Properties

Label 112.6.i.f.81.3
Level $112$
Weight $6$
Character 112.81
Analytic conductor $17.963$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [112,6,Mod(65,112)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(112, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("112.65");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 112.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.9629878191\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 200 x^{8} - 198 x^{7} + 34197 x^{6} - 16185 x^{5} + 1170401 x^{4} + 2020497 x^{3} + \cdots + 13068225 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{18}\cdot 3\cdot 7 \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 81.3
Root \(-0.319443 + 0.553292i\) of defining polynomial
Character \(\chi\) \(=\) 112.81
Dual form 112.6.i.f.65.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.13889 - 1.97261i) q^{3} +(-25.2555 - 43.7438i) q^{5} +(2.72289 - 129.613i) q^{7} +(118.906 + 205.951i) q^{9} +(96.0139 - 166.301i) q^{11} -656.798 q^{13} -115.053 q^{15} +(-1094.68 + 1896.05i) q^{17} +(-139.665 - 241.907i) q^{19} +(-252.575 - 152.986i) q^{21} +(-1856.80 - 3216.07i) q^{23} +(286.818 - 496.783i) q^{25} +1095.18 q^{27} -5276.51 q^{29} +(-3242.90 + 5616.87i) q^{31} +(-218.698 - 378.796i) q^{33} +(-5738.55 + 3154.34i) q^{35} +(-1475.04 - 2554.84i) q^{37} +(-748.019 + 1295.61i) q^{39} -2394.37 q^{41} -17261.5 q^{43} +(6006.06 - 10402.8i) q^{45} +(3860.38 + 6686.38i) q^{47} +(-16792.2 - 705.845i) q^{49} +(2493.44 + 4318.77i) q^{51} +(4248.63 - 7358.84i) q^{53} -9699.52 q^{55} -636.251 q^{57} +(-4467.51 + 7737.95i) q^{59} +(11194.8 + 19390.0i) q^{61} +(27017.7 - 14851.0i) q^{63} +(16587.8 + 28730.9i) q^{65} +(26347.5 - 45635.2i) q^{67} -8458.73 q^{69} +25479.0 q^{71} +(11454.1 - 19839.0i) q^{73} +(-653.306 - 1131.56i) q^{75} +(-21293.4 - 12897.5i) q^{77} +(-22959.5 - 39767.1i) q^{79} +(-27646.8 + 47885.7i) q^{81} +97180.7 q^{83} +110587. q^{85} +(-6009.35 + 10408.5i) q^{87} +(29565.7 + 51209.3i) q^{89} +(-1788.39 + 85129.8i) q^{91} +(7386.59 + 12793.9i) q^{93} +(-7054.63 + 12219.0i) q^{95} -73491.5 q^{97} +45666.5 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 5 q^{3} + 81 q^{5} - 116 q^{7} - 390 q^{9} + 361 q^{11} - 684 q^{13} + 2098 q^{15} + 1809 q^{17} - 1277 q^{19} - 5253 q^{21} + 911 q^{23} - 3940 q^{25} - 9502 q^{27} + 10884 q^{29} - 2187 q^{31}+ \cdots - 499596 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.13889 1.97261i 0.0730596 0.126543i −0.827181 0.561935i \(-0.810057\pi\)
0.900241 + 0.435392i \(0.143390\pi\)
\(4\) 0 0
\(5\) −25.2555 43.7438i −0.451784 0.782513i 0.546713 0.837320i \(-0.315879\pi\)
−0.998497 + 0.0548068i \(0.982546\pi\)
\(6\) 0 0
\(7\) 2.72289 129.613i 0.0210032 0.999779i
\(8\) 0 0
\(9\) 118.906 + 205.951i 0.489325 + 0.847535i
\(10\) 0 0
\(11\) 96.0139 166.301i 0.239250 0.414393i −0.721249 0.692676i \(-0.756432\pi\)
0.960499 + 0.278282i \(0.0897651\pi\)
\(12\) 0 0
\(13\) −656.798 −1.07789 −0.538944 0.842342i \(-0.681177\pi\)
−0.538944 + 0.842342i \(0.681177\pi\)
\(14\) 0 0
\(15\) −115.053 −0.132029
\(16\) 0 0
\(17\) −1094.68 + 1896.05i −0.918685 + 1.59121i −0.117271 + 0.993100i \(0.537415\pi\)
−0.801414 + 0.598109i \(0.795919\pi\)
\(18\) 0 0
\(19\) −139.665 241.907i −0.0887573 0.153732i 0.818229 0.574893i \(-0.194956\pi\)
−0.906986 + 0.421161i \(0.861623\pi\)
\(20\) 0 0
\(21\) −252.575 152.986i −0.124981 0.0757013i
\(22\) 0 0
\(23\) −1856.80 3216.07i −0.731889 1.26767i −0.956075 0.293123i \(-0.905306\pi\)
0.224186 0.974546i \(-0.428028\pi\)
\(24\) 0 0
\(25\) 286.818 496.783i 0.0917818 0.158971i
\(26\) 0 0
\(27\) 1095.18 0.289119
\(28\) 0 0
\(29\) −5276.51 −1.16507 −0.582535 0.812806i \(-0.697939\pi\)
−0.582535 + 0.812806i \(0.697939\pi\)
\(30\) 0 0
\(31\) −3242.90 + 5616.87i −0.606079 + 1.04976i 0.385801 + 0.922582i \(0.373925\pi\)
−0.991880 + 0.127177i \(0.959408\pi\)
\(32\) 0 0
\(33\) −218.698 378.796i −0.0349590 0.0605508i
\(34\) 0 0
\(35\) −5738.55 + 3154.34i −0.791830 + 0.435249i
\(36\) 0 0
\(37\) −1475.04 2554.84i −0.177133 0.306803i 0.763764 0.645495i \(-0.223349\pi\)
−0.940897 + 0.338692i \(0.890016\pi\)
\(38\) 0 0
\(39\) −748.019 + 1295.61i −0.0787501 + 0.136399i
\(40\) 0 0
\(41\) −2394.37 −0.222449 −0.111225 0.993795i \(-0.535477\pi\)
−0.111225 + 0.993795i \(0.535477\pi\)
\(42\) 0 0
\(43\) −17261.5 −1.42366 −0.711832 0.702350i \(-0.752134\pi\)
−0.711832 + 0.702350i \(0.752134\pi\)
