Properties

Label 1110.2.h.b
Level 11101110
Weight 22
Character orbit 1110.h
Analytic conductor 8.8638.863
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1110,2,Mod(961,1110)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1110, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1110.961");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1110=23537 1110 = 2 \cdot 3 \cdot 5 \cdot 37
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1110.h (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 8.863394624368.86339462436
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+iq2q3q4+iq5iq6+2q7iq8+q9q104q11+q12+2iq13+2iq14iq15+q162iq17+iq18+6iq19iq20+4q99+O(q100) q + i q^{2} - q^{3} - q^{4} + i q^{5} - i q^{6} + 2 q^{7} - i q^{8} + q^{9} - q^{10} - 4 q^{11} + q^{12} + 2 i q^{13} + 2 i q^{14} - i q^{15} + q^{16} - 2 i q^{17} + i q^{18} + 6 i q^{19} - i q^{20} + \cdots - 4 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q32q4+4q7+2q92q108q11+2q12+2q164q212q254q262q274q28+2q30+8q33+4q342q3612q3712q38+8q99+O(q100) 2 q - 2 q^{3} - 2 q^{4} + 4 q^{7} + 2 q^{9} - 2 q^{10} - 8 q^{11} + 2 q^{12} + 2 q^{16} - 4 q^{21} - 2 q^{25} - 4 q^{26} - 2 q^{27} - 4 q^{28} + 2 q^{30} + 8 q^{33} + 4 q^{34} - 2 q^{36} - 12 q^{37} - 12 q^{38}+ \cdots - 8 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1110Z)×\left(\mathbb{Z}/1110\mathbb{Z}\right)^\times.

nn 371371 631631 667667
χ(n)\chi(n) 11 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
961.1
1.00000i
1.00000i
1.00000i −1.00000 −1.00000 1.00000i 1.00000i 2.00000 1.00000i 1.00000 −1.00000
961.2 1.00000i −1.00000 −1.00000 1.00000i 1.00000i 2.00000 1.00000i 1.00000 −1.00000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
37.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1110.2.h.b 2
3.b odd 2 1 3330.2.h.h 2
37.b even 2 1 inner 1110.2.h.b 2
111.d odd 2 1 3330.2.h.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1110.2.h.b 2 1.a even 1 1 trivial
1110.2.h.b 2 37.b even 2 1 inner
3330.2.h.h 2 3.b odd 2 1
3330.2.h.h 2 111.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1110,[χ])S_{2}^{\mathrm{new}}(1110, [\chi]):

T72 T_{7} - 2 Copy content Toggle raw display
T132+4 T_{13}^{2} + 4 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+1 T^{2} + 1 Copy content Toggle raw display
33 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
55 T2+1 T^{2} + 1 Copy content Toggle raw display
77 (T2)2 (T - 2)^{2} Copy content Toggle raw display
1111 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
1313 T2+4 T^{2} + 4 Copy content Toggle raw display
1717 T2+4 T^{2} + 4 Copy content Toggle raw display
1919 T2+36 T^{2} + 36 Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2+4 T^{2} + 4 Copy content Toggle raw display
3131 T2+16 T^{2} + 16 Copy content Toggle raw display
3737 T2+12T+37 T^{2} + 12T + 37 Copy content Toggle raw display
4141 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
4343 T2+144 T^{2} + 144 Copy content Toggle raw display
4747 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
5353 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
5959 T2+100 T^{2} + 100 Copy content Toggle raw display
6161 T2+4 T^{2} + 4 Copy content Toggle raw display
6767 (T+12)2 (T + 12)^{2} Copy content Toggle raw display
7171 (T12)2 (T - 12)^{2} Copy content Toggle raw display
7373 (T+10)2 (T + 10)^{2} Copy content Toggle raw display
7979 T2+16 T^{2} + 16 Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T2+144 T^{2} + 144 Copy content Toggle raw display
9797 T2+36 T^{2} + 36 Copy content Toggle raw display
show more
show less