Properties

Label 112.3.r.b.95.3
Level $112$
Weight $3$
Character 112.95
Analytic conductor $3.052$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [112,3,Mod(79,112)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(112, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("112.79");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 112.r (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.05177896084\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{6})\)
Coefficient field: 6.0.259470000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 14x^{4} - x^{3} + 176x^{2} - 91x + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 95.3
Root \(1.94170 - 3.36313i\) of defining polynomial
Character \(\chi\) \(=\) 112.95
Dual form 112.3.r.b.79.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.54043 + 1.46672i) q^{3} +(3.38341 + 5.86024i) q^{5} +(-5.88341 + 3.79282i) q^{7} +(-0.197460 - 0.342011i) q^{9} +(-8.19066 - 4.72888i) q^{11} +23.9286 q^{13} +19.8501i q^{15} +(1.69746 - 2.94009i) q^{17} +(-2.89021 + 1.66866i) q^{19} +(-20.5094 + 1.00610i) q^{21} +(26.7830 - 15.4632i) q^{23} +(-10.3949 + 18.0045i) q^{25} -27.5595i q^{27} -11.6051 q^{29} +(13.0289 + 7.52225i) q^{31} +(-13.8719 - 24.0268i) q^{33} +(-42.1328 - 21.6455i) q^{35} +(-24.8813 - 43.0957i) q^{37} +(60.7889 + 35.0965i) q^{39} -2.67236 q^{41} -44.7593i q^{43} +(1.33618 - 2.31433i) q^{45} +(-69.5720 + 40.1674i) q^{47} +(20.2290 - 44.6294i) q^{49} +(8.62457 - 4.97940i) q^{51} +(-38.4864 + 66.6604i) q^{53} -63.9990i q^{55} -9.78984 q^{57} +(-7.57526 - 4.37358i) q^{59} +(-25.9758 - 44.9914i) q^{61} +(2.45893 + 1.26326i) q^{63} +(80.9601 + 140.227i) q^{65} +(100.164 + 57.8299i) q^{67} +90.7208 q^{69} +122.338i q^{71} +(-12.9622 + 22.4512i) q^{73} +(-52.8152 + 30.4929i) q^{75} +(66.1248 - 3.24377i) q^{77} +(0.0203900 - 0.0117722i) q^{79} +(38.6449 - 66.9349i) q^{81} -107.921i q^{83} +22.9728 q^{85} +(-29.4819 - 17.0214i) q^{87} +(7.08206 + 12.2665i) q^{89} +(-140.782 + 90.7567i) q^{91} +(22.0661 + 38.2196i) q^{93} +(-19.5575 - 11.2915i) q^{95} -57.3654 q^{97} +3.73507i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{3} - q^{5} - 14 q^{7} + 14 q^{9} + 33 q^{11} + 28 q^{13} - 5 q^{17} - 63 q^{19} + 29 q^{21} + 33 q^{23} - 32 q^{25} - 100 q^{29} + 69 q^{31} - 71 q^{33} - 189 q^{35} + 15 q^{37} + 246 q^{39}+ \cdots + 124 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.54043 + 1.46672i 0.846812 + 0.488907i 0.859574 0.511012i \(-0.170729\pi\)
−0.0127622 + 0.999919i \(0.504062\pi\)
\(4\) 0 0
\(5\) 3.38341 + 5.86024i 0.676682 + 1.17205i 0.975974 + 0.217886i \(0.0699161\pi\)
−0.299292 + 0.954161i \(0.596751\pi\)
\(6\) 0 0
\(7\) −5.88341 + 3.79282i −0.840487 + 0.541832i
\(8\) 0 0
\(9\) −0.197460 0.342011i −0.0219400 0.0380012i
\(10\) 0 0
\(11\) −8.19066 4.72888i −0.744606 0.429898i 0.0791358 0.996864i \(-0.474784\pi\)
−0.823742 + 0.566965i \(0.808117\pi\)
\(12\) 0 0
\(13\) 23.9286 1.84066 0.920329 0.391145i \(-0.127921\pi\)
0.920329 + 0.391145i \(0.127921\pi\)
\(14\) 0 0
\(15\) 19.8501i 1.32334i
\(16\) 0 0
\(17\) 1.69746 2.94009i 0.0998506 0.172946i −0.811772 0.583974i \(-0.801497\pi\)
0.911623 + 0.411028i \(0.134830\pi\)
\(18\) 0 0
\(19\) −2.89021 + 1.66866i −0.152116 + 0.0878243i −0.574126 0.818767i \(-0.694658\pi\)
0.422010 + 0.906591i \(0.361325\pi\)
\(20\) 0 0
\(21\) −20.5094 + 1.00610i −0.976639 + 0.0479093i
\(22\) 0 0
\(23\) 26.7830 15.4632i 1.16448 0.672313i 0.212107 0.977247i \(-0.431968\pi\)
0.952374 + 0.304934i \(0.0986343\pi\)
\(24\) 0 0
\(25\) −10.3949 + 18.0045i −0.415797 + 0.720181i
\(26\) 0 0
\(27\) 27.5595i 1.02072i
\(28\) 0 0
\(29\) −11.6051 −0.400175 −0.200088 0.979778i \(-0.564123\pi\)
−0.200088 + 0.979778i \(0.564123\pi\)
\(30\) 0 0
\(31\) 13.0289 + 7.52225i 0.420288 + 0.242653i 0.695200 0.718816i \(-0.255316\pi\)
−0.274913 + 0.961469i \(0.588649\pi\)
\(32\) 0 0
\(33\) −13.8719 24.0268i −0.420361 0.728086i
\(34\) 0 0
\(35\) −42.1328 21.6455i −1.20379 0.618443i
\(36\) 0 0
\(37\) −24.8813 43.0957i −0.672468 1.16475i −0.977202 0.212312i \(-0.931901\pi\)
0.304734 0.952438i \(-0.401433\pi\)
\(38\) 0 0
\(39\) 60.7889 + 35.0965i 1.55869 + 0.899911i
\(40\) 0 0
\(41\) −2.67236 −0.0651794 −0.0325897 0.999469i \(-0.510375\pi\)
−0.0325897 + 0.999469i \(0.510375\pi\)
\(42\) 0 0
\(43\) 44.7593i 1.04091i −0.853888 0.520456i \(-0.825762\pi\)
0.853888 0.520456i \(-0.174238\pi\)
\(44\) 0 0
\(45\) 1.33618 2.31433i 0.0296928 0.0514295i
\(46\) 0 0
\(47\) −69.5720 + 40.1674i −1.48026 + 0.854626i −0.999750 0.0223661i \(-0.992880\pi\)
−0.480505 + 0.876992i \(0.659547\pi\)
\(48\) 0 0
\(49\) 20.2290 44.6294i 0.412837 0.910805i
\(50\) 0 0
\(51\) 8.62457 4.97940i 0.169109 0.0976353i
\(52\) 0 0
\(53\) −38.4864 + 66.6604i −0.726159 + 1.25774i 0.232337 + 0.972635i \(0.425363\pi\)
−0.958495 + 0.285108i \(0.907970\pi\)
\(54\) 0 0
\(55\) 63.9990i 1.16362i
\(56\) 0 0
\(57\) −9.78984 −0.171752
\(58\) 0 0
\(59\) −7.57526 4.37358i −0.128394 0.0741285i 0.434427 0.900707i \(-0.356951\pi\)
−0.562821 + 0.826578i \(0.690284\pi\)
\(60\) 0 0
\(61\) −25.9758 44.9914i −0.425833 0.737564i 0.570665 0.821183i \(-0.306685\pi\)
−0.996498 + 0.0836191i \(0.973352\pi\)
\(62\) 0 0
\(63\) 2.45893 + 1.26326i 0.0390306 + 0.0200518i
\(64\) 0 0
\(65\) 80.9601 + 140.227i 1.24554 + 2.15734i
\(66\) 0 0
\(67\) 100.164 + 57.8299i 1.49499 + 0.863133i 0.999983 0.00575564i \(-0.00183209\pi\)