\(44\) 0 0
\(45\) 6006.06 10402.8i 0.442138 0.765806i
\(46\) 0 0
\(47\) 3860.38 + 6686.38i 0.254909 + 0.441516i 0.964871 0.262725i \(-0.0846210\pi\)
−0.709962 + 0.704240i \(0.751288\pi\)
\(48\) 0 0
\(49\) −16792.2 705.845i −0.999118 0.0419971i
\(50\) 0 0
\(51\) 2493.44 + 4318.77i 0.134238 + 0.232506i
\(52\) 0 0
\(53\) 4248.63 7358.84i 0.207759 0.359849i −0.743249 0.669014i \(-0.766716\pi\)
0.951008 + 0.309166i \(0.100050\pi\)
\(54\) 0 0
\(55\) −9699.52 −0.432358
\(56\) 0 0
\(57\) −636.251 −0.0259383
\(58\) 0 0
\(59\) −4467.51 + 7737.95i −0.167084 + 0.289398i −0.937393 0.348272i \(-0.886768\pi\)
0.770309 + 0.637670i \(0.220102\pi\)
\(60\) 0 0
\(61\) 11194.8 + 19390.0i 0.385205 + 0.667194i 0.991798 0.127818i \(-0.0407975\pi\)
−0.606593 + 0.795013i \(0.707464\pi\)
\(62\) 0 0
\(63\) 27017.7 14851.0i 0.857625 0.471416i
\(64\) 0 0
\(65\) 16587.8 + 28730.9i 0.486973 + 0.843462i
\(66\) 0 0
\(67\) 26347.5 45635.2i 0.717055 1.24198i −0.245107 0.969496i \(-0.578823\pi\)
0.962162 0.272479i \(-0.0878435\pi\)
\(68\) 0 0
\(69\) −8458.73 −0.213886
\(70\) 0 0
\(71\) 25479.0 0.599842 0.299921 0.953964i \(-0.403040\pi\)
0.299921 + 0.953964i \(0.403040\pi\)
\(72\) 0 0
\(73\) 11454.1 19839.0i 0.251566 0.435726i −0.712391 0.701783i \(-0.752388\pi\)
0.963957 + 0.266057i \(0.0857210\pi\)
\(74\) 0 0
\(75\) −653.306 1131.56i −0.0134111 0.0232287i
\(76\) 0 0
\(77\) −21293.4 12897.5i −0.409277 0.247901i
\(78\) 0 0
\(79\) −22959.5 39767.1i −0.413900 0.716895i 0.581412 0.813609i \(-0.302500\pi\)
−0.995312 + 0.0967135i \(0.969167\pi\)
\(80\) 0 0
\(81\) −27646.8 + 47885.7i −0.468202 + 0.810949i
\(82\) 0 0
\(83\) 97180.7 1.54841 0.774203 0.632937i \(-0.218151\pi\)
0.774203 + 0.632937i \(0.218151\pi\)
\(84\) 0 0
\(85\) 110587. 1.66019
\(86\) 0 0
\(87\) −6009.35 + 10408.5i −0.0851196 + 0.147431i
\(88\) 0 0
\(89\) 29565.7 + 51209.3i 0.395652 + 0.685289i 0.993184 0.116556i \(-0.0371853\pi\)
−0.597532 + 0.801845i \(0.703852\pi\)
\(90\) 0 0
\(91\) −1788.39 + 85129.8i −0.0226391 + 1.07765i
\(92\) 0 0
\(93\) 7386.59 + 12793.9i 0.0885598 + 0.153390i
\(94\) 0 0
\(95\) −7054.63 + 12219.0i −0.0801983 + 0.138908i
\(96\) 0 0
\(97\) −73491.5 −0.793063 −0.396531 0.918021i \(-0.629786\pi\)
−0.396531 + 0.918021i \(0.629786\pi\)
\(98\) 0 0
\(99\) 45666.5 0.468284
\(100\) 0 0
\(101\) 89429.8 154897.i 0.872326 1.51091i 0.0127420 0.999919i \(-0.495944\pi\)
0.859584 0.510994i \(-0.170723\pi\)
\(102\) 0 0
\(103\) 4355.98 + 7544.78i 0.0404569 + 0.0700734i 0.885545 0.464554i \(-0.153785\pi\)
−0.845088 + 0.534627i \(0.820452\pi\)
\(104\) 0 0
\(105\) −313.276 + 14912.3i −0.00277302 + 0.132000i
\(106\) 0 0
\(107\) −86359.4 149579.i −0.729206 1.26302i −0.957219 0.289364i \(-0.906556\pi\)
0.228013 0.973658i \(-0.426777\pi\)
\(108\) 0 0
\(109\) 83153.2 144026.i 0.670367 1.16111i −0.307433 0.951570i \(-0.599470\pi\)
0.977800 0.209540i \(-0.0671967\pi\)
\(110\) 0 0
\(111\) −6719.61 −0.0517651
\(112\) 0 0
\(113\) 29604.7 0.218104 0.109052 0.994036i \(-0.465218\pi\)
0.109052 + 0.994036i \(0.465218\pi\)
\(114\) 0 0
\(115\) −93788.8 + 162447.i −0.661312 + 1.14543i
\(116\) 0 0
\(117\) −78097.2 135268.i −0.527437 0.913548i
\(118\) 0 0
\(119\) 242772. + 147048.i 1.57156 + 0.951903i
\(120\) 0 0
\(121\) 62088.2 + 107540.i 0.385519 + 0.667738i
\(122\) 0 0
\(123\) −2726.91 + 4723.15i −0.0162520 + 0.0281494i
\(124\) 0 0
\(125\) −186822. −1.06943
\(126\) 0 0
\(127\) −333136. −1.83279 −0.916395 0.400275i \(-0.868915\pi\)
−0.916395 + 0.400275i \(0.868915\pi\)
\(128\) 0 0
\(129\) −19658.9 + 34050.2i −0.104012 + 0.180155i
\(130\) 0 0
\(131\) −29114.0 50426.9i −0.148226 0.256735i 0.782346 0.622844i \(-0.214023\pi\)
−0.930572 + 0.366109i \(0.880690\pi\)
\(132\) 0 0
\(133\) −31734.6 + 17443.8i −0.155562 + 0.0855088i
\(134\) 0 0
\(135\) −27659.3 47907.4i −0.130619 0.226239i
\(136\) 0 0
\(137\) −163843. + 283784.i −0.745805 + 1.29177i 0.204012 + 0.978968i \(0.434602\pi\)
−0.949818 + 0.312804i \(0.898732\pi\)
\(138\) 0 0
\(139\) −165074. −0.724674 −0.362337 0.932047i \(-0.618021\pi\)
−0.362337 + 0.932047i \(0.618021\pi\)
\(140\) 0 0
\(141\) 17586.2 0.0744943
\(142\) 0 0
\(143\) −63061.8 + 109226.i −0.257885 + 0.446670i
\(144\) 0 0
\(145\) 133261. + 230815.i 0.526361 + 0.911683i
\(146\) 0 0
\(147\) −20516.7 + 32320.5i −0.0783096 + 0.123363i
\(148\) 0 0
\(149\) −58994.0 102181.i −0.217692 0.377053i 0.736410 0.676535i \(-0.236519\pi\)
