.634099i \(-0.218629\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 6989.77i 1.60212i
\(268\) 0 0
\(269\) −7112.21 −1.61204 −0.806020 0.591888i \(-0.798383\pi\)
−0.806020 + 0.591888i \(0.798383\pi\)
\(270\) 0 0
\(271\) 375.510 0.0841720 0.0420860 0.999114i \(-0.486600\pi\)
0.0420860 + 0.999114i \(0.486600\pi\)
\(272\) 0 0
\(273\) 16437.6i 3.64414i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 137.344i − 0.0297914i −0.999889 0.0148957i \(-0.995258\pi\)
0.999889 0.0148957i \(-0.00474163\pi\)
\(278\) 0 0
\(279\) −15061.5 −3.23193
\(280\) 0 0
\(281\) 2229.48 0.473309 0.236655 0.971594i \(-0.423949\pi\)
0.236655 + 0.971594i \(0.423949\pi\)
\(282\) 0 0
\(283\) 3888.38i 0.816750i 0.912814 + 0.408375i \(0.133904\pi\)
−0.912814 + 0.408375i \(0.866096\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1176.19i 0.241909i
\(288\) 0 0
\(289\) −5399.17 −1.09896
\(290\) 0 0
\(291\) 5220.00 1.05155
\(292\) 0 0
\(293\) − 2407.39i − 0.480005i −0.970772 0.240002i \(-0.922852\pi\)
0.970772 0.240002i \(-0.0771482\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 3649.90i − 0.713093i
\(298\) 0 0
\(299\) −5935.29 −1.14798
\(300\) 0 0
\(301\) −6709.12 −1.28474
\(302\) 0 0
\(303\) − 7826.02i − 1.48381i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 3946.04i 0.733591i 0.930302 + 0.366795i \(0.119545\pi\)
−0.930302 + 0.366795i \(0.880455\pi\)
\(308\) 0 0
\(309\) −3757.96 −0.691853
\(310\) 0 0
\(311\) −356.572 −0.0650140 −0.0325070 0.999472i \(-0.510349\pi\)
−0.0325070 + 0.999472i \(0.510349\pi\)
\(312\) 0 0
\(313\) 5834.56i 1.05364i 0.849978 + 0.526819i \(0.176615\pi\)
−0.849978 + 0.526819i \(0.823385\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 554.834i 0.0983046i 0.998791 + 0.0491523i \(0.0156520\pi\)
−0.998791 + 0.0491523i \(0.984348\pi\)
\(318\) 0 0
\(319\) −2030.23 −0.356335
\(320\) 0 0
\(321\) 8787.76 1.52799
\(322\) 0 0
\(323\) 11552.6i 1.99011i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 15905.8i − 2.68989i
\(328\) 0 0
\(329\) −8177.74 −1.37038
\(330\) 0 0
\(331\) −2793.68 −0.463911 −0.231955 0.972726i \(-0.574512\pi\)
−0.231955 + 0.972726i \(0.574512\pi\)
\(332\) 0 0
\(333\) − 20237.4i − 3.33034i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 7499.19i 1.21219i 0.795393 + 0.606094i \(0.207264\pi\)
−0.795393 + 0.606094i \(0.792736\pi\)
\(338\) 0 0
\(339\) −10652.5 −1.70668
\(340\) 0 0
\(341\) 2666.04 0.423384
\(342\) 0 0
\(343\) 2421.07i 0.381123i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 5337.35i 0.825718i 0.910795 + 0.412859i \(0.135470\pi\)
−0.910795 + 0.412859i \(0.864530\pi\)
\(348\) 0 0
\(349\) −2031.76 −0.311627 −0.155813 0.987786i \(-0.549800\pi\)
−0.155813 + 0.987786i \(0.549800\pi\)
\(350\) 0 0
\(351\) 20776.4 3.15944
\(352\) 0 0
\(353\) − 6016.64i − 0.907177i −0.891211 0.453588i \(-0.850144\pi\)
