Properties

Label 11025.2.a.w
Level 1102511025
Weight 22
Character orbit 11025.a
Self dual yes
Analytic conductor 88.03588.035
Dimension 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [11025,2,Mod(1,11025)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(11025, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("11025.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 11025=325272 11025 = 3^{2} \cdot 5^{2} \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 11025.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 88.035068228588.0350682285
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: not computed
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q2q4+q13+4q16+6q17+5q19+6q23+6q29+5q31+7q3712q41+q43+6q472q52+6q59+2q618q64+7q6712q6812q71++10q97+O(q100) q - 2 q^{4} + q^{13} + 4 q^{16} + 6 q^{17} + 5 q^{19} + 6 q^{23} + 6 q^{29} + 5 q^{31} + 7 q^{37} - 12 q^{41} + q^{43} + 6 q^{47} - 2 q^{52} + 6 q^{59} + 2 q^{61} - 8 q^{64} + 7 q^{67} - 12 q^{68} - 12 q^{71}+ \cdots + 10 q^{97}+O(q^{100}) Copy content Toggle raw display

Atkin-Lehner signs

p p Sign
33 1 -1
55 +1 +1
77 +1 +1

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.