0.495007 + 0.868889i \(0.335165\pi\)
\(68\) 0 0
\(69\) 90.7208 1.31479
\(70\) 0 0
\(71\) 122.338i 1.72306i 0.507703 + 0.861532i \(0.330495\pi\)
−0.507703 + 0.861532i \(0.669505\pi\)
\(72\) 0 0
\(73\) −12.9622 + 22.4512i −0.177564 + 0.307550i −0.941046 0.338279i \(-0.890155\pi\)
0.763481 + 0.645830i \(0.223488\pi\)
\(74\) 0 0
\(75\) −52.8152 + 30.4929i −0.704203 + 0.406572i
\(76\) 0 0
\(77\) 66.1248 3.24377i 0.858764 0.0421269i
\(78\) 0 0
\(79\) 0.0203900 0.0117722i 0.000258101 0.000149015i −0.499871 0.866100i \(-0.666619\pi\)
0.500129 + 0.865951i \(0.333286\pi\)
\(80\) 0 0
\(81\) 38.6449 66.9349i 0.477097 0.826357i
\(82\) 0 0
\(83\) 107.921i 1.30025i −0.759827 0.650126i \(-0.774716\pi\)
0.759827 0.650126i \(-0.225284\pi\)
\(84\) 0 0
\(85\) 22.9728 0.270268
\(86\) 0 0
\(87\) −29.4819 17.0214i −0.338873 0.195648i
\(88\) 0 0
\(89\) 7.08206 + 12.2665i 0.0795737 + 0.137826i 0.903066 0.429502i \(-0.141311\pi\)
−0.823492 + 0.567327i \(0.807977\pi\)
\(90\) 0 0
\(91\) −140.782 + 90.7567i −1.54705 + 0.997327i
\(92\) 0 0
\(93\) 22.0661 + 38.2196i 0.237270 + 0.410963i
\(94\) 0 0
\(95\) −19.5575 11.2915i −0.205868 0.118858i
\(96\) 0 0
\(97\) −57.3654 −0.591395 −0.295698 0.955282i \(-0.595552\pi\)
−0.295698 + 0.955282i \(0.595552\pi\)
\(98\) 0 0
\(99\) 3.73507i 0.0377279i
\(100\) 0 0
\(101\) −55.5221 + 96.1671i −0.549724 + 0.952150i 0.448569 + 0.893748i \(0.351934\pi\)
−0.998293 + 0.0584018i \(0.981400\pi\)
\(102\) 0 0
\(103\) 56.9619 32.8869i 0.553028 0.319291i −0.197315 0.980340i \(-0.563222\pi\)
0.750342 + 0.661050i \(0.229889\pi\)
\(104\) 0 0
\(105\) −75.2878 116.786i −0.717026 1.11225i
\(106\) 0 0
\(107\) −27.3754 + 15.8052i −0.255845 + 0.147712i −0.622438 0.782669i \(-0.713858\pi\)
0.366593 + 0.930382i \(0.380524\pi\)
\(108\) 0 0
\(109\) 23.8940 41.3857i 0.219211 0.379685i −0.735356 0.677681i \(-0.762985\pi\)
0.954567 + 0.297996i \(0.0963183\pi\)
\(110\) 0 0
\(111\) 145.976i 1.31510i
\(112\) 0 0
\(113\) −74.7609 −0.661601 −0.330800 0.943701i \(-0.607319\pi\)
−0.330800 + 0.943701i \(0.607319\pi\)
\(114\) 0 0
\(115\) 181.236 + 104.637i 1.57597 + 0.909884i
\(116\) 0 0
\(117\) −4.72494 8.18384i −0.0403841 0.0699473i
\(118\) 0 0
\(119\) 1.16437 + 23.7359i 0.00978464 + 0.199461i
\(120\) 0 0
\(121\) −15.7754 27.3237i −0.130375 0.225816i
\(122\) 0 0
\(123\) −6.78895 3.91960i −0.0551947 0.0318667i
\(124\) 0 0
\(125\) 28.4894 0.227915
\(126\) 0 0
\(127\) 61.4397i 0.483777i −0.970304 0.241889i \(-0.922233\pi\)
0.970304 0.241889i \(-0.0777669\pi\)
\(128\) 0 0
\(129\) 65.6493 113.708i 0.508910 0.881457i
\(130\) 0 0
\(131\) 96.0026 55.4271i 0.732845 0.423108i −0.0866174 0.996242i \(-0.527606\pi\)
0.819462 + 0.573134i \(0.194272\pi\)
\(132\) 0 0
\(133\) 10.6753 20.7795i 0.0802657 0.156236i
\(134\) 0 0
\(135\) 161.505 93.2449i 1.19633 0.690703i
\(136\) 0 0
\(137\) −98.6449 + 170.858i −0.720036 + 1.24714i 0.240949 + 0.970538i \(0.422541\pi\)
−0.960985 + 0.276601i \(0.910792\pi\)
\(138\) 0 0
\(139\) 82.8378i 0.595955i 0.954573 + 0.297978i \(0.0963121\pi\)
−0.954573 + 0.297978i \(0.903688\pi\)
\(140\) 0 0
\(141\) −235.657 −1.67133
\(142\) 0 0
\(143\) −195.991 113.155i −1.37056 0.791296i
\(144\) 0 0
\(145\) −39.2647 68.0085i −0.270791 0.469024i
\(146\) 0 0
\(147\) 116.849 83.7079i 0.794894 0.569441i
\(148\) 0 0
\(149\) −98.0534 169.833i −0.658076 1.13982i −0.981113 0.193435i \(-0.938037\pi\)
0.323037 0.946386i \(-0.395296\pi\)
\(150\) 0 0
\(151\) −95.5484 55.1649i −0.632771 0.365330i 0.149054 0.988829i \(-0.452377\pi\)
−0.781824 + 0.623499i \(0.785711\pi\)
\(152\) 0 0
\(153\) −1.34072 −0.00876290
\(154\) 0 0
\(155\) 101.803i 0.656796i
\(156\) 0 0
\(157\) −37.4906 + 64.9356i −0.238793 + 0.413602i −0.960368 0.278734i \(-0.910085\pi\)
0.721575 + 0.692336i \(0.243419\pi\)
\(158\) 0 0
\(159\) −195.544 + 112.898i −1.22984 + 0.710048i
\(160\) 0 0
\(161\) −98.9265 + 192.560i −0.614450 + 1.19602i
\(162\) 0 0
\(163\) −30.1762 + 17.4222i −0.185130 + 0.106885i −0.589701 0.807622i \(-0.700754\pi\)
0.404571 + 0.914507i \(0.367421\pi\)
\(164\) 0 0
\(165\) 93.8686 162.585i 0.568901 0.985365i
\(166\) 0 0
\(167\) 103.266i 0.618357i 0.951004 + 0.309178i \(0.100054\pi\)
−0.951004 + 0.309178i \(0.899946\pi\)
\(168\) 0 0
\(169\) 403.576 2.38802
\(170\) 0 0
\(171\) 1.14140 + 0.658989i 0.00667486 + 0.00385373i
\(172\) 0 0
\(173\) 17.6565 + 30.5819i 0.102061 + 0.176774i 0.912533 0.409002i \(-0.134123\pi\)
−0.810473 + 0.585776i \(0.800790\pi\)
\(174\) 0 0
\(175\) −7.13039 145.354i −0.0407451 0.830595i
\(176\) 0 0
\(177\) −12.8296 22.2216i −0.0724838 0.125546i
\(178\) 0 0
\(179\) 105.728 + 61.0420i 0.590658 + 0.341017i 0.765358 0.643605i \(-0.222562\pi\)
−0.174700 + 0.984622i \(0.555895\pi\)
\(180\) 0 0
\(181\) 22.7013 0.125422 0.0627109 0.998032i \(-0.480025\pi\)
0.0627109 + 0.998032i \(0.480025\pi\)
\(182\) 0 0
\(183\) 152.397i 0.832770i
\(184\) 0 0
\(185\) 168.367 291.621i 0.910094 1.57633i
\(186\) 0 0
\(187\) −27.8067 + 16.0542i −0.148699 + 0.0858512i
\(188\) 0 0
\(189\) 104.528 + 162.144i 0.553059 + 0.857902i
\(190\) 0 0
\(191\) −175.202 + 101.153i −0.917290 + 0.529598i −0.882770 0.469806i \(-0.844324\pi\)
−0.0345208 + 0.999404i \(0.510990\pi\)
\(192\) 0 0
\(193\) −137.775 + 238.634i −0.713861 + 1.23644i 0.249536 + 0.968366i \(0.419722\pi\)
−0.963397 + 0.268079i \(0.913611\pi\)
\(194\) 0 0
\(195\) 474.984i 2.43581i
\(196\) 0 0
\(197\) 194.605 0.987842 0.493921 0.869507i \(-0.335563\pi\)