0.891211 0.453588i \(-0.149856\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 26658.2i 3.95210i
\(358\) 0 0
\(359\) −2510.10 −0.369019 −0.184510 0.982831i \(-0.559070\pi\)
−0.184510 + 0.982831i \(0.559070\pi\)
\(360\) 0 0
\(361\) 6083.34 0.886914
\(362\) 0 0
\(363\) 1142.43i 0.165185i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 298.580i 0.0424680i 0.999775 + 0.0212340i \(0.00675950\pi\)
−0.999775 + 0.0212340i \(0.993241\pi\)
\(368\) 0 0
\(369\) 2628.81 0.370869
\(370\) 0 0
\(371\) −9198.48 −1.28723
\(372\) 0 0
\(373\) − 7300.60i − 1.01343i −0.862112 0.506717i \(-0.830859\pi\)
0.862112 0.506717i \(-0.169141\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 11556.7i − 1.57878i
\(378\) 0 0
\(379\) −13348.9 −1.80920 −0.904600 0.426262i \(-0.859830\pi\)
−0.904600 + 0.426262i \(0.859830\pi\)
\(380\) 0 0
\(381\) −6979.64 −0.938525
\(382\) 0 0
\(383\) − 9083.43i − 1.21186i −0.795519 0.605929i \(-0.792802\pi\)
0.795519 0.605929i \(-0.207198\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 14995.1i 1.96962i
\(388\) 0 0
\(389\) 8218.11 1.07114 0.535572 0.844490i \(-0.320096\pi\)
0.535572 + 0.844490i \(0.320096\pi\)
\(390\) 0 0
\(391\) −9625.73 −1.24500
\(392\) 0 0
\(393\) − 23762.1i − 3.04997i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 13600.7i 1.71939i 0.510807 + 0.859695i \(0.329347\pi\)
−0.510807 + 0.859695i \(0.670653\pi\)
\(398\) 0 0
\(399\) 29865.0 3.74716
\(400\) 0 0
\(401\) −8796.36 −1.09543 −0.547717 0.836664i \(-0.684503\pi\)
−0.547717 + 0.836664i \(0.684503\pi\)
\(402\) 0 0
\(403\) 15176.0i 1.87585i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3582.22i 0.436276i
\(408\) 0 0
\(409\) 8218.82 0.993629 0.496815 0.867857i \(-0.334503\pi\)
0.496815 + 0.867857i \(0.334503\pi\)
\(410\) 0 0
\(411\) 9865.20 1.18398
\(412\) 0 0
\(413\) 10166.8i 1.21132i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 12967.8i − 1.52287i
\(418\) 0 0
\(419\) −1726.86 −0.201342 −0.100671 0.994920i \(-0.532099\pi\)
−0.100671 + 0.994920i \(0.532099\pi\)
\(420\) 0 0
\(421\) −7523.60 −0.870969 −0.435485 0.900196i \(-0.643423\pi\)
−0.435485 + 0.900196i \(0.643423\pi\)
\(422\) 0 0
\(423\) 18277.5i 2.10091i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 10241.2i 1.16067i
\(428\) 0 0
\(429\) −6503.10 −0.731871
\(430\) 0 0
\(431\) −4872.00 −0.544491 −0.272246 0.962228i \(-0.587766\pi\)
−0.272246 + 0.962228i \(0.587766\pi\)
\(432\) 0 0
\(433\) 12745.1i 1.41453i 0.706947 + 0.707266i \(0.250072\pi\)
−0.706947 + 0.707266i \(0.749928\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 10783.6i 1.18044i
\(438\) 0 0
\(439\) 5723.64 0.622266 0.311133 0.950366i \(-0.399292\pi\)
0.311133 + 0.950366i \(0.399292\pi\)
\(440\) 0 0
\(441\) 26726.3 2.88590
\(442\) 0 0
\(443\) − 3344.46i − 0.358691i −0.983786 0.179345i \(-0.942602\pi\)