−0.954102 + 0.299482i \(0.903186\pi\)
\(150\) 0 0
\(151\) 207650. 359661.i 0.741123 1.28366i −0.210862 0.977516i \(-0.567627\pi\)
0.951984 0.306146i \(-0.0990397\pi\)
\(152\) 0 0
\(153\) −520658. −1.79814
\(154\) 0 0
\(155\) 327604. 1.09527
\(156\) 0 0
\(157\) 226566. 392423.i 0.733575 1.27059i −0.221770 0.975099i \(-0.571183\pi\)
0.955346 0.295491i \(-0.0954832\pi\)
\(158\) 0 0
\(159\) −9677.42 16761.8i −0.0303575 0.0525808i
\(160\) 0 0
\(161\) −421901. + 231909.i −1.28276 + 0.705103i
\(162\) 0 0
\(163\) −216167. 374412.i −0.637265 1.10378i −0.986030 0.166566i \(-0.946732\pi\)
0.348765 0.937210i \(-0.386601\pi\)
\(164\) 0 0
\(165\) −11046.7 + 19133.4i −0.0315879 + 0.0547119i
\(166\) 0 0
\(167\) −343081. −0.951932 −0.475966 0.879464i \(-0.657901\pi\)
−0.475966 + 0.879464i \(0.657901\pi\)
\(168\) 0 0
\(169\) 60091.2 0.161843
\(170\) 0 0
\(171\) 33214.0 57528.3i 0.0868622 0.150450i
\(172\) 0 0
\(173\) 221752. + 384086.i 0.563317 + 0.975694i 0.997204 + 0.0747267i \(0.0238084\pi\)
−0.433887 + 0.900967i \(0.642858\pi\)
\(174\) 0 0
\(175\) −63608.7 38528.1i −0.157008 0.0951004i
\(176\) 0 0
\(177\) 10176.0 + 17625.3i 0.0244142 + 0.0422866i
\(178\) 0 0
\(179\) −47649.8 + 82531.8i −0.111155 + 0.192526i −0.916236 0.400639i \(-0.868788\pi\)
0.805081 + 0.593164i \(0.202122\pi\)
\(180\) 0 0
\(181\) −78562.3 −0.178245 −0.0891226 0.996021i \(-0.528406\pi\)
−0.0891226 + 0.996021i \(0.528406\pi\)
\(182\) 0 0
\(183\) 50998.4 0.112572
\(184\) 0 0
\(185\) −74505.8 + 129048.i −0.160052 + 0.277218i
\(186\) 0 0
\(187\) 210210. + 364094.i 0.439591 + 0.761394i
\(188\) 0 0
\(189\) 2982.05 141950.i 0.00607241 0.289055i
\(190\) 0 0
\(191\) 147381. + 255271.i 0.292319 + 0.506311i 0.974358 0.225005i \(-0.0722398\pi\)
−0.682039 + 0.731316i \(0.738907\pi\)
\(192\) 0 0
\(193\) 437328. 757474.i 0.845111 1.46378i −0.0404132 0.999183i \(-0.512867\pi\)
0.885524 0.464593i \(-0.153799\pi\)
\(194\) 0 0
\(195\) 75566.4 0.142312
\(196\) 0 0
\(197\) 338078. 0.620656 0.310328 0.950630i \(-0.399561\pi\)
0.310328 + 0.950630i \(0.399561\pi\)
\(198\) 0 0
\(199\) −176522. + 305745.i −0.315985 + 0.547302i −0.979646 0.200731i \(-0.935668\pi\)
0.663661 + 0.748033i \(0.269002\pi\)
\(200\) 0 0
\(201\) −60013.6 103947.i −0.104775 0.181476i
\(202\) 0 0
\(203\) −14367.4 + 683906.i −0.0244702 + 1.16481i
\(204\) 0 0
\(205\) 60470.9 + 104739.i 0.100499 + 0.174069i
\(206\) 0 0
\(207\) 441569. 764819.i 0.716263 1.24060i
\(208\) 0 0
\(209\) −53639.2 −0.0849408
\(210\) 0 0
\(211\) −351876. −0.544106 −0.272053 0.962282i \(-0.587703\pi\)
−0.272053 + 0.962282i \(0.587703\pi\)
\(212\) 0 0
\(213\) 29017.7 50260.1i 0.0438242 0.0759057i
\(214\) 0 0
\(215\) 435948. + 755084.i 0.643189 + 1.11404i
\(216\) 0 0
\(217\) 719190. + 435617.i 1.03680 + 0.627993i
\(218\) 0 0
\(219\) −26089.8 45188.8i −0.0367587 0.0636679i
\(220\) 0 0
\(221\) 718987. 1.24532e6i 0.990240 1.71515i
\(222\) 0 0
\(223\) −434832. −0.585544 −0.292772 0.956182i \(-0.594578\pi\)
−0.292772 + 0.956182i \(0.594578\pi\)
\(224\) 0 0
\(225\) 136417. 0.179644
\(226\) 0 0
\(227\) 535280. 927133.i 0.689472 1.19420i −0.282537 0.959256i \(-0.591176\pi\)
0.972009 0.234944i \(-0.0754907\pi\)
\(228\) 0 0
\(229\) −65933.2 114200.i −0.0830836 0.143905i 0.821489 0.570224i \(-0.193144\pi\)
−0.904573 + 0.426319i \(0.859810\pi\)
\(230\) 0 0
\(231\) −49692.4 + 27314.7i −0.0612717 + 0.0336796i
\(232\) 0 0
\(233\) −31331.5 54267.8i −0.0378087 0.0654866i 0.846502 0.532386i \(-0.178704\pi\)
−0.884311 + 0.466899i \(0.845371\pi\)
\(234\) 0 0
\(235\) 194992. 337736.i 0.230328 0.398940i
\(236\) 0 0
\(237\) −104593. −0.120957
\(238\) 0 0
\(239\) 1.29337e6 1.46462 0.732312 0.680969i \(-0.238441\pi\)
0.732312 + 0.680969i \(0.238441\pi\)
\(240\) 0 0
\(241\) −58141.1 + 100703.i −0.0644823 + 0.111687i −0.896464 0.443116i \(-0.853873\pi\)
0.831982 + 0.554803i \(0.187206\pi\)
\(242\) 0 0
\(243\) 196038. + 339547.i 0.212973 + 0.368879i
\(244\) 0 0
\(245\) 393219. + 752380.i 0.418522 + 0.800797i
\(246\) 0 0
\(247\) 91731.8 + 158884.i 0.0956704 + 0.165706i
\(248\) 0 0
\(249\) 110678. 191700.i 0.113126 0.195940i
\(250\) 0 0
\(251\) −360974. −0.361653 −0.180827 0.983515i \(-0.557877\pi\)
−0.180827 + 0.983515i \(0.557877\pi\)
\(252\) 0 0
\(253\) −713114. −0.700419
\(254\) 0 0
\(255\) 125946. 218146.i 0.121293 0.210085i
\(256\) 0 0
\(257\) 966677. + 1.67433e6i 0.912953 + 1.58128i 0.809870 + 0.586609i \(0.199537\pi\)
0.103083 + 0.994673i \(0.467129\pi\)