0.493921 + 0.869507i \(0.335563\pi\)
\(198\) 0 0
\(199\) 145.739 + 84.1424i 0.732357 + 0.422826i 0.819284 0.573388i \(-0.194371\pi\)
−0.0869270 + 0.996215i \(0.527705\pi\)
\(200\) 0 0
\(201\) 169.641 + 293.826i 0.843984 + 1.46182i
\(202\) 0 0
\(203\) 68.2774 44.0160i 0.336342 0.216828i
\(204\) 0 0
\(205\) −9.04167 15.6606i −0.0441057 0.0763934i
\(206\) 0 0
\(207\) −10.5772 6.10673i −0.0510975 0.0295011i
\(208\) 0 0
\(209\) 31.5636 0.151022
\(210\) 0 0
\(211\) 222.522i 1.05461i −0.849677 0.527304i \(-0.823203\pi\)
0.849677 0.527304i \(-0.176797\pi\)
\(212\) 0 0
\(213\) −179.435 + 310.791i −0.842418 + 1.45911i
\(214\) 0 0
\(215\) 262.300 151.439i 1.22000 0.704367i
\(216\) 0 0
\(217\) −105.185 + 5.15988i −0.484724 + 0.0237783i
\(218\) 0 0
\(219\) −65.8592 + 38.0238i −0.300727 + 0.173625i
\(220\) 0 0
\(221\) 40.6178 70.3521i 0.183791 0.318335i
\(222\) 0 0
\(223\) 265.253i 1.18948i 0.803919 + 0.594738i \(0.202744\pi\)
−0.803919 + 0.594738i \(0.797256\pi\)
\(224\) 0 0
\(225\) 8.21034 0.0364904
\(226\) 0 0
\(227\) −198.715 114.728i −0.875398 0.505411i −0.00625983 0.999980i \(-0.501993\pi\)
−0.869138 + 0.494569i \(0.835326\pi\)
\(228\) 0 0
\(229\) −18.1520 31.4402i −0.0792665 0.137294i 0.823667 0.567073i \(-0.191924\pi\)
−0.902934 + 0.429780i \(0.858591\pi\)
\(230\) 0 0
\(231\) 172.744 + 88.7461i 0.747808 + 0.384182i
\(232\) 0 0
\(233\) −56.6431 98.1087i −0.243103 0.421067i 0.718493 0.695534i \(-0.244832\pi\)
−0.961597 + 0.274466i \(0.911499\pi\)
\(234\) 0 0
\(235\) −470.781 271.806i −2.00332 1.15662i
\(236\) 0 0
\(237\) 0.0690659 0.000291417
\(238\) 0 0
\(239\) 125.206i 0.523873i 0.965085 + 0.261936i \(0.0843611\pi\)
−0.965085 + 0.261936i \(0.915639\pi\)
\(240\) 0 0
\(241\) 140.071 242.611i 0.581209 1.00668i −0.414127 0.910219i \(-0.635913\pi\)
0.995336 0.0964645i \(-0.0307534\pi\)
\(242\) 0 0
\(243\) −18.4551 + 10.6550i −0.0759468 + 0.0438479i
\(244\) 0 0
\(245\) 329.982 32.4528i 1.34687 0.132461i
\(246\) 0 0
\(247\) −69.1585 + 39.9287i −0.279994 + 0.161654i
\(248\) 0 0
\(249\) 158.290 274.166i 0.635702 1.10107i
\(250\) 0 0
\(251\) 128.827i 0.513255i −0.966510 0.256627i \(-0.917389\pi\)
0.966510 0.256627i \(-0.0826113\pi\)
\(252\) 0 0
\(253\) −292.495 −1.15610
\(254\) 0 0
\(255\) 58.3609 + 33.6947i 0.228866 + 0.132136i
\(256\) 0 0
\(257\) 23.4200 + 40.5647i 0.0911285 + 0.157839i 0.907986 0.419000i \(-0.137619\pi\)
−0.816858 + 0.576839i \(0.804286\pi\)
\(258\) 0 0
\(259\) 309.841 + 159.179i 1.19630 + 0.614592i
\(260\) 0 0
\(261\) 2.29154 + 3.96907i 0.00877986 + 0.0152072i
\(262\) 0 0
\(263\) −185.429 107.057i −0.705052 0.407062i 0.104174 0.994559i \(-0.466780\pi\)
−0.809226 + 0.587497i \(0.800113\pi\)
\(264\) 0 0
\(265\) −520.861 −1.96551
\(266\) 0 0
\(267\) 41.5496i 0.155616i
\(268\) 0 0
\(269\) 32.3713 56.0687i 0.120339 0.208434i −0.799562 0.600583i \(-0.794935\pi\)
0.919902 + 0.392149i \(0.128268\pi\)
\(270\) 0 0
\(271\) 230.972 133.352i 0.852297 0.492074i −0.00912848 0.999958i \(-0.502906\pi\)
0.861425 + 0.507885i \(0.169572\pi\)
\(272\) 0 0
\(273\) −490.761 + 24.0744i −1.79766 + 0.0881847i
\(274\) 0 0
\(275\) 170.283 98.3127i 0.619209 0.357501i
\(276\) 0 0
\(277\) 162.249 281.024i 0.585737 1.01453i −0.409046 0.912514i \(-0.634139\pi\)
0.994783 0.102012i \(-0.0325281\pi\)
\(278\) 0 0
\(279\) 5.94138i 0.0212953i
\(280\) 0 0
\(281\) −298.659 −1.06284 −0.531422 0.847107i \(-0.678342\pi\)
−0.531422 + 0.847107i \(0.678342\pi\)
\(282\) 0 0
\(283\) −229.716 132.627i −0.811717 0.468645i 0.0358346 0.999358i \(-0.488591\pi\)
−0.847552 + 0.530713i \(0.821924\pi\)
\(284\) 0 0
\(285\) −33.1230 57.3708i −0.116221 0.201301i
\(286\) 0 0
\(287\) 15.7226 10.1358i 0.0547825 0.0353163i
\(288\) 0 0
\(289\) 138.737 + 240.300i 0.480060 + 0.831488i
\(290\) 0 0
\(291\) −145.733 84.1390i −0.500801 0.289137i
\(292\) 0 0
\(293\) −437.504 −1.49319 −0.746594 0.665280i \(-0.768312\pi\)
−0.746594 + 0.665280i \(0.768312\pi\)
\(294\) 0 0
\(295\) 59.1904i 0.200646i
\(296\) 0 0
\(297\) −130.325 + 225.730i −0.438806 + 0.760034i
\(298\) 0 0
\(299\) 640.880 370.012i 2.14341 1.23750i
\(300\) 0 0
\(301\) 169.764 + 263.337i 0.564000 + 0.874874i
\(302\) 0 0
\(303\) −282.101 + 162.871i −0.931025 + 0.537528i
\(304\) 0 0
\(305\) 175.773 304.449i 0.576306 0.998192i
\(306\) 0 0
\(307\) 338.398i 1.10227i −0.834415 0.551137i \(-0.814194\pi\)
0.834415 0.551137i \(-0.185806\pi\)
\(308\) 0 0
\(309\) 192.944 0.624414
\(310\) 0 0
\(311\) 320.421 + 184.995i 1.03029 + 0.594841i 0.917069 0.398729i \(-0.130548\pi\)
0.113225 + 0.993569i \(0.463882\pi\)
\(312\) 0 0
\(313\) 23.1807 + 40.1501i 0.0740597 + 0.128275i 0.900677 0.434489i \(-0.143071\pi\)
−0.826617 + 0.562764i \(0.809738\pi\)
\(314\) 0 0
\(315\) 0.916550 + 18.6840i 0.00290968 + 0.0593144i
\(316\) 0 0
\(317\) −205.697 356.277i −0.648885 1.12390i −0.983390 0.181508i \(-0.941902\pi\)
0.334504 0.942394i \(-0.391431\pi\)
\(318\) 0 0
\(319\) 95.0533 + 54.8790i 0.297973 + 0.172035i
\(320\) 0 0
\(321\) −92.7273 −0.288870
\(322\) 0 0
\(323\) 11.3299i 0.0350772i
\(324\) 0 0
\(325\) −248.735 + 430.822i −0.765340 + 1.32561i
\(326\) 0 0
\(327\) 121.402 70.0917i 0.371261 0.214348i
\(328\) 0 0
\(329\) 256.973 500.195i 0.781072 1.52035i
\(330\) 0 0
\(331\) −171.730 + 99.1486i −0.518823 + 0.299543i −0.736453 0.676489i \(-0.763501\pi\)
0.217630 + 0.976031i \(0.430167\pi\)
\(332\) 0 0
\(333\) −9.82615 + 17.0194i −0.0295080 + 0.0511093i