0.983786 0.179345i \(-0.0573979\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 18201.1i − 1.92591i
\(448\) 0 0
\(449\) 5620.38 0.590740 0.295370 0.955383i \(-0.404557\pi\)
0.295370 + 0.955383i \(0.404557\pi\)
\(450\) 0 0
\(451\) −465.326 −0.0485839
\(452\) 0 0
\(453\) 107.831i 0.0111839i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 9759.56i − 0.998978i −0.866320 0.499489i \(-0.833521\pi\)
0.866320 0.499489i \(-0.166479\pi\)
\(458\) 0 0
\(459\) 33694.8 3.42645
\(460\) 0 0
\(461\) 1587.33 0.160367 0.0801837 0.996780i \(-0.474449\pi\)
0.0801837 + 0.996780i \(0.474449\pi\)
\(462\) 0 0
\(463\) − 377.411i − 0.0378828i −0.999821 0.0189414i \(-0.993970\pi\)
0.999821 0.0189414i \(-0.00602960\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 16477.8i − 1.63277i −0.577509 0.816385i \(-0.695975\pi\)
0.577509 0.816385i \(-0.304025\pi\)
\(468\) 0 0
\(469\) 27709.7 2.72818
\(470\) 0 0
\(471\) 12925.3 1.26448
\(472\) 0 0
\(473\) − 2654.28i − 0.258021i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 20558.9i 1.97343i
\(478\) 0 0
\(479\) 12862.3 1.22691 0.613456 0.789729i \(-0.289779\pi\)
0.613456 + 0.789729i \(0.289779\pi\)
\(480\) 0 0
\(481\) −20391.2 −1.93297
\(482\) 0 0
\(483\) 24883.7i 2.34419i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 12294.0i − 1.14394i −0.820276 0.571968i \(-0.806180\pi\)
0.820276 0.571968i \(-0.193820\pi\)
\(488\) 0 0
\(489\) −35781.5 −3.30899
\(490\) 0 0
\(491\) −1565.70 −0.143909 −0.0719544 0.997408i \(-0.522924\pi\)
−0.0719544 + 0.997408i \(0.522924\pi\)
\(492\) 0 0
\(493\) − 18742.5i − 1.71221i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 23114.5i 2.08618i
\(498\) 0 0
\(499\) 1615.89 0.144965 0.0724823 0.997370i \(-0.476908\pi\)
0.0724823 + 0.997370i \(0.476908\pi\)
\(500\) 0 0
\(501\) −13217.2 −1.17864
\(502\) 0 0
\(503\) − 18796.6i − 1.66620i −0.553122 0.833100i \(-0.686564\pi\)
0.553122 0.833100i \(-0.313436\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 16274.6i − 1.42561i
\(508\) 0 0
\(509\) 9656.86 0.840929 0.420464 0.907309i \(-0.361867\pi\)
0.420464 + 0.907309i \(0.361867\pi\)
\(510\) 0 0
\(511\) 9721.53 0.841595
\(512\) 0 0
\(513\) − 37748.1i − 3.24877i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 3235.30i − 0.275220i
\(518\) 0 0
\(519\) 11969.0 1.01230
\(520\) 0 0
\(521\) 15729.2 1.32267 0.661333 0.750093i \(-0.269991\pi\)
0.661333 + 0.750093i \(0.269991\pi\)
\(522\) 0 0
\(523\) − 15546.2i − 1.29979i −0.760026 0.649893i \(-0.774814\pi\)
0.760026 0.649893i \(-0.225186\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 24612.1i 2.03438i
\(528\) 0 0
\(529\) 3182.01 0.261528
\(530\) 0 0
\(531\) 22723.1 1.85706
\(532\) 0 0
\(533\) − 2648.79i − 0.215257i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 44307.8i 3.56056i
\(538\) 0 0
\(539\) −4730.83 −0.378054
\(540\) 0 0
\(541\) 19520.2 1.55128 0.775638 0.631178i \(-0.217428\pi\)