\(258\) 0 0
\(259\) −335158. + 184228.i −0.310456 + 0.170650i
\(260\) 0 0
\(261\) −627409. 1.08670e6i −0.570098 0.987438i
\(262\) 0 0
\(263\) 107394. 186012.i 0.0957396 0.165826i −0.814177 0.580616i \(-0.802812\pi\)
0.909917 + 0.414790i \(0.136145\pi\)
\(264\) 0 0
\(265\) −429205. −0.375449
\(266\) 0 0
\(267\) 134688. 0.115625
\(268\) 0 0
\(269\) −951375. + 1.64783e6i −0.801625 + 1.38846i 0.116921 + 0.993141i \(0.462698\pi\)
−0.918546 + 0.395314i \(0.870636\pi\)
\(270\) 0 0
\(271\) −642462. 1.11278e6i −0.531403 0.920418i −0.999328 0.0366494i \(-0.988332\pi\)
0.467925 0.883768i \(-0.345002\pi\)
\(272\) 0 0
\(273\) 165891. + 100481.i 0.134715 + 0.0815975i
\(274\) 0 0
\(275\) −55077.0 95396.2i −0.0439176 0.0760675i
\(276\) 0 0
\(277\) −713348. + 1.23556e6i −0.558602 + 0.967527i 0.439012 + 0.898481i \(0.355329\pi\)
−0.997614 + 0.0690453i \(0.978005\pi\)
\(278\) 0 0
\(279\) −1.54240e6 −1.18628
\(280\) 0 0
\(281\) 492636. 0.372186 0.186093 0.982532i \(-0.440417\pi\)
0.186093 + 0.982532i \(0.440417\pi\)
\(282\) 0 0
\(283\) 1.00648e6 1.74327e6i 0.747031 1.29390i −0.202208 0.979343i \(-0.564812\pi\)
0.949240 0.314554i \(-0.101855\pi\)
\(284\) 0 0
\(285\) 16068.8 + 27832.1i 0.0117185 + 0.0202971i
\(286\) 0 0
\(287\) −6519.59 + 310341.i −0.00467214 + 0.222400i
\(288\) 0 0
\(289\) −1.68674e6 2.92152e6i −1.18796 2.05762i
\(290\) 0 0
\(291\) −83698.5 + 144970.i −0.0579409 + 0.100357i
\(292\) 0 0
\(293\) −58017.9 −0.0394814 −0.0197407 0.999805i \(-0.506284\pi\)
−0.0197407 + 0.999805i \(0.506284\pi\)
\(294\) 0 0
\(295\) 451317. 0.301944
\(296\) 0 0
\(297\) 105152. 182129.i 0.0691717 0.119809i
\(298\) 0 0
\(299\) 1.21954e6 + 2.11231e6i 0.788895 + 1.36641i
\(300\) 0 0
\(301\) −47001.1 + 2.23732e6i −0.0299014 + 1.42335i
\(302\) 0 0
\(303\) −203701. 352820.i −0.127464 0.220773i
\(304\) 0 0
\(305\) 565461. 979407.i 0.348059 0.602856i
\(306\) 0 0
\(307\) −3.08036e6 −1.86533 −0.932665 0.360744i \(-0.882523\pi\)
−0.932665 + 0.360744i \(0.882523\pi\)
\(308\) 0 0
\(309\) 19843.9 0.0118231
\(310\) 0 0
\(311\) −280927. + 486579.i −0.164699 + 0.285268i −0.936548 0.350538i \(-0.885999\pi\)
0.771849 + 0.635806i \(0.219332\pi\)
\(312\) 0 0
\(313\) −1.48564e6 2.57320e6i −0.857141 1.48461i −0.874645 0.484765i \(-0.838905\pi\)
0.0175037 0.999847i \(-0.494428\pi\)
\(314\) 0 0
\(315\) −1.33199e6 806790.i −0.756351 0.458125i
\(316\) 0 0
\(317\) 375244. + 649941.i 0.209732 + 0.363267i 0.951630 0.307246i \(-0.0994074\pi\)
−0.741898 + 0.670513i \(0.766074\pi\)
\(318\) 0 0
\(319\) −506619. + 877489.i −0.278743 + 0.482798i
\(320\) 0 0
\(321\) −393414. −0.213102
\(322\) 0 0
\(323\) 611557. 0.326160
\(324\) 0 0
\(325\) −188382. + 326287.i −0.0989305 + 0.171353i
\(326\) 0 0
\(327\) −189404. 328058.i −0.0979535 0.169660i
\(328\) 0 0
\(329\) 877155. 482150.i 0.446772 0.245580i
\(330\) 0 0
\(331\) 1.34338e6 + 2.32681e6i 0.673954 + 1.16732i 0.976773 + 0.214275i \(0.0687387\pi\)
−0.302820 + 0.953048i \(0.597928\pi\)
\(332\) 0 0
\(333\) 350782. 607572.i 0.173351 0.300253i
\(334\) 0 0
\(335\) −2.66168e6 −1.29582
\(336\) 0 0
\(337\) 49365.1 0.0236780 0.0118390 0.999930i \(-0.496231\pi\)
0.0118390 + 0.999930i \(0.496231\pi\)
\(338\) 0 0
\(339\) 33716.4 58398.5i 0.0159346 0.0275996i
\(340\) 0 0
\(341\) 622727. + 1.07859e6i 0.290009 + 0.502310i
\(342\) 0 0
\(343\) −137210. + 2.17457e6i −0.0629725 + 0.998015i
\(344\) 0 0
\(345\) 213630. + 370017.i 0.0966304 + 0.167369i
\(346\) 0 0
\(347\) −609492. + 1.05567e6i −0.271734 + 0.470657i −0.969306 0.245857i \(-0.920930\pi\)
0.697572 + 0.716515i \(0.254264\pi\)
\(348\) 0 0
\(349\) −3.25801e6 −1.43182 −0.715910 0.698193i \(-0.753988\pi\)
−0.715910 + 0.698193i \(0.753988\pi\)
\(350\) 0 0
\(351\) −719313. −0.311638
\(352\) 0 0
\(353\) 317724. 550315.i 0.135711 0.235058i −0.790158 0.612903i \(-0.790002\pi\)
0.925869 + 0.377845i \(0.123335\pi\)
\(354\) 0 0
\(355\) −643485. 1.11455e6i −0.270999 0.469384i
\(356\) 0 0
\(357\) 566559. 311424.i 0.235274 0.129325i
\(358\) 0 0
\(359\) 471991. + 817512.i 0.193285 + 0.334779i 0.946337 0.323182i \(-0.104753\pi\)
−0.753052 + 0.657961i \(0.771419\pi\)
\(360\) 0 0
\(361\) 1.19904e6 2.07679e6i 0.484244 0.838736i
\(362\) 0 0
\(363\) 282846. 0.112663
\(364\) 0 0
\(365\) −1.15711e6 −0.454615
\(366\) 0 0
\(367\) 2.00724e6 3.47664e6i 0.777918 1.34739i −0.155222 0.987880i \(-0.549609\pi\)
0.933140 0.359514i \(-0.117057\pi\)
\(368\) 0 0