\(334\) 0 0
\(335\) 782.649i 2.33627i
\(336\) 0 0
\(337\) 372.293 1.10473 0.552364 0.833603i \(-0.313726\pi\)
0.552364 + 0.833603i \(0.313726\pi\)
\(338\) 0 0
\(339\) −189.925 109.653i −0.560251 0.323461i
\(340\) 0 0
\(341\) −71.1437 123.224i −0.208633 0.361362i
\(342\) 0 0
\(343\) 50.2559 + 339.298i 0.146519 + 0.989208i
\(344\) 0 0
\(345\) 306.946 + 531.645i 0.889697 + 1.54100i
\(346\) 0 0
\(347\) 25.8710 + 14.9367i 0.0745563 + 0.0430451i 0.536815 0.843700i \(-0.319627\pi\)
−0.462258 + 0.886745i \(0.652961\pi\)
\(348\) 0 0
\(349\) 491.816 1.40922 0.704608 0.709597i \(-0.251123\pi\)
0.704608 + 0.709597i \(0.251123\pi\)
\(350\) 0 0
\(351\) 659.458i 1.87880i
\(352\) 0 0
\(353\) 209.599 363.036i 0.593764 1.02843i −0.399956 0.916535i \(-0.630974\pi\)
0.993720 0.111896i \(-0.0356922\pi\)
\(354\) 0 0
\(355\) −716.927 + 413.918i −2.01951 + 1.16597i
\(356\) 0 0
\(357\) −31.8559 + 62.0073i −0.0892323 + 0.173690i
\(358\) 0 0
\(359\) −246.329 + 142.218i −0.686154 + 0.396151i −0.802170 0.597096i \(-0.796321\pi\)
0.116016 + 0.993247i \(0.462988\pi\)
\(360\) 0 0
\(361\) −174.931 + 302.990i −0.484574 + 0.839306i
\(362\) 0 0
\(363\) 92.5522i 0.254965i
\(364\) 0 0
\(365\) −175.426 −0.480618
\(366\) 0 0
\(367\) −127.579 73.6575i −0.347626 0.200702i 0.316013 0.948755i \(-0.397656\pi\)
−0.663639 + 0.748053i \(0.730989\pi\)
\(368\) 0 0
\(369\) 0.527684 + 0.913976i 0.00143004 + 0.00247690i
\(370\) 0 0
\(371\) −26.3997 538.163i −0.0711583 1.45057i
\(372\) 0 0
\(373\) 1.17126 + 2.02868i 0.00314010 + 0.00543881i 0.867591 0.497278i \(-0.165667\pi\)
−0.864451 + 0.502717i \(0.832334\pi\)
\(374\) 0 0
\(375\) 72.3754 + 41.7860i 0.193001 + 0.111429i
\(376\) 0 0
\(377\) −277.693 −0.736586
\(378\) 0 0
\(379\) 440.261i 1.16164i 0.814033 + 0.580819i \(0.197268\pi\)
−0.814033 + 0.580819i \(0.802732\pi\)
\(380\) 0 0
\(381\) 90.1149 156.084i 0.236522 0.409668i
\(382\) 0 0
\(383\) −38.8014 + 22.4020i −0.101309 + 0.0584909i −0.549799 0.835297i \(-0.685296\pi\)
0.448489 + 0.893788i \(0.351962\pi\)
\(384\) 0 0
\(385\) 242.737 + 376.532i 0.630485 + 0.978006i
\(386\) 0 0
\(387\) −15.3082 + 8.83818i −0.0395560 + 0.0228377i
\(388\) 0 0
\(389\) −94.3414 + 163.404i −0.242523 + 0.420062i −0.961432 0.275042i \(-0.911308\pi\)
0.718909 + 0.695104i \(0.244642\pi\)
\(390\) 0 0
\(391\) 104.993i 0.268523i
\(392\) 0 0
\(393\) 325.185 0.827442
\(394\) 0 0
\(395\) 0.137975 + 0.0796601i 0.000349305 + 0.000201671i
\(396\) 0 0
\(397\) 189.387 + 328.029i 0.477046 + 0.826269i 0.999654 0.0263048i \(-0.00837405\pi\)
−0.522608 + 0.852573i \(0.675041\pi\)
\(398\) 0 0
\(399\) 57.5976 37.1311i 0.144355 0.0930604i
\(400\) 0 0
\(401\) 127.223 + 220.356i 0.317264 + 0.549517i 0.979916 0.199410i \(-0.0639026\pi\)
−0.662652 + 0.748927i \(0.730569\pi\)
\(402\) 0 0
\(403\) 311.763 + 179.997i 0.773606 + 0.446642i
\(404\) 0 0
\(405\) 523.006 1.29137
\(406\) 0 0
\(407\) 470.643i 1.15637i
\(408\) 0 0
\(409\) 150.973 261.492i 0.369126 0.639345i −0.620303 0.784362i \(-0.712990\pi\)
0.989429 + 0.145017i \(0.0463238\pi\)
\(410\) 0 0
\(411\) −501.202 + 289.369i −1.21947 + 0.704061i
\(412\) 0 0
\(413\) 61.1566 3.00005i 0.148079 0.00726405i
\(414\) 0 0
\(415\) 632.442 365.140i 1.52396 0.879856i
\(416\) 0 0
\(417\) −121.500 + 210.444i −0.291367 + 0.504662i
\(418\) 0 0
\(419\) 100.704i 0.240344i 0.992753 + 0.120172i \(0.0383446\pi\)
−0.992753 + 0.120172i \(0.961655\pi\)
\(420\) 0 0
\(421\) −226.449 −0.537883 −0.268942 0.963156i \(-0.586674\pi\)
−0.268942 + 0.963156i \(0.586674\pi\)
\(422\) 0 0
\(423\) 27.4754 + 15.8629i 0.0649537 + 0.0375010i
\(424\) 0 0
\(425\) 35.2899 + 61.1240i 0.0830351 + 0.143821i
\(426\) 0 0
\(427\) 323.471 + 166.181i 0.757542 + 0.389183i
\(428\) 0 0
\(429\) −331.935 574.927i −0.773740 1.34016i
\(430\) 0 0
\(431\) 628.951 + 363.125i 1.45928 + 0.842518i 0.998976 0.0452414i \(-0.0144057\pi\)
0.460308 + 0.887759i \(0.347739\pi\)
\(432\) 0 0
\(433\) −4.54373 −0.0104936 −0.00524680 0.999986i \(-0.501670\pi\)
−0.00524680 + 0.999986i \(0.501670\pi\)
\(434\) 0 0
\(435\) 230.362i 0.529567i
\(436\) 0 0
\(437\) −51.6057 + 89.3837i −0.118091 + 0.204539i
\(438\) 0 0
\(439\) −374.387 + 216.153i −0.852818 + 0.492375i −0.861601 0.507587i \(-0.830538\pi\)
0.00878248 + 0.999961i \(0.497204\pi\)
\(440\) 0 0
\(441\) −19.2582 + 1.89399i −0.0436694 + 0.00429476i
\(442\) 0 0
\(443\) 332.942 192.224i 0.751561 0.433914i −0.0746967 0.997206i \(-0.523799\pi\)
0.826258 + 0.563292i \(0.190466\pi\)
\(444\) 0 0
\(445\) −47.9230 + 83.0051i −0.107692 + 0.186528i
\(446\) 0 0
\(447\) 575.268i 1.28695i
\(448\) 0 0
\(449\) 98.6049 0.219610 0.109805 0.993953i \(-0.464977\pi\)
0.109805 + 0.993953i \(0.464977\pi\)
\(450\) 0 0
\(451\) 21.8884 + 12.6373i 0.0485330 + 0.0280205i
\(452\) 0 0
\(453\) −161.823 280.286i −0.357225 0.618732i
\(454\) 0 0
\(455\) −1008.18 517.946i −2.21577 1.13834i
\(456\) 0 0
\(457\) −129.739 224.714i −0.283893 0.491717i 0.688447 0.725286i \(-0.258293\pi\)
−0.972340 + 0.233570i \(0.924959\pi\)
\(458\) 0 0
\(459\) −81.0272 46.7811i −0.176530 0.101920i
\(460\) 0 0
\(461\) 444.260 0.963688 0.481844 0.876257i \(-0.339967\pi\)
0.481844 + 0.876257i \(0.339967\pi\)
\(462\) 0 0
\(463\) 270.748i 0.584769i −0.956301 0.292385i \(-0.905551\pi\)
0.956301 0.292385i \(-0.0944487\pi\)
\(464\) 0 0
\(465\) −149.317 + 258.625i −0.321112 + 0.556183i
\(466\) 0 0
\(467\) 507.985 293.285i 1.08776 0.628020i 0.154783 0.987948i \(-0.450532\pi\)