0.775638 + 0.631178i \(0.217428\pi\)
\(542\) 0 0
\(543\) − 11979.8i − 0.946782i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 9362.67i 0.731844i 0.930645 + 0.365922i \(0.119246\pi\)
−0.930645 + 0.365922i \(0.880754\pi\)
\(548\) 0 0
\(549\) 22889.4 1.77941
\(550\) 0 0
\(551\) −20997.0 −1.62342
\(552\) 0 0
\(553\) 13161.8i 1.01211i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 8841.92i − 0.672611i −0.941753 0.336305i \(-0.890823\pi\)
0.941753 0.336305i \(-0.109177\pi\)
\(558\) 0 0
\(559\) 15109.1 1.14319
\(560\) 0 0
\(561\) −10546.6 −0.793721
\(562\) 0 0
\(563\) 11712.5i 0.876771i 0.898787 + 0.438385i \(0.144449\pi\)
−0.898787 + 0.438385i \(0.855551\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 40453.2i − 2.99625i
\(568\) 0 0
\(569\) 20873.9 1.53793 0.768964 0.639292i \(-0.220773\pi\)
0.768964 + 0.639292i \(0.220773\pi\)
\(570\) 0 0
\(571\) −5649.29 −0.414038 −0.207019 0.978337i \(-0.566376\pi\)
−0.207019 + 0.978337i \(0.566376\pi\)
\(572\) 0 0
\(573\) 21918.6i 1.59802i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 18478.2i 1.33320i 0.745414 + 0.666602i \(0.232252\pi\)
−0.745414 + 0.666602i \(0.767748\pi\)
\(578\) 0 0
\(579\) −15052.0 −1.08038
\(580\) 0 0
\(581\) −29457.3 −2.10343
\(582\) 0 0
\(583\) − 3639.13i − 0.258520i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 11812.2i − 0.830565i −0.909693 0.415282i \(-0.863683\pi\)
0.909693 0.415282i \(-0.136317\pi\)
\(588\) 0 0
\(589\) 27572.7 1.92889
\(590\) 0 0
\(591\) −5893.41 −0.410190
\(592\) 0 0
\(593\) 13644.4i 0.944870i 0.881365 + 0.472435i \(0.156625\pi\)
−0.881365 + 0.472435i \(0.843375\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 5552.75i − 0.380668i
\(598\) 0 0
\(599\) −23767.5 −1.62123 −0.810613 0.585582i \(-0.800866\pi\)
−0.810613 + 0.585582i \(0.800866\pi\)
\(600\) 0 0
\(601\) −11513.5 −0.781442 −0.390721 0.920509i \(-0.627774\pi\)
−0.390721 + 0.920509i \(0.627774\pi\)
\(602\) 0 0
\(603\) − 61932.1i − 4.18254i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 10407.6i − 0.695931i −0.937507 0.347965i \(-0.886873\pi\)
0.937507 0.347965i \(-0.113127\pi\)
\(608\) 0 0
\(609\) −48451.5 −3.22390
\(610\) 0 0
\(611\) 18416.4 1.21939
\(612\) 0 0
\(613\) − 23276.4i − 1.53365i −0.641857 0.766824i \(-0.721836\pi\)
0.641857 0.766824i \(-0.278164\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1308.83i 0.0853998i 0.999088 + 0.0426999i \(0.0135959\pi\)
−0.999088 + 0.0426999i \(0.986404\pi\)
\(618\) 0 0
\(619\) 20644.5 1.34051 0.670254 0.742132i \(-0.266185\pi\)
0.670254 + 0.742132i \(0.266185\pi\)
\(620\) 0 0
\(621\) 31451.9 2.03240
\(622\) 0 0
\(623\) − 20584.0i − 1.32372i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 11815.3i 0.752562i
\(628\) 0 0
\(629\) −33070.1 −2.09633
\(630\) 0 0
\(631\) 6099.94 0.384841 0.192421 0.981313i \(-0.438366\pi\)