\(369\) −284704. 493122.i −0.108850 0.188533i
\(370\) 0 0
\(371\) −942235. 570716.i −0.355406 0.215271i
\(372\) 0 0
\(373\) −83508.2 144641.i −0.0310783 0.0538292i 0.850068 0.526673i \(-0.176561\pi\)
−0.881146 + 0.472844i \(0.843227\pi\)
\(374\) 0 0
\(375\) −212769. + 368527.i −0.0781322 + 0.135329i
\(376\) 0 0
\(377\) 3.46561e6 1.25582
\(378\) 0 0
\(379\) 2.51875e6 0.900716 0.450358 0.892848i \(-0.351296\pi\)
0.450358 + 0.892848i \(0.351296\pi\)
\(380\) 0 0
\(381\) −379405. + 657148.i −0.133903 + 0.231927i
\(382\) 0 0
\(383\) 572049. + 990818.i 0.199267 + 0.345141i 0.948291 0.317402i \(-0.102810\pi\)
−0.749024 + 0.662543i \(0.769477\pi\)
\(384\) 0 0
\(385\) −26410.7 + 1.25719e6i −0.00908089 + 0.432263i
\(386\) 0 0
\(387\) −2.05249e6 3.55502e6i −0.696633 1.20660i
\(388\) 0 0
\(389\) −1.21736e6 + 2.10853e6i −0.407892 + 0.706490i −0.994653 0.103270i \(-0.967069\pi\)
0.586761 + 0.809760i \(0.300403\pi\)
\(390\) 0 0
\(391\) 8.13044e6 2.68950
\(392\) 0 0
\(393\) −132630. −0.0433173
\(394\) 0 0
\(395\) −1.15971e6 + 2.00868e6i −0.373987 + 0.647764i
\(396\) 0 0
\(397\) 1.37560e6 + 2.38261e6i 0.438042 + 0.758711i 0.997538 0.0701215i \(-0.0223387\pi\)
−0.559496 + 0.828833i \(0.689005\pi\)
\(398\) 0 0
\(399\) −1732.44 + 82466.5i −0.000544786 + 0.0259326i
\(400\) 0 0
\(401\) 55226.2 + 95654.6i 0.0171508 + 0.0297061i 0.874473 0.485073i \(-0.161207\pi\)
−0.857323 + 0.514779i \(0.827874\pi\)
\(402\) 0 0
\(403\) 2.12993e6 3.68915e6i 0.653285 1.13152i
\(404\) 0 0
\(405\) 2.79294e6 0.846105
\(406\) 0 0
\(407\) −566497. −0.169516
\(408\) 0 0
\(409\) 85347.5 147826.i 0.0252280 0.0436962i −0.853136 0.521689i \(-0.825302\pi\)
0.878364 + 0.477993i \(0.158635\pi\)
\(410\) 0 0
\(411\) 373196. + 646395.i 0.108976 + 0.188753i
\(412\) 0 0
\(413\) 990776. + 600117.i 0.285825 + 0.173126i
\(414\) 0 0
\(415\) −2.45435e6 4.25106e6i −0.699546 1.21165i
\(416\) 0 0
\(417\) −188001. + 325627.i −0.0529444 + 0.0917024i
\(418\) 0 0
\(419\) −2852.47 −0.000793754 −0.000396877 1.00000i \(-0.500126\pi\)
−0.000396877 1.00000i \(0.500126\pi\)
\(420\) 0 0
\(421\) −730555. −0.200885 −0.100443 0.994943i \(-0.532026\pi\)
−0.100443 + 0.994943i \(0.532026\pi\)
\(422\) 0 0
\(423\) −918044. + 1.59010e6i −0.249467 + 0.432089i
\(424\) 0 0
\(425\) 627951. + 1.08764e6i 0.168637 + 0.292088i
\(426\) 0 0
\(427\) 2.54368e6 1.39820e6i 0.675138 0.371107i
\(428\) 0 0
\(429\) 143640. + 248792.i 0.0376819 + 0.0652671i
\(430\) 0 0
\(431\) 1.84705e6 3.19918e6i 0.478945 0.829557i −0.520764 0.853701i \(-0.674353\pi\)
0.999708 + 0.0241442i \(0.00768610\pi\)
\(432\) 0 0
\(433\) −674656. −0.172927 −0.0864635 0.996255i \(-0.527557\pi\)
−0.0864635 + 0.996255i \(0.527557\pi\)
\(434\) 0 0
\(435\) 607077. 0.153823
\(436\) 0 0
\(437\) −518660. + 898346.i −0.129921 + 0.225030i
\(438\) 0 0
\(439\) 1.97813e6 + 3.42622e6i 0.489884 + 0.848505i 0.999932 0.0116414i \(-0.00370567\pi\)
−0.510048 + 0.860146i \(0.670372\pi\)
\(440\) 0 0
\(441\) −1.85132e6 3.54229e6i −0.453299 0.867337i
\(442\) 0 0
\(443\) 3.64706e6 + 6.31689e6i 0.882945 + 1.52931i 0.848051 + 0.529914i \(0.177776\pi\)
0.0348935 + 0.999391i \(0.488891\pi\)
\(444\) 0 0
\(445\) 1.49339e6 2.58663e6i 0.357499 0.619206i
\(446\) 0 0
\(447\) −268750. −0.0636179
\(448\) 0 0
\(449\) 5.49637e6 1.28665 0.643325 0.765593i \(-0.277554\pi\)
0.643325 + 0.765593i \(0.277554\pi\)
\(450\) 0 0
\(451\) −229892. + 398185.i −0.0532210 + 0.0921815i
\(452\) 0 0
\(453\) −472980. 819226.i −0.108292 0.187568i
\(454\) 0 0
\(455\) 3.76907e6 2.07176e6i 0.853504 0.469150i
\(456\) 0 0
\(457\) 1.86877e6 + 3.23681e6i 0.418568 + 0.724982i 0.995796 0.0916018i \(-0.0291987\pi\)
−0.577227 + 0.816583i \(0.695865\pi\)
\(458\) 0 0
\(459\) −1.19888e6 + 2.07652e6i −0.265609 + 0.460048i
\(460\) 0 0
\(461\) 414493. 0.0908374 0.0454187 0.998968i \(-0.485538\pi\)
0.0454187 + 0.998968i \(0.485538\pi\)
\(462\) 0 0
\(463\) −6.90895e6 −1.49782 −0.748910 0.662672i \(-0.769423\pi\)
−0.748910 + 0.662672i \(0.769423\pi\)
\(464\) 0 0
\(465\) 373104. 646235.i 0.0800198 0.138598i
\(466\) 0 0
\(467\) −2.65352e6 4.59604e6i −0.563029 0.975194i −0.997230 0.0743786i \(-0.976303\pi\)
0.434201 0.900816i \(-0.357031\pi\)
\(468\) 0 0
\(469\) −5.84318e6 3.53924e6i −1.22664 0.742982i
\(470\) 0 0
\(471\) −516065. 893851.i −0.107189 0.185658i
\(472\) 0 0
\(473\) −1.65734e6 + 2.87060e6i −0.340612 + 0.589957i
\(474\) 0 0
\(475\) −160234. −0.0325852
\(476\) 0 0
\(477\) 2.02075e6 0.406646