0.932980 + 0.359928i \(0.117199\pi\)
\(468\) 0 0
\(469\) −808.647 + 39.6684i −1.72419 + 0.0845808i
\(470\) 0 0
\(471\) −190.485 + 109.976i −0.404426 + 0.233496i
\(472\) 0 0
\(473\) −211.661 + 366.608i −0.447487 + 0.775070i
\(474\) 0 0
\(475\) 69.3824i 0.146068i
\(476\) 0 0
\(477\) 30.3981 0.0637278
\(478\) 0 0
\(479\) 62.3189 + 35.9798i 0.130102 + 0.0751145i 0.563638 0.826022i \(-0.309401\pi\)
−0.433536 + 0.901136i \(0.642734\pi\)
\(480\) 0 0
\(481\) −595.374 1031.22i −1.23778 2.14391i
\(482\) 0 0
\(483\) −533.747 + 344.088i −1.10507 + 0.712397i
\(484\) 0 0
\(485\) −194.091 336.175i −0.400187 0.693144i
\(486\) 0 0
\(487\) −653.899 377.529i −1.34271 0.775214i −0.355505 0.934674i \(-0.615691\pi\)
−0.987204 + 0.159461i \(0.949024\pi\)
\(488\) 0 0
\(489\) −102.214 −0.209027
\(490\) 0 0
\(491\) 259.760i 0.529042i 0.964380 + 0.264521i \(0.0852139\pi\)
−0.964380 + 0.264521i \(0.914786\pi\)
\(492\) 0 0
\(493\) −19.6992 + 34.1199i −0.0399577 + 0.0692088i
\(494\) 0 0
\(495\) −21.8884 + 12.6373i −0.0442189 + 0.0255298i
\(496\) 0 0
\(497\) −464.004 719.762i −0.933610 1.44821i
\(498\) 0 0
\(499\) 288.135 166.355i 0.577426 0.333377i −0.182684 0.983172i \(-0.558479\pi\)
0.760110 + 0.649795i \(0.225145\pi\)
\(500\) 0 0
\(501\) −151.462 + 262.340i −0.302319 + 0.523632i
\(502\) 0 0
\(503\) 705.652i 1.40289i −0.712725 0.701443i \(-0.752539\pi\)
0.712725 0.701443i \(-0.247461\pi\)
\(504\) 0 0
\(505\) −751.416 −1.48795
\(506\) 0 0
\(507\) 1025.26 + 591.933i 2.02221 + 1.16752i
\(508\) 0 0
\(509\) 318.419 + 551.517i 0.625577 + 1.08353i 0.988429 + 0.151684i \(0.0484698\pi\)
−0.362852 + 0.931847i \(0.618197\pi\)
\(510\) 0 0
\(511\) −8.89141 181.253i −0.0174000 0.354702i
\(512\) 0 0
\(513\) 45.9874 + 79.6525i 0.0896440 + 0.155268i
\(514\) 0 0
\(515\) 385.451 + 222.540i 0.748448 + 0.432116i
\(516\) 0 0
\(517\) 759.788 1.46961
\(518\) 0 0
\(519\) 103.588i 0.199592i
\(520\) 0 0
\(521\) 89.8671 155.654i 0.172490 0.298761i −0.766800 0.641886i \(-0.778152\pi\)
0.939290 + 0.343125i \(0.111486\pi\)
\(522\) 0 0
\(523\) 160.112 92.4406i 0.306141 0.176751i −0.339057 0.940766i \(-0.610108\pi\)
0.645198 + 0.764015i \(0.276775\pi\)
\(524\) 0 0
\(525\) 195.080 379.721i 0.371580 0.723278i
\(526\) 0 0
\(527\) 44.2322 25.5375i 0.0839320 0.0484582i
\(528\) 0 0
\(529\) 213.721 370.176i 0.404009 0.699765i
\(530\) 0 0
\(531\) 3.45443i 0.00650552i
\(532\) 0 0
\(533\) −63.9456 −0.119973
\(534\) 0 0
\(535\) −185.245 106.951i −0.346251 0.199908i
\(536\) 0 0
\(537\) 179.063 + 310.146i 0.333451 + 0.577554i
\(538\) 0 0
\(539\) −376.736 + 269.884i −0.698954 + 0.500713i
\(540\) 0 0
\(541\) 186.923 + 323.760i 0.345514 + 0.598447i 0.985447 0.169983i \(-0.0543714\pi\)
−0.639933 + 0.768430i \(0.721038\pi\)
\(542\) 0 0
\(543\) 57.6713 + 33.2965i 0.106209 + 0.0613195i
\(544\) 0 0
\(545\) 323.373 0.593345
\(546\) 0 0
\(547\) 686.108i 1.25431i 0.778895 + 0.627155i \(0.215781\pi\)
−0.778895 + 0.627155i \(0.784219\pi\)
\(548\) 0 0
\(549\) −10.2584 + 17.7680i −0.0186856 + 0.0323643i
\(550\) 0 0
\(551\) 33.5411 19.3649i 0.0608731 0.0351451i
\(552\) 0 0
\(553\) −0.0753130 + 0.146596i −0.000136190 + 0.000265092i
\(554\) 0 0
\(555\) 855.453 493.896i 1.54136 0.889903i
\(556\) 0 0
\(557\) −194.523 + 336.923i −0.349233 + 0.604889i −0.986113 0.166073i \(-0.946891\pi\)
0.636881 + 0.770963i \(0.280224\pi\)
\(558\) 0 0
\(559\) 1071.02i 1.91597i
\(560\) 0 0
\(561\) −94.1880 −0.167893
\(562\) 0 0
\(563\) −767.717 443.242i −1.36362 0.787286i −0.373515 0.927624i \(-0.621848\pi\)
−0.990104 + 0.140338i \(0.955181\pi\)
\(564\) 0 0
\(565\) −252.947 438.116i −0.447693 0.775427i
\(566\) 0 0
\(567\) 26.5084 + 540.378i 0.0467521 + 0.953048i
\(568\) 0 0
\(569\) 74.8405 + 129.628i 0.131530 + 0.227817i 0.924267 0.381748i \(-0.124678\pi\)
−0.792737 + 0.609564i \(0.791344\pi\)
\(570\) 0 0
\(571\) 376.443 + 217.340i 0.659270 + 0.380630i 0.791999 0.610523i \(-0.209041\pi\)
−0.132729 + 0.991152i \(0.542374\pi\)
\(572\) 0 0
\(573\) −593.454 −1.03570
\(574\) 0 0
\(575\) 642.955i 1.11818i
\(576\) 0 0
\(577\) −269.546 + 466.867i −0.467151 + 0.809129i −0.999296 0.0375243i \(-0.988053\pi\)
0.532145 + 0.846653i \(0.321386\pi\)
\(578\) 0 0
\(579\) −700.018 + 404.156i −1.20901 + 0.698024i
\(580\) 0 0
\(581\) 409.324 + 634.943i 0.704517 + 1.09284i
\(582\) 0 0
\(583\) 630.458 363.995i 1.08140 0.624349i
\(584\) 0 0
\(585\) 31.9728 55.3785i 0.0546544 0.0946642i
\(586\) 0 0
\(587\) 467.257i 0.796008i −0.917384 0.398004i \(-0.869703\pi\)
0.917384 0.398004i \(-0.130297\pi\)
\(588\) 0 0
\(589\) −50.2084 −0.0852434
\(590\) 0 0
\(591\) 494.381 + 285.431i 0.836516 + 0.482963i
\(592\) 0 0
\(593\) 514.015 + 890.300i 0.866805 + 1.50135i 0.865244 + 0.501351i \(0.167163\pi\)
0.00156081 + 0.999999i \(0.499503\pi\)
\(594\) 0 0
\(595\) −135.158 + 87.1318i −0.227157 + 0.146440i
\(596\) 0 0
\(597\) 246.827 + 427.517i 0.413445 + 0.716109i
\(598\) 0 0
\(599\) 125.950 + 72.7170i 0.210266 + 0.121397i 0.601435 0.798922i \(-0.294596\pi\)
−0.391169 + 0.920319i \(0.627929\pi\)
\(600\) 0 0
\(601\) 888.535 1.47843 0.739214 0.673471i \(-0.235197\pi\)
0.739214 + 0.673471i \(0.235197\pi\)
\(602\) 0 0
\(603\) 45.6765i 0.0757487i
\(604\) 0 0
\(605\) 106.749 184.895i 0.176445 0.305611i
\(606\) 0 0
\(607\) −992.716 + 573.145i −1.63545 + 0.944226i −0.653074 + 0.757294i \(0.726521\pi\)
−0.982373 + 0.186931i \(0.940146\pi\)
\(608\) 0 0