0.192421 + 0.981313i \(0.438366\pi\)
\(632\) 0 0
\(633\) − 19241.9i − 1.20821i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 26929.5i − 1.67501i
\(638\) 0 0
\(639\) 51661.8 3.19829
\(640\) 0 0
\(641\) −29756.9 −1.83359 −0.916793 0.399363i \(-0.869231\pi\)
−0.916793 + 0.399363i \(0.869231\pi\)
\(642\) 0 0
\(643\) 18954.0i 1.16247i 0.813734 + 0.581237i \(0.197431\pi\)
−0.813734 + 0.581237i \(0.802569\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 22637.0i 1.37550i 0.725946 + 0.687752i \(0.241402\pi\)
−0.725946 + 0.687752i \(0.758598\pi\)
\(648\) 0 0
\(649\) −4022.22 −0.243276
\(650\) 0 0
\(651\) 63625.2 3.83052
\(652\) 0 0
\(653\) 10412.2i 0.623985i 0.950085 + 0.311992i \(0.100996\pi\)
−0.950085 + 0.311992i \(0.899004\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 21727.9i − 1.29024i
\(658\) 0 0
\(659\) 17751.6 1.04932 0.524661 0.851311i \(-0.324192\pi\)
0.524661 + 0.851311i \(0.324192\pi\)
\(660\) 0 0
\(661\) 8799.38 0.517785 0.258893 0.965906i \(-0.416642\pi\)
0.258893 + 0.965906i \(0.416642\pi\)
\(662\) 0 0
\(663\) − 60034.7i − 3.51668i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 17494.9i − 1.01560i
\(668\) 0 0
\(669\) −62217.9 −3.59564
\(670\) 0 0
\(671\) −4051.65 −0.233103
\(672\) 0 0
\(673\) 30990.3i 1.77502i 0.460791 + 0.887508i \(0.347566\pi\)
−0.460791 + 0.887508i \(0.652434\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 3150.39i − 0.178847i −0.995994 0.0894235i \(-0.971498\pi\)
0.995994 0.0894235i \(-0.0285025\pi\)
\(678\) 0 0
\(679\) −15372.2 −0.868825
\(680\) 0 0
\(681\) −36924.6 −2.07776
\(682\) 0 0
\(683\) 25295.7i 1.41715i 0.705637 + 0.708574i \(0.250661\pi\)
−0.705637 + 0.708574i \(0.749339\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 22841.2i 1.26848i
\(688\) 0 0
\(689\) 20715.1 1.14540
\(690\) 0 0
\(691\) 19354.1 1.06550 0.532752 0.846271i \(-0.321158\pi\)
0.532752 + 0.846271i \(0.321158\pi\)
\(692\) 0 0
\(693\) 19006.3i 1.04183i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 4295.76i − 0.233448i
\(698\) 0 0
\(699\) −16838.2 −0.911131
\(700\) 0 0
\(701\) −28622.8 −1.54218 −0.771089 0.636727i \(-0.780288\pi\)
−0.771089 + 0.636727i \(0.780288\pi\)
\(702\) 0 0
\(703\) 37048.2i 1.98762i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 23046.6i 1.22597i
\(708\) 0 0
\(709\) 10917.6 0.578304 0.289152 0.957283i \(-0.406627\pi\)
0.289152 + 0.957283i \(0.406627\pi\)
\(710\) 0 0
\(711\) 29417.0 1.55165
\(712\) 0 0
\(713\) 22973.8i 1.20670i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 48410.5i 2.52151i
\(718\) 0 0
\(719\) 11840.5 0.614152 0.307076 0.951685i \(-0.400649\pi\)
0.307076 + 0.951685i \(0.400649\pi\)
\(720\) 0 0
\(721\) 11066.7 0.571630
\(722\) 0 0
\(723\) 18125.6i 0.932361i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 6556.62i − 0.334486i −0.985916 0.167243i \(-0.946514\pi\)