\(478\) 0 0
\(479\) −4.51875e6 + 7.82671e6i −0.899870 + 1.55862i −0.0722119 + 0.997389i \(0.523006\pi\)
−0.827659 + 0.561232i \(0.810328\pi\)
\(480\) 0 0
\(481\) 968804. + 1.67802e6i 0.190930 + 0.330700i
\(482\) 0 0
\(483\) −23032.2 + 1.09636e6i −0.00449229 + 0.213839i
\(484\) 0 0
\(485\) 1.85607e6 + 3.21480e6i 0.358293 + 0.620582i
\(486\) 0 0
\(487\) −2.22641e6 + 3.85625e6i −0.425385 + 0.736789i −0.996456 0.0841119i \(-0.973195\pi\)
0.571071 + 0.820901i \(0.306528\pi\)
\(488\) 0 0
\(489\) −984758. −0.186233
\(490\) 0 0
\(491\) −2.27049e6 −0.425027 −0.212513 0.977158i \(-0.568165\pi\)
−0.212513 + 0.977158i \(0.568165\pi\)
\(492\) 0 0
\(493\) 5.77612e6 1.00045e7i 1.07033 1.85387i
\(494\) 0 0
\(495\) −1.15333e6 1.99763e6i −0.211563 0.366439i
\(496\) 0 0
\(497\) 69376.5 3.30242e6i 0.0125986 0.599709i
\(498\) 0 0
\(499\) 3.73551e6 + 6.47010e6i 0.671582 + 1.16321i 0.977456 + 0.211141i \(0.0677181\pi\)
−0.305874 + 0.952072i \(0.598949\pi\)
\(500\) 0 0
\(501\) −390731. + 676765.i −0.0695477 + 0.120460i
\(502\) 0 0
\(503\) 6.64380e6 1.17084 0.585418 0.810731i \(-0.300930\pi\)
0.585418 + 0.810731i \(0.300930\pi\)
\(504\) 0 0
\(505\) −9.03438e6 −1.57641
\(506\) 0 0
\(507\) 68437.1 118537.i 0.0118242 0.0204801i
\(508\) 0 0
\(509\) −4.33107e6 7.50163e6i −0.740970 1.28340i −0.952054 0.305929i \(-0.901033\pi\)
0.211085 0.977468i \(-0.432300\pi\)
\(510\) 0 0
\(511\) −2.54021e6 1.53862e6i −0.430346 0.260663i
\(512\) 0 0
\(513\) −152958. 264932.i −0.0256614 0.0444468i
\(514\) 0 0
\(515\) 220025. 381095.i 0.0365556 0.0633162i
\(516\) 0 0
\(517\) 1.48260e6 0.243948
\(518\) 0 0
\(519\) 1.01020e6 0.164623
\(520\) 0 0
\(521\) 1.24435e6 2.15528e6i 0.200839 0.347864i −0.747960 0.663744i \(-0.768966\pi\)
0.948799 + 0.315880i \(0.102300\pi\)
\(522\) 0 0
\(523\) −4.18199e6 7.24342e6i −0.668542 1.15795i −0.978312 0.207137i \(-0.933585\pi\)
0.309770 0.950812i \(-0.399748\pi\)
\(524\) 0 0
\(525\) −148444. + 81596.0i −0.0235052 + 0.0129202i
\(526\) 0 0
\(527\) −7.09990e6 1.22974e7i −1.11359 1.92880i
\(528\) 0 0
\(529\) −3.67724e6 + 6.36916e6i −0.571324 + 0.989562i
\(530\) 0 0
\(531\) −2.12485e6 −0.327033
\(532\) 0 0
\(533\) 1.57262e6 0.239775
\(534\) 0 0
\(535\) −4.36210e6 + 7.55538e6i −0.658888 + 1.14123i
\(536\) 0 0
\(537\) 108535. + 187989.i 0.0162419 + 0.0281317i
\(538\) 0 0
\(539\) −1.72966e6 + 2.72478e6i −0.256442 + 0.403980i
\(540\) 0 0
\(541\) 2.56279e6 + 4.43888e6i 0.376461 + 0.652049i 0.990545 0.137192i \(-0.0438076\pi\)
−0.614084 + 0.789241i \(0.710474\pi\)
\(542\) 0 0
\(543\) −89473.5 + 154973.i −0.0130225 + 0.0225557i
\(544\) 0 0
\(545\) −8.40031e6 −1.21145
\(546\) 0 0
\(547\) −8.27719e6 −1.18281 −0.591404 0.806375i \(-0.701426\pi\)
−0.591404 + 0.806375i \(0.701426\pi\)
\(548\) 0 0
\(549\) −2.66225e6 + 4.61116e6i −0.376980 + 0.652949i
\(550\) 0 0
\(551\) 736945. + 1.27643e6i 0.103408 + 0.179109i
\(552\) 0 0
\(553\) −5.21685e6 + 2.86758e6i −0.725430 + 0.398751i
\(554\) 0 0
\(555\) 169707. + 293942.i 0.0233867 + 0.0405069i
\(556\) 0 0
\(557\) −5.72960e6 + 9.92396e6i −0.782503 + 1.35534i 0.147976 + 0.988991i \(0.452724\pi\)
−0.930479 + 0.366345i \(0.880609\pi\)
\(558\) 0 0
\(559\) 1.13373e7 1.53455
\(560\) 0 0
\(561\) 957621. 0.128465
\(562\) 0 0
\(563\) 4.61535e6 7.99402e6i 0.613668 1.06290i −0.376948 0.926234i \(-0.623027\pi\)
0.990617 0.136670i \(-0.0436401\pi\)
\(564\) 0 0
\(565\) −747681. 1.29502e6i −0.0985361 0.170670i
\(566\) 0 0
\(567\) 6.13134e6 + 3.71378e6i 0.800937 + 0.485131i
\(568\) 0 0
\(569\) 4.14874e6 + 7.18582e6i 0.537199 + 0.930456i 0.999053 + 0.0435000i \(0.0138509\pi\)
−0.461855 + 0.886956i \(0.652816\pi\)
\(570\) 0 0
\(571\) −5.03677e6 + 8.72394e6i −0.646490 + 1.11975i 0.337465 + 0.941338i \(0.390430\pi\)
−0.983955 + 0.178416i \(0.942903\pi\)
\(572\) 0 0
\(573\) 671399. 0.0854268
\(574\) 0 0
\(575\) −2.13025e6 −0.268696
\(576\) 0 0
\(577\) −3.21257e6 + 5.56434e6i −0.401711 + 0.695784i −0.993933 0.109991i \(-0.964918\pi\)
0.592222 + 0.805775i \(0.298251\pi\)
\(578\) 0 0
\(579\) −996134. 1.72535e6i −0.123487 0.213886i
\(580\) 0 0
\(581\) 264612. 1.25959e7i 0.0325214 1.54806i
\(582\) 0 0
\(583\) −815855. 1.41310e6i −0.0994126 0.172188i
\(584\) 0 0
\(585\) −3.94477e6 + 6.83254e6i −0.476576 + 0.825454i
\(586\) 0 0
\(587\) 3.97124e6 0.475698 0.237849 0.971302i \(-0.423558\pi\)
0.237849 + 0.971302i \(0.423558\pi\)
\(588\) 0 0
\(589\) 1.81168e6 0.215176
\(590\) 0 0