\(609\) 238.014 11.6758i 0.390827 0.0191721i
\(610\) 0 0
\(611\) −1664.76 + 961.148i −2.72464 + 1.57307i
\(612\) 0 0
\(613\) 287.236 497.508i 0.468575 0.811595i −0.530780 0.847509i \(-0.678101\pi\)
0.999355 + 0.0359145i \(0.0114344\pi\)
\(614\) 0 0
\(615\) 53.0464i 0.0862544i
\(616\) 0 0
\(617\) −282.236 −0.457432 −0.228716 0.973493i \(-0.573453\pi\)
−0.228716 + 0.973493i \(0.573453\pi\)
\(618\) 0 0
\(619\) 350.617 + 202.429i 0.566424 + 0.327025i 0.755720 0.654895i \(-0.227287\pi\)
−0.189296 + 0.981920i \(0.560620\pi\)
\(620\) 0 0
\(621\) −426.157 738.126i −0.686244 1.18861i
\(622\) 0 0
\(623\) −88.1912 45.3078i −0.141559 0.0727252i
\(624\) 0 0
\(625\) 356.264 + 617.068i 0.570023 + 0.987308i
\(626\) 0 0
\(627\) 80.1853 + 46.2950i 0.127887 + 0.0738357i
\(628\) 0 0
\(629\) −168.940 −0.268585
\(630\) 0 0
\(631\) 112.125i 0.177694i −0.996045 0.0888472i \(-0.971682\pi\)
0.996045 0.0888472i \(-0.0283183\pi\)
\(632\) 0 0
\(633\) 326.378 565.304i 0.515605 0.893055i
\(634\) 0 0
\(635\) 360.051 207.876i 0.567010 0.327363i
\(636\) 0 0
\(637\) 484.051 1067.92i 0.759892 1.67648i
\(638\) 0 0
\(639\) 41.8408 24.1568i 0.0654786 0.0378041i
\(640\) 0 0
\(641\) −65.1233 + 112.797i −0.101596 + 0.175970i −0.912343 0.409428i \(-0.865728\pi\)
0.810746 + 0.585398i \(0.199062\pi\)
\(642\) 0 0
\(643\) 376.192i 0.585058i 0.956257 + 0.292529i \(0.0944968\pi\)
−0.956257 + 0.292529i \(0.905503\pi\)
\(644\) 0 0
\(645\) 888.474 1.37748
\(646\) 0 0
\(647\) −1105.04 637.994i −1.70794 0.986080i −0.937105 0.349047i \(-0.886506\pi\)
−0.770836 0.637034i \(-0.780161\pi\)
\(648\) 0 0
\(649\) 41.3643 + 71.6450i 0.0637354 + 0.110393i
\(650\) 0 0
\(651\) −274.784 141.169i −0.422095 0.216849i
\(652\) 0 0
\(653\) 447.669 + 775.386i 0.685558 + 1.18742i 0.973261 + 0.229701i \(0.0737749\pi\)
−0.287703 + 0.957720i \(0.592892\pi\)
\(654\) 0 0
\(655\) 649.632 + 375.065i 0.991805 + 0.572619i
\(656\) 0 0
\(657\) 10.2381 0.0155831
\(658\) 0 0
\(659\) 587.884i 0.892086i −0.895012 0.446043i \(-0.852833\pi\)
0.895012 0.446043i \(-0.147167\pi\)
\(660\) 0 0
\(661\) −50.5886 + 87.6220i −0.0765335 + 0.132560i −0.901752 0.432254i \(-0.857719\pi\)
0.825219 + 0.564813i \(0.191052\pi\)
\(662\) 0 0
\(663\) 206.374 119.150i 0.311272 0.179713i
\(664\) 0 0
\(665\) 157.892 7.74542i 0.237431 0.0116472i
\(666\) 0 0
\(667\) −310.819 + 179.452i −0.465996 + 0.269043i
\(668\) 0 0
\(669\) −389.052 + 673.859i −0.581543 + 1.00726i
\(670\) 0 0
\(671\) 491.346i 0.732259i
\(672\) 0 0
\(673\) 1227.95 1.82460 0.912298 0.409528i \(-0.134306\pi\)
0.912298 + 0.409528i \(0.134306\pi\)
\(674\) 0 0
\(675\) 496.195 + 286.478i 0.735104 + 0.424412i
\(676\) 0 0
\(677\) −166.350 288.127i −0.245717 0.425594i 0.716616 0.697468i \(-0.245690\pi\)
−0.962333 + 0.271874i \(0.912357\pi\)
\(678\) 0 0
\(679\) 337.504 217.577i 0.497060 0.320437i
\(680\) 0 0
\(681\) −336.549 582.920i −0.494198 0.855976i
\(682\) 0 0
\(683\) 1020.33 + 589.087i 1.49389 + 0.862499i 0.999975 0.00700950i \(-0.00223121\pi\)
0.493917 + 0.869509i \(0.335565\pi\)
\(684\) 0 0
\(685\) −1335.02 −1.94894
\(686\) 0 0
\(687\) 106.496i 0.155016i
\(688\) 0 0
\(689\) −920.924 + 1595.09i −1.33661 + 2.31508i
\(690\) 0 0
\(691\) −158.888 + 91.7338i −0.229939 + 0.132755i −0.610544 0.791983i \(-0.709049\pi\)
0.380605 + 0.924738i \(0.375716\pi\)
\(692\) 0 0
\(693\) −14.1664 21.9749i −0.0204422 0.0317098i
\(694\) 0 0
\(695\) −485.449 + 280.274i −0.698488 + 0.403272i
\(696\) 0 0
\(697\) −4.53622 + 7.85696i −0.00650820 + 0.0112725i
\(698\) 0 0
\(699\) 332.318i 0.475420i
\(700\) 0 0
\(701\) −1021.59 −1.45733 −0.728664 0.684872i \(-0.759858\pi\)
−0.728664 + 0.684872i \(0.759858\pi\)
\(702\) 0 0
\(703\) 143.824 + 83.0370i 0.204587 + 0.118118i
\(704\) 0 0
\(705\) −797.326 1381.01i −1.13096 1.95888i
\(706\) 0 0
\(707\) −38.0854 776.376i −0.0538690 1.09813i
\(708\) 0 0
\(709\) 235.749 + 408.329i 0.332509 + 0.575923i 0.983003 0.183589i \(-0.0587714\pi\)
−0.650494 + 0.759511i \(0.725438\pi\)
\(710\) 0 0
\(711\) −0.00805243 0.00464907i −1.13255e−5 6.53878e-6i
\(712\) 0 0
\(713\) 465.272 0.652556
\(714\) 0 0
\(715\) 1531.40i 2.14182i
\(716\) 0 0
\(717\) −183.642 + 318.077i −0.256125 + 0.443622i
\(718\) 0 0
\(719\) 491.275 283.638i 0.683275 0.394489i −0.117813 0.993036i \(-0.537588\pi\)
0.801088 + 0.598547i \(0.204255\pi\)
\(720\) 0 0
\(721\) −210.396 + 409.533i −0.291811 + 0.568008i
\(722\) 0 0
\(723\) 711.684 410.891i 0.984349 0.568314i
\(724\) 0 0
\(725\) 120.634 208.944i 0.166392 0.288199i
\(726\) 0 0
\(727\) 514.680i 0.707951i 0.935255 + 0.353976i \(0.115170\pi\)
−0.935255 + 0.353976i \(0.884830\pi\)
\(728\) 0 0
\(729\) −758.120 −1.03994
\(730\) 0 0
\(731\) −131.596 75.9771i −0.180022 0.103936i
\(732\) 0 0
\(733\) 269.215 + 466.294i 0.367278 + 0.636144i 0.989139 0.146984i \(-0.0469564\pi\)
−0.621861 + 0.783128i \(0.713623\pi\)
\(734\) 0 0
\(735\) 885.897 + 401.547i 1.20530 + 0.546323i
\(736\) 0 0
\(737\) −546.942 947.331i −0.742119 1.28539i
\(738\) 0 0
\(739\) −504.372 291.199i −0.682506 0.394045i 0.118292 0.992979i \(-0.462258\pi\)
−0.800799 + 0.598934i \(0.795591\pi\)
\(740\) 0 0
\(741\) −234.257 −0.316136
\(742\) 0 0
\(743\) 734.391i 0.988413i 0.869344 + 0.494207i \(0.164541\pi\)
−0.869344 + 0.494207i \(0.835459\pi\)
\(744\) 0 0
\(745\) 663.510 1149.23i 0.890617 1.54259i
\(746\) 0 0
\(747\) −36.9101 + 21.3101i −0.0494112 + 0.0285276i
\(748\) 0 0
\(749\) 101.115 196.819i 0.134999 0.262775i