0.985916 0.167243i \(-0.0534865\pi\)
\(728\) 0 0
\(729\) −5828.61 −0.296124
\(730\) 0 0
\(731\) 24503.6 1.23981
\(732\) 0 0
\(733\) 817.889i 0.0412134i 0.999788 + 0.0206067i \(0.00655978\pi\)
−0.999788 + 0.0206067i \(0.993440\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 10962.6i 0.547914i
\(738\) 0 0
\(739\) −25050.6 −1.24696 −0.623480 0.781840i \(-0.714282\pi\)
−0.623480 + 0.781840i \(0.714282\pi\)
\(740\) 0 0
\(741\) −67256.5 −3.33432
\(742\) 0 0
\(743\) 36248.2i 1.78980i 0.446271 + 0.894898i \(0.352752\pi\)
−0.446271 + 0.894898i \(0.647248\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 65838.0i 3.22475i
\(748\) 0 0
\(749\) −25878.8 −1.26247
\(750\) 0 0
\(751\) 24797.2 1.20488 0.602439 0.798165i \(-0.294196\pi\)
0.602439 + 0.798165i \(0.294196\pi\)
\(752\) 0 0
\(753\) − 20831.2i − 1.00814i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 33165.4i − 1.59236i −0.605061 0.796179i \(-0.706851\pi\)
0.605061 0.796179i \(-0.293149\pi\)
\(758\) 0 0
\(759\) −9844.55 −0.470797
\(760\) 0 0
\(761\) 955.723 0.0455255 0.0227628 0.999741i \(-0.492754\pi\)
0.0227628 + 0.999741i \(0.492754\pi\)
\(762\) 0 0
\(763\) 46840.6i 2.22247i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 22895.8i − 1.07786i
\(768\) 0 0
\(769\) 10451.0 0.490080 0.245040 0.969513i \(-0.421199\pi\)
0.245040 + 0.969513i \(0.421199\pi\)
\(770\) 0 0
\(771\) 11949.3 0.558164
\(772\) 0 0
\(773\) 33591.7i 1.56301i 0.623896 + 0.781507i \(0.285549\pi\)
−0.623896 + 0.781507i \(0.714451\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 85490.1i 3.94715i
\(778\) 0 0
\(779\) −4812.51 −0.221343
\(780\) 0 0
\(781\) −9144.65 −0.418977
\(782\) 0 0
\(783\) 61240.6i 2.79510i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 18251.1i − 0.826659i −0.910582 0.413329i \(-0.864366\pi\)
0.910582 0.413329i \(-0.135634\pi\)
\(788\) 0 0
\(789\) 51069.9 2.30436
\(790\) 0 0
\(791\) 31370.3 1.41011
\(792\) 0 0
\(793\) − 23063.3i − 1.03279i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 11233.1i − 0.499241i −0.968344 0.249621i \(-0.919694\pi\)
0.968344 0.249621i \(-0.0803059\pi\)
\(798\) 0 0
\(799\) 29867.4 1.32244
\(800\) 0 0
\(801\) −46005.9 −2.02939
\(802\) 0 0
\(803\) 3846.06i 0.169022i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 67150.5i − 2.92913i
\(808\) 0 0
\(809\) −22178.4 −0.963847 −0.481923 0.876213i \(-0.660062\pi\)
−0.481923 + 0.876213i \(0.660062\pi\)
\(810\) 0 0
\(811\) −25481.4 −1.10329 −0.551647 0.834078i \(-0.686001\pi\)
−0.551647 + 0.834078i \(0.686001\pi\)
\(812\) 0 0
\(813\) 3545.41i 0.152943i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 27451.2i − 1.17551i
\(818\) 0 0
\(819\) −108190. −4.61597
\(820\) 0 0
\(821\) 33950.1 1.44320 0.721599 0.692311i \(-0.243407\pi\)
0.721599 + 0.692311i \(0.243407\pi\)
\(822\) 0 0