\(591\) 385032. 666895.i 0.0453449 0.0785396i
\(592\) 0 0
\(593\) −2.44661e6 4.23765e6i −0.285712 0.494867i 0.687070 0.726591i \(-0.258897\pi\)
−0.972781 + 0.231724i \(0.925563\pi\)
\(594\) 0 0
\(595\) 301117. 1.43336e7i 0.0348693 1.65982i
\(596\) 0 0
\(597\) 402077. + 696419.i 0.0461715 + 0.0799714i
\(598\) 0 0
\(599\) −1.98993e6 + 3.44666e6i −0.226606 + 0.392493i −0.956800 0.290747i \(-0.906096\pi\)
0.730194 + 0.683240i \(0.239430\pi\)
\(600\) 0 0
\(601\) 6.77069e6 0.764622 0.382311 0.924034i \(-0.375128\pi\)
0.382311 + 0.924034i \(0.375128\pi\)
\(602\) 0 0
\(603\) 1.25315e7 1.40349
\(604\) 0 0
\(605\) 3.13614e6 5.43195e6i 0.348343 0.603347i
\(606\) 0 0
\(607\) −7.61245e6 1.31851e7i −0.838596 1.45249i −0.891069 0.453868i \(-0.850044\pi\)
0.0524729 0.998622i \(-0.483290\pi\)
\(608\) 0 0
\(609\) 1.33272e6 + 807233.i 0.145611 + 0.0881973i
\(610\) 0 0
\(611\) −2.53549e6 4.39160e6i −0.274764 0.475905i
\(612\) 0 0
\(613\) 5.80178e6 1.00490e7i 0.623606 1.08012i −0.365203 0.930928i \(-0.619000\pi\)
0.988809 0.149189i \(-0.0476662\pi\)
\(614\) 0 0
\(615\) 275478. 0.0293697
\(616\) 0 0
\(617\) −4.51891e6 −0.477882 −0.238941 0.971034i \(-0.576800\pi\)
−0.238941 + 0.971034i \(0.576800\pi\)
\(618\) 0 0
\(619\) −3.43539e6 + 5.95026e6i −0.360370 + 0.624180i −0.988022 0.154315i \(-0.950683\pi\)
0.627651 + 0.778494i \(0.284016\pi\)
\(620\) 0 0
\(621\) −2.03353e6 3.52218e6i −0.211603 0.366507i
\(622\) 0 0
\(623\) 6.71791e6 3.69267e6i 0.693448 0.381171i
\(624\) 0 0
\(625\) 3.82198e6 + 6.61986e6i 0.391370 + 0.677873i
\(626\) 0 0
\(627\) −61088.9 + 105809.i −0.00620574 + 0.0107487i
\(628\) 0 0
\(629\) 6.45882e6 0.650918
\(630\) 0 0
\(631\) −3.17504e6 −0.317450 −0.158725 0.987323i \(-0.550738\pi\)
−0.158725 + 0.987323i \(0.550738\pi\)
\(632\) 0 0
\(633\) −400747. + 694114.i −0.0397522 + 0.0688528i
\(634\) 0 0
\(635\) 8.41353e6 + 1.45727e7i 0.828026 + 1.43418i
\(636\) 0 0
\(637\) 1.10291e7 + 463598.i 1.07694 + 0.0452682i
\(638\) 0 0
\(639\) 3.02960e6 + 5.24743e6i 0.293517 + 0.508387i
\(640\) 0 0
\(641\) −1.85599e6 + 3.21466e6i −0.178414 + 0.309023i −0.941338 0.337466i \(-0.890430\pi\)
0.762923 + 0.646489i \(0.223763\pi\)
\(642\) 0 0
\(643\) 2.23112e6 0.212811 0.106406 0.994323i \(-0.466066\pi\)
0.106406 + 0.994323i \(0.466066\pi\)
\(644\) 0 0
\(645\) 1.98598e6 0.187964
\(646\) 0 0
\(647\) −3.53325e6 + 6.11976e6i −0.331828 + 0.574743i −0.982870 0.184298i \(-0.940999\pi\)
0.651042 + 0.759042i \(0.274332\pi\)
\(648\) 0 0
\(649\) 857885. + 1.48590e6i 0.0799498 + 0.138477i
\(650\) 0 0
\(651\) 1.67838e6 922563.i 0.155216 0.0853186i
\(652\) 0 0
\(653\) −9.19619e6 1.59283e7i −0.843966 1.46179i −0.886516 0.462697i \(-0.846882\pi\)
0.0425508 0.999094i \(-0.486452\pi\)
\(654\) 0 0
\(655\) −1.47058e6 + 2.54712e6i −0.133932 + 0.231977i
\(656\) 0 0
\(657\) 5.44782e6 0.492390
\(658\) 0 0
\(659\) −4.02375e6 −0.360926 −0.180463 0.983582i \(-0.557760\pi\)
−0.180463 + 0.983582i \(0.557760\pi\)
\(660\) 0 0
\(661\) 1.26461e6 2.19037e6i 0.112578 0.194991i −0.804231 0.594317i \(-0.797423\pi\)
0.916809 + 0.399326i \(0.130756\pi\)
\(662\) 0 0
\(663\) −1.63769e6 2.83656e6i −0.144693 0.250616i
\(664\) 0 0
\(665\) 1.56453e6 + 947644.i 0.137192 + 0.0830981i
\(666\) 0 0
\(667\) 9.79743e6 + 1.69696e7i 0.852702 + 1.47692i
\(668\) 0 0
\(669\) −495224. + 857754.i −0.0427796 + 0.0740964i
\(670\) 0 0
\(671\) 4.29942e6 0.368641
\(672\) 0 0
\(673\) 1.31377e7 1.11811 0.559053 0.829132i \(-0.311165\pi\)
0.559053 + 0.829132i \(0.311165\pi\)
\(674\) 0 0
\(675\) 314117. 544067.i 0.0265358 0.0459614i
\(676\) 0 0
\(677\) −1.00407e6 1.73911e6i −0.0841965 0.145833i 0.820852 0.571141i \(-0.193499\pi\)
−0.905049 + 0.425308i \(0.860166\pi\)
\(678\) 0 0
\(679\) −200109. + 9.52547e6i −0.0166568 + 0.792888i
\(680\) 0 0
\(681\) −1.21925e6 2.11180e6i −0.100745 0.174496i
\(682\) 0 0
\(683\) 1.67913e6 2.90833e6i 0.137731 0.238557i −0.788906 0.614513i \(-0.789352\pi\)
0.926637 + 0.375956i \(0.122686\pi\)
\(684\) 0 0
\(685\) 1.65517e7 1.34777
\(686\) 0 0
\(687\) −300362. −0.0242802
\(688\) 0 0
\(689\) −2.79049e6 + 4.83328e6i −0.223941 + 0.387877i
\(690\) 0 0
\(691\) −898758. 1.55669e6i −0.0716057 0.124025i 0.827999 0.560729i \(-0.189479\pi\)
−0.899605 + 0.436704i \(0.856146\pi\)
\(692\) 0 0
\(693\) 124345. 5.91898e6i 0.00983545 0.468181i
\(694\) 0 0
\(695\) 4.16904e6 + 7.22099e6i 0.327396 + 0.567067i
\(696\) 0 0
\(697\) 2.62108e6 4.53984e6i 0.204361 0.353963i
\(698\) 0 0