\(750\) 0 0
\(751\) 190.323 109.883i 0.253426 0.146316i −0.367906 0.929863i \(-0.619925\pi\)
0.621332 + 0.783547i \(0.286592\pi\)
\(752\) 0 0
\(753\) 188.953 327.276i 0.250934 0.434630i
\(754\) 0 0
\(755\) 746.582i 0.988850i
\(756\) 0 0
\(757\) −38.5398 −0.0509112 −0.0254556 0.999676i \(-0.508104\pi\)
−0.0254556 + 0.999676i \(0.508104\pi\)
\(758\) 0 0
\(759\) −743.063 429.008i −0.979003 0.565228i
\(760\) 0 0
\(761\) 386.969 + 670.250i 0.508501 + 0.880749i 0.999952 + 0.00984360i \(0.00313336\pi\)
−0.491451 + 0.870905i \(0.663533\pi\)
\(762\) 0 0
\(763\) 16.3901 + 334.115i 0.0214811 + 0.437896i
\(764\) 0 0
\(765\) −4.53622 7.85696i −0.00592970 0.0102705i
\(766\) 0 0
\(767\) −181.265 104.653i −0.236330 0.136445i
\(768\) 0 0
\(769\) −1159.88 −1.50830 −0.754150 0.656702i \(-0.771951\pi\)
−0.754150 + 0.656702i \(0.771951\pi\)
\(770\) 0 0
\(771\) 137.403i 0.178213i
\(772\) 0 0
\(773\) 654.351 1133.37i 0.846509 1.46620i −0.0377957 0.999285i \(-0.512034\pi\)
0.884304 0.466911i \(-0.154633\pi\)
\(774\) 0 0
\(775\) −270.869 + 156.386i −0.349509 + 0.201789i
\(776\) 0 0
\(777\) 553.660 + 858.836i 0.712561 + 1.10532i
\(778\) 0 0
\(779\) 7.72366 4.45926i 0.00991484 0.00572434i
\(780\) 0 0
\(781\) 578.520 1002.03i 0.740742 1.28300i
\(782\) 0 0
\(783\) 319.830i 0.408467i
\(784\) 0 0
\(785\) −507.384 −0.646349
\(786\) 0 0
\(787\) 387.858 + 223.930i 0.492831 + 0.284536i 0.725748 0.687961i \(-0.241494\pi\)
−0.232917 + 0.972497i \(0.574827\pi\)
\(788\) 0 0
\(789\) −314.046 543.944i −0.398031 0.689410i
\(790\) 0 0
\(791\) 439.849 283.555i 0.556067 0.358476i
\(792\) 0 0
\(793\) −621.563 1076.58i −0.783812 1.35760i
\(794\) 0 0
\(795\) −1323.21 763.958i −1.66442 0.960953i
\(796\) 0 0
\(797\) −761.194 −0.955074 −0.477537 0.878612i \(-0.658470\pi\)
−0.477537 + 0.878612i \(0.658470\pi\)
\(798\) 0 0
\(799\) 272.730i 0.341340i
\(800\) 0 0
\(801\) 2.79685 4.84429i 0.00349170 0.00604780i
\(802\) 0 0
\(803\) 212.338 122.593i 0.264431 0.152669i
\(804\) 0 0
\(805\) −1463.15 + 71.7754i −1.81758 + 0.0891620i
\(806\) 0 0
\(807\) 164.474 94.9593i 0.203810 0.117670i
\(808\) 0 0
\(809\) −492.156 + 852.439i −0.608351 + 1.05369i 0.383162 + 0.923681i \(0.374835\pi\)
−0.991512 + 0.130013i \(0.958498\pi\)
\(810\) 0 0
\(811\) 124.916i 0.154027i 0.997030 + 0.0770136i \(0.0245385\pi\)
−0.997030 + 0.0770136i \(0.975462\pi\)
\(812\) 0 0
\(813\) 782.360 0.962313
\(814\) 0 0
\(815\) −204.197 117.893i −0.250548 0.144654i
\(816\) 0 0
\(817\) 74.6880 + 129.363i 0.0914174 + 0.158340i
\(818\) 0 0
\(819\) 58.8386 + 30.2280i 0.0718420 + 0.0369084i
\(820\) 0 0
\(821\) 434.046 + 751.790i 0.528680 + 0.915700i 0.999441 + 0.0334394i \(0.0106461\pi\)
−0.470761 + 0.882261i \(0.656021\pi\)
\(822\) 0 0
\(823\) −171.529 99.0320i −0.208419 0.120331i 0.392158 0.919898i \(-0.371729\pi\)
−0.600576 + 0.799567i \(0.705062\pi\)
\(824\) 0 0
\(825\) 576.789 0.699138
\(826\) 0 0
\(827\) 494.720i 0.598211i 0.954220 + 0.299105i \(0.0966882\pi\)
−0.954220 + 0.299105i \(0.903312\pi\)
\(828\) 0 0
\(829\) −174.683 + 302.560i −0.210715 + 0.364970i −0.951939 0.306289i \(-0.900913\pi\)
0.741223 + 0.671259i \(0.234246\pi\)
\(830\) 0 0
\(831\) 824.366 475.948i 0.992017 0.572741i
\(832\) 0 0
\(833\) −96.8765 135.232i −0.116298 0.162343i
\(834\) 0 0
\(835\) −605.161 + 349.390i −0.724744 + 0.418431i
\(836\) 0 0
\(837\) 207.309 359.070i 0.247681 0.428996i
\(838\) 0 0
\(839\) 1216.12i 1.44949i 0.689016 + 0.724746i \(0.258043\pi\)
−0.689016 + 0.724746i \(0.741957\pi\)
\(840\) 0 0
\(841\) −706.322 −0.839860
\(842\) 0 0
\(843\) −758.724 438.050i −0.900029 0.519632i
\(844\) 0 0
\(845\) 1365.46 + 2365.05i 1.61593 + 2.79888i
\(846\) 0 0
\(847\) 196.447 + 100.924i 0.231932 + 0.119154i
\(848\) 0 0
\(849\) −389.052 673.858i −0.458248 0.793708i
\(850\) 0 0
\(851\) −1332.80 769.490i −1.56615 0.904218i
\(852\) 0 0
\(853\) 849.999 0.996482 0.498241 0.867039i \(-0.333980\pi\)
0.498241 + 0.867039i \(0.333980\pi\)
\(854\) 0 0
\(855\) 8.91851i 0.0104310i
\(856\) 0 0
\(857\) −279.499 + 484.107i −0.326137 + 0.564886i −0.981742 0.190219i \(-0.939080\pi\)
0.655605 + 0.755104i \(0.272414\pi\)
\(858\) 0 0
\(859\) 1021.83 589.951i 1.18955 0.686788i 0.231347 0.972871i \(-0.425687\pi\)
0.958205 + 0.286083i \(0.0923534\pi\)
\(860\) 0 0
\(861\) 54.8085 2.68865i 0.0636568 0.00312270i
\(862\) 0 0
\(863\) 711.505 410.788i 0.824456 0.476000i −0.0274949 0.999622i \(-0.508753\pi\)
0.851951 + 0.523622i \(0.175420\pi\)
\(864\) 0 0
\(865\) −119.478 + 206.942i −0.138125 + 0.239240i
\(866\) 0 0
\(867\) 813.955i 0.938818i
\(868\) 0 0
\(869\) −0.222677 −0.000256245
\(870\) 0 0
\(871\) 2396.79 + 1383.79i 2.75177 + 1.58873i
\(872\) 0 0
\(873\) 11.3274 + 19.6196i 0.0129752 + 0.0224738i
\(874\) 0 0
\(875\) −167.615 + 108.055i −0.191560 + 0.123492i
\(876\) 0 0
\(877\) −325.399 563.608i −0.371037 0.642654i 0.618689 0.785636i \(-0.287664\pi\)
−0.989725 + 0.142982i \(0.954331\pi\)
\(878\) 0 0
\(879\) −1111.45 641.696i −1.26445 0.730030i
\(880\) 0 0
\(881\) 1592.49 1.80760 0.903799 0.427958i \(-0.140767\pi\)
0.903799 + 0.427958i \(0.140767\pi\)
\(882\) 0 0
\(883\) 1548.91i 1.75414i −0.480363 0.877070i \(-0.659495\pi\)
0.480363 0.877070i \(-0.340505\pi\)
\(884\) 0 0
\(885\) 86.8158 150.369i 0.0980970 0.169909i
\(886\) 0 0
\(887\) 159.831 92.2784i 0.180193 0.104034i −0.407191 0.913343i \(-0.633492\pi\)
0.587383 + 0.809309i \(0.300158\pi\)
\(888\) 0 0