\(823\) 34061.8i 1.44267i 0.692585 + 0.721336i \(0.256472\pi\)
−0.692585 + 0.721336i \(0.743528\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 41614.8i 1.74980i 0.484300 + 0.874902i \(0.339074\pi\)
−0.484300 + 0.874902i \(0.660926\pi\)
\(828\) 0 0
\(829\) −18217.3 −0.763222 −0.381611 0.924323i \(-0.624631\pi\)
−0.381611 + 0.924323i \(0.624631\pi\)
\(830\) 0 0
\(831\) 1296.75 0.0541320
\(832\) 0 0
\(833\) − 43673.7i − 1.81657i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 80419.6i − 3.32104i
\(838\) 0 0
\(839\) −39668.3 −1.63230 −0.816150 0.577840i \(-0.803896\pi\)
−0.816150 + 0.577840i \(0.803896\pi\)
\(840\) 0 0
\(841\) 9675.59 0.396719
\(842\) 0 0
\(843\) 21049.8i 0.860018i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 3364.31i − 0.136481i
\(848\) 0 0
\(849\) −36712.5 −1.48406
\(850\) 0 0
\(851\) −30868.7 −1.24344
\(852\) 0 0
\(853\) − 33073.6i − 1.32757i −0.747922 0.663786i \(-0.768948\pi\)
0.747922 0.663786i \(-0.231052\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 8618.95i 0.343545i 0.985137 + 0.171772i \(0.0549494\pi\)
−0.985137 + 0.171772i \(0.945051\pi\)
\(858\) 0 0
\(859\) −1081.04 −0.0429389 −0.0214694 0.999770i \(-0.506834\pi\)
−0.0214694 + 0.999770i \(0.506834\pi\)
\(860\) 0 0
\(861\) −11105.0 −0.439557
\(862\) 0 0
\(863\) − 36824.8i − 1.45253i −0.687416 0.726264i \(-0.741255\pi\)
0.687416 0.726264i \(-0.258745\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 50976.7i − 1.99684i
\(868\) 0 0
\(869\) −5207.11 −0.203267
\(870\) 0 0
\(871\) −62402.8 −2.42760
\(872\) 0 0
\(873\) 34357.5i 1.33199i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 37485.7i 1.44333i 0.692242 + 0.721666i \(0.256623\pi\)
−0.692242 + 0.721666i \(0.743377\pi\)
\(878\) 0 0
\(879\) 22729.6 0.872184
\(880\) 0 0
\(881\) −31944.9 −1.22162 −0.610811 0.791776i \(-0.709157\pi\)
−0.610811 + 0.791776i \(0.709157\pi\)
\(882\) 0 0
\(883\) − 15735.2i − 0.599697i −0.953987 0.299848i \(-0.903064\pi\)
0.953987 0.299848i \(-0.0969361\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 20898.8i − 0.791109i −0.918442 0.395555i \(-0.870552\pi\)
0.918442 0.395555i \(-0.129448\pi\)
\(888\) 0 0
\(889\) 20554.2 0.775438
\(890\) 0 0
\(891\) 16004.2 0.601753
\(892\) 0 0
\(893\) − 33460.2i − 1.25387i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 56038.5i − 2.08592i
\(898\) 0 0
\(899\) −44732.7 −1.65953
\(900\) 0 0
\(901\) 33595.4 1.24220
\(902\) 0 0
\(903\) − 63344.7i − 2.33442i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 40403.5i 1.47914i 0.673082 + 0.739568i \(0.264970\pi\)
−0.673082 + 0.739568i \(0.735030\pi\)
\(908\) 0 0
\(909\) 51510.0 1.87951
\(910\) 0 0
\(911\) 29611.6 1.07692 0.538460 0.842651i \(-0.319006\pi\)
0.538460 + 0.842651i \(0.319006\pi\)
\(912\) 0 0
\(913\) − 11654.0i − 0.422443i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 69976.4i 2.51998i
\(918\) 0 0
\(919\) 38281.0 1.37407 0.687036 0.726623i \(-0.258911\pi\)
0.687036 + 0.726623i \(0.258911\pi\)
\(920\) 0 0
\(921\) −37256.8 −1.33296
\(922\) 0 0
\(923\) − 52054.4i − 1.85633i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 24734.4i − 0.876360i
\(928\) 0 0
\(929\) 27299.7 0.964127 0.482063 0.876136i \(-0.339887\pi\)
0.482063 + 0.876136i \(0.339887\pi\)
\(930\) 0 0
\(931\) −48927.3 −1.72237
\(932\) 0 0
\(933\) − 3366.61i − 0.118133i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 3011.09i 0.104982i 0.998621 + 0.0524910i \(0.0167161\pi\)
−0.998621 + 0.0524910i \(0.983284\pi\)
\(938\) 0 0
\(939\) −55087.4 −1.91449
\(940\) 0 0
\(941\) −37442.4 −1.29712 −0.648558 0.761165i \(-0.724628\pi\)
−0.648558 + 0.761165i \(0.724628\pi\)
\(942\) 0 0
\(943\) − 4009.81i − 0.138470i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 45648.9i − 1.56641i −0.621764 0.783204i \(-0.713584\pi\)
0.621764 0.783204i \(-0.286416\pi\)
\(948\) 0 0
\(949\) −21893.1 −0.748871
\(950\) 0 0
\(951\) −5238.51 −0.178623
\(952\) 0 0
\(953\) − 20898.9i − 0.710370i −0.934796 0.355185i \(-0.884418\pi\)
0.934796 0.355185i \(-0.115582\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 19168.5i − 0.647472i
\(958\) 0 0
\(959\) −29051.7 −0.978237
\(960\) 0 0
\(961\) 28950.8 0.971796
\(962\) 0 0
\(963\) 57840.0i 1.93548i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 20494.2i 0.681539i 0.940147 + 0.340770i \(0.110688\pi\)
−0.940147 + 0.340770i \(0.889312\pi\)
\(968\) 0 0
\(969\) −109075. −3.61610
\(970\) 0 0
\(971\) 37338.2 1.23403 0.617013 0.786953i \(-0.288343\pi\)
0.617013 + 0.786953i \(0.288343\pi\)
\(972\) 0 0
\(973\) 38188.6i 1.25824i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1220.37i 0.0399623i 0.999800 + 0.0199811i \(0.00636062\pi\)
−0.999800 + 0.0199811i \(0.993639\pi\)
\(978\) 0 0
\(979\) 8143.50 0.265850
\(980\) 0 0
\(981\) 104690. 3.40724
\(982\) 0 0
\(983\) 31417.9i 1.01941i 0.860350 + 0.509703i \(0.170245\pi\)
−0.860350 + 0.509703i \(0.829755\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 77210.8i − 2.49002i
\(988\) 0 0
\(989\) 22872.5 0.735392
\(990\) 0 0
\(991\) 6320.79 0.202610 0.101305 0.994855i \(-0.467698\pi\)
0.101305 + 0.994855i \(0.467698\pi\)
\(992\) 0 0
\(993\) − 26376.7i − 0.842941i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1067.05i 0.0338954i 0.999856 + 0.0169477i \(0.00539488\pi\)
−0.999856 + 0.0169477i \(0.994605\pi\)
\(998\) 0 0
\(999\) 108056. 3.42216
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1100.4.b.j.749.10 10
5.2 odd 4 1100.4.a.m.1.5 yes 5
5.3 odd 4 1100.4.a.j.1.1 5
5.4 even 2 inner 1100.4.b.j.749.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1100.4.a.j.1.1 5 5.3 odd 4
1100.4.a.m.1.5 yes 5 5.2 odd 4
1100.4.b.j.749.1 10 5.4 even 2 inner
1100.4.b.j.749.10 10 1.1 even 1 trivial