\(889\) 233.030 + 361.475i 0.262126 + 0.406609i
\(890\) 0 0
\(891\) −633.054 + 365.494i −0.710499 + 0.410207i
\(892\) 0 0
\(893\) 134.052 232.184i 0.150114 0.260005i
\(894\) 0 0
\(895\) 826.120i 0.923039i
\(896\) 0 0
\(897\) 2170.82 2.42009
\(898\) 0 0
\(899\) −151.202 87.2963i −0.168189 0.0971038i
\(900\) 0 0
\(901\) 130.658 + 226.307i 0.145015 + 0.251173i
\(902\) 0 0
\(903\) 45.0321 + 917.987i 0.0498695 + 1.01660i
\(904\) 0 0
\(905\) 76.8079 + 133.035i 0.0848706 + 0.147000i
\(906\) 0 0
\(907\) 7.24397 + 4.18231i 0.00798673 + 0.00461114i 0.503988 0.863711i \(-0.331866\pi\)
−0.496001 + 0.868322i \(0.665199\pi\)
\(908\) 0 0
\(909\) 43.8537 0.0482438
\(910\) 0 0
\(911\) 1048.88i 1.15135i 0.817679 + 0.575674i \(0.195260\pi\)
−0.817679 + 0.575674i \(0.804740\pi\)
\(912\) 0 0
\(913\) −510.345 + 883.943i −0.558976 + 0.968175i
\(914\) 0 0
\(915\) 893.082 515.621i 0.976046 0.563520i
\(916\) 0 0
\(917\) −354.598 + 690.221i −0.386693 + 0.752695i
\(918\) 0 0
\(919\) −837.967 + 483.800i −0.911824 + 0.526442i −0.881018 0.473083i \(-0.843141\pi\)
−0.0308066 + 0.999525i \(0.509808\pi\)
\(920\) 0 0
\(921\) 496.335 859.678i 0.538909 0.933418i
\(922\) 0 0
\(923\) 2927.36i 3.17157i
\(924\) 0 0
\(925\) 1034.56 1.11844
\(926\) 0 0
\(927\) −22.4954 12.9877i −0.0242669 0.0140105i
\(928\) 0 0
\(929\) −61.8348 107.101i −0.0665606 0.115286i 0.830825 0.556534i \(-0.187869\pi\)
−0.897385 + 0.441248i \(0.854536\pi\)
\(930\) 0 0
\(931\) 16.0054 + 162.744i 0.0171916 + 0.174805i
\(932\) 0 0
\(933\) 542.673 + 939.938i 0.581643 + 1.00744i
\(934\) 0 0
\(935\) −188.163 108.636i −0.201243 0.116188i
\(936\) 0 0
\(937\) 49.6952 0.0530365 0.0265183 0.999648i \(-0.491558\pi\)
0.0265183 + 0.999648i \(0.491558\pi\)
\(938\) 0 0
\(939\) 135.998i 0.144833i
\(940\) 0 0
\(941\) 852.751 1477.01i 0.906217 1.56961i 0.0869428 0.996213i \(-0.472290\pi\)
0.819275 0.573401i \(-0.194376\pi\)
\(942\) 0 0
\(943\) −71.5738 + 41.3232i −0.0759001 + 0.0438210i
\(944\) 0 0
\(945\) −596.538 + 1161.16i −0.631257 + 1.22874i
\(946\) 0 0
\(947\) 501.920 289.783i 0.530010 0.306002i −0.211010 0.977484i \(-0.567675\pi\)
0.741021 + 0.671482i \(0.234342\pi\)
\(948\) 0 0
\(949\) −310.167 + 537.224i −0.326835 + 0.566095i
\(950\) 0 0
\(951\) 1206.80i 1.26898i
\(952\) 0 0
\(953\) −696.869 −0.731237 −0.365619 0.930765i \(-0.619143\pi\)
−0.365619 + 0.930765i \(0.619143\pi\)
\(954\) 0 0
\(955\) −1185.56 684.485i −1.24143 0.716739i
\(956\) 0 0
\(957\) 160.984 + 278.833i 0.168218 + 0.291362i
\(958\) 0 0
\(959\) −67.6654 1379.37i −0.0705583 1.43834i
\(960\) 0 0
\(961\) −367.331 636.237i −0.382239 0.662057i
\(962\) 0 0
\(963\) 10.8111 + 6.24180i 0.0112265 + 0.00648162i
\(964\) 0 0
\(965\) −1864.60 −1.93223
\(966\) 0 0
\(967\) 811.681i 0.839380i −0.907667 0.419690i \(-0.862139\pi\)
0.907667 0.419690i \(-0.137861\pi\)
\(968\) 0 0
\(969\) −16.6179 + 28.7830i −0.0171495 + 0.0297038i
\(970\) 0 0
\(971\) −413.161 + 238.539i −0.425500 + 0.245663i −0.697428 0.716655i \(-0.745672\pi\)
0.271927 + 0.962318i \(0.412339\pi\)
\(972\) 0 0
\(973\) −314.189 487.369i −0.322907 0.500893i
\(974\) 0 0
\(975\) −1263.79 + 729.651i −1.29620 + 0.748360i
\(976\) 0 0
\(977\) 809.641 1402.34i 0.828701 1.43535i −0.0703565 0.997522i \(-0.522414\pi\)
0.899058 0.437830i \(-0.144253\pi\)
\(978\) 0 0
\(979\) 133.961i 0.136834i
\(980\) 0 0
\(981\) −18.8725 −0.0192380
\(982\) 0 0
\(983\) −1088.06 628.189i −1.10687 0.639053i −0.168855 0.985641i \(-0.554007\pi\)
−0.938018 + 0.346588i \(0.887340\pi\)
\(984\) 0 0
\(985\) 658.428 + 1140.43i 0.668455 + 1.15780i
\(986\) 0 0
\(987\) 1386.47 893.807i 1.40473 0.905579i
\(988\) 0 0
\(989\) −692.121 1198.79i −0.699819 1.21212i
\(990\) 0 0
\(991\) −1002.15 578.591i −1.01125 0.583846i −0.0996932 0.995018i \(-0.531786\pi\)
−0.911558 + 0.411172i \(0.865119\pi\)
\(992\) 0 0
\(993\) −581.693 −0.585794
\(994\) 0 0
\(995\) 1138.75i 1.14448i
\(996\) 0 0
\(997\) 123.032 213.098i 0.123403 0.213740i −0.797705 0.603048i \(-0.793953\pi\)
0.921107 + 0.389309i \(0.127286\pi\)
\(998\) 0 0
\(999\) −1187.69 + 685.716i −1.18888 + 0.686402i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.3.r.b.95.3 yes 6
3.2 odd 2 1008.3.cd.j.991.1 6
4.3 odd 2 112.3.r.c.95.1 yes 6
7.2 even 3 112.3.r.c.79.1 yes 6
7.3 odd 6 784.3.d.k.687.5 6
7.4 even 3 784.3.d.l.687.2 6
7.5 odd 6 784.3.r.p.79.3 6
7.6 odd 2 784.3.r.q.655.1 6
8.3 odd 2 448.3.r.d.319.3 6
8.5 even 2 448.3.r.e.319.1 6
12.11 even 2 1008.3.cd.k.991.1 6
21.2 odd 6 1008.3.cd.k.415.1 6
28.3 even 6 784.3.d.k.687.2 6
28.11 odd 6 784.3.d.l.687.5 6
28.19 even 6 784.3.r.q.79.1 6
28.23 odd 6 inner 112.3.r.b.79.3 6
28.27 even 2 784.3.r.p.655.3 6
56.37 even 6 448.3.r.d.191.3 6
56.51 odd 6 448.3.r.e.191.1 6
84.23 even 6 1008.3.cd.j.415.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.3.r.b.79.3 6 28.23 odd 6 inner
112.3.r.b.95.3 yes 6 1.1 even 1 trivial
112.3.r.c.79.1 yes 6 7.2 even 3
112.3.r.c.95.1 yes 6 4.3 odd 2
448.3.r.d.191.3 6 56.37 even 6
448.3.r.d.319.3 6 8.3 odd 2
448.3.r.e.191.1 6 56.51 odd 6
448.3.r.e.319.1 6 8.5 even 2
784.3.d.k.687.2 6 28.3 even 6
784.3.d.k.687.5 6 7.3 odd 6
784.3.d.l.687.2 6 7.4 even 3
784.3.d.l.687.5 6 28.11 odd 6
784.3.r.p.79.3 6 7.5 odd 6
784.3.r.p.655.3 6 28.27 even 2
784.3.r.q.79.1 6 28.19 even 6
784.3.r.q.655.1 6 7.6 odd 2
1008.3.cd.j.415.1 6 84.23 even 6
1008.3.cd.j.991.1 6 3.2 odd 2
1008.3.cd.k.415.1 6 21.2 odd 6
1008.3.cd.k.991.1 6 12.11 even 2