\(699\) −142732. −0.0110492
\(700\) 0 0
\(701\) −1.74200e7 −1.33891 −0.669457 0.742851i \(-0.733473\pi\)
−0.669457 + 0.742851i \(0.733473\pi\)
\(702\) 0 0
\(703\) −412023. + 713645.i −0.0314437 + 0.0544621i
\(704\) 0 0
\(705\) −444147. 769286.i −0.0336554 0.0582928i
\(706\) 0 0
\(707\) −1.98332e7 1.20131e7i −1.49226 0.903868i
\(708\) 0 0
\(709\) −86766.3 150284.i −0.00648240 0.0112278i 0.862766 0.505603i \(-0.168730\pi\)
−0.869248 + 0.494376i \(0.835397\pi\)
\(710\) 0 0
\(711\) 5.46004e6 9.45708e6i 0.405063 0.701589i
\(712\) 0 0
\(713\) 2.40856e7 1.77433
\(714\) 0 0
\(715\) 6.37063e6 0.466034
\(716\) 0 0
\(717\) 1.47300e6 2.55130e6i 0.107005 0.185338i
\(718\) 0 0
\(719\) −7.20941e6 1.24871e7i −0.520089 0.900820i −0.999727 0.0233538i \(-0.992566\pi\)
0.479639 0.877466i \(-0.340768\pi\)
\(720\) 0 0
\(721\) 989764. 544049.i 0.0709077 0.0389762i
\(722\) 0 0
\(723\) 132432. + 229379.i 0.00942211 + 0.0163196i
\(724\) 0 0
\(725\) −1.51340e6 + 2.62128e6i −0.106932 + 0.185212i
\(726\) 0 0
\(727\) 1.47752e7 1.03681 0.518403 0.855136i \(-0.326527\pi\)
0.518403 + 0.855136i \(0.326527\pi\)
\(728\) 0 0
\(729\) −1.25433e7 −0.874165
\(730\) 0 0
\(731\) 1.88959e7 3.27286e7i 1.30790 2.26535i
\(732\) 0 0
\(733\) 4.36723e6 + 7.56427e6i 0.300225 + 0.520004i 0.976187 0.216932i \(-0.0696050\pi\)
−0.675962 + 0.736936i \(0.736272\pi\)
\(734\) 0 0
\(735\) 1.93198e6 + 81209.3i 0.131912 + 0.00554482i
\(736\) 0 0
\(737\) −5.05945e6 8.76322e6i −0.343111 0.594286i
\(738\) 0 0
\(739\) −1.28465e7 + 2.22508e7i −0.865314 + 1.49877i 0.00142018 + 0.999999i \(0.499548\pi\)
−0.866735 + 0.498770i \(0.833785\pi\)
\(740\) 0 0
\(741\) 417889. 0.0279586
\(742\) 0 0
\(743\) 3.71107e6 0.246619 0.123310 0.992368i \(-0.460649\pi\)
0.123310 + 0.992368i \(0.460649\pi\)
\(744\) 0 0
\(745\) −2.97985e6 + 5.16124e6i −0.196699 + 0.340693i
\(746\) 0 0
\(747\) 1.15554e7 + 2.00145e7i 0.757673 + 1.31233i
\(748\) 0 0
\(749\) −1.96226e7 + 1.07860e7i −1.27806 + 0.702518i
\(750\) 0 0
\(751\) −438014. 758663.i −0.0283392 0.0490850i 0.851508 0.524342i \(-0.175689\pi\)
−0.879847 + 0.475257i \(0.842355\pi\)
\(752\) 0 0
\(753\) −411109. + 712062.i −0.0264222 + 0.0457646i
\(754\) 0 0
\(755\) −2.09773e7 −1.33931
\(756\) 0 0
\(757\) 1.30192e7 0.825743 0.412871 0.910789i \(-0.364526\pi\)
0.412871 + 0.910789i \(0.364526\pi\)
\(758\) 0 0
\(759\) −812156. + 1.40670e6i −0.0511723 + 0.0886330i
\(760\) 0 0
\(761\) −3.90135e6 6.75734e6i −0.244204 0.422974i 0.717703 0.696349i \(-0.245193\pi\)
−0.961908 + 0.273375i \(0.911860\pi\)
\(762\) 0 0
\(763\) −1.84412e7 1.11699e7i −1.14677 0.694606i
\(764\) 0 0
\(765\) 1.31495e7 + 2.27756e7i 0.812372 + 1.40707i
\(766\) 0 0
\(767\) 2.93425e6 5.08227e6i 0.180098 0.311939i
\(768\) 0 0
\(769\) −1.99560e7 −1.21691 −0.608454 0.793589i \(-0.708210\pi\)
−0.608454 + 0.793589i \(0.708210\pi\)
\(770\) 0 0
\(771\) 4.40374e6 0.266800
\(772\) 0 0
\(773\) −1.37454e7 + 2.38078e7i −0.827390 + 1.43308i 0.0726897 + 0.997355i \(0.476842\pi\)
−0.900079 + 0.435726i \(0.856492\pi\)
\(774\) 0 0
\(775\) 1.86024e6 + 3.22204e6i 0.111254 + 0.192698i
\(776\) 0 0
\(777\) −18296.8 + 870951.i −0.00108723 + 0.0517537i
\(778\) 0 0
\(779\) 334409. + 579214.i 0.0197440 + 0.0341976i
\(780\) 0 0
\(781\) 2.44634e6 4.23718e6i 0.143512 0.248570i
\(782\) 0 0
\(783\) −5.77873e6 −0.336844
\(784\) 0 0
\(785\) −2.28881e7 −1.32567
\(786\) 0 0
\(787\) 1.42384e7 2.46616e7i 0.819451 1.41933i −0.0866365 0.996240i \(-0.527612\pi\)
0.906087 0.423091i \(-0.139055\pi\)
\(788\) 0 0
\(789\) −244620. 423694.i −0.0139894 0.0242303i
\(790\) 0 0
\(791\) 80610.3 3.83716e6i 0.00458088 0.218056i
\(792\) 0 0
\(793\) −7.35273e6 1.27353e7i −0.415208 0.719161i
\(794\) 0 0
\(795\) −488816. + 846655.i −0.0274301 + 0.0475104i
\(796\) 0 0
\(797\) −1.32245e7 −0.737450 −0.368725 0.929538i \(-0.620206\pi\)
−0.368725 + 0.929538i \(0.620206\pi\)
\(798\) 0 0
\(799\) −1.69036e7 −0.936726
\(800\) 0 0
\(801\) −7.03107e6 + 1.21782e7i −0.387204 + 0.670658i
\(802\) 0 0
\(803\) −2.19950e6 3.80964e6i −0.120375 0.208495i
\(804\) 0 0
\(805\) 2.07999e7 + 1.25986e7i 1.13128 + 0.685224i
\(806\) 0 0
\(807\) 2.16702e6 + 3.75338e6i 0.117133 + 0.202880i
\(808\) 0 0
\(809\) 5.67095e6 9.82237e6i 0.304638 0.527649i −0.672543 0.740058i \(-0.734798\pi\)
0.977181 + 0.212410i \(0.0681311\pi\)
\(810\) 0 0
\(811\) −6.47233e6 −0.345548 −0.172774 0.984961i \(-0.555273\pi\)
−0.172774 + 0.984961i \(0.555273\pi\)
\(812\) 0 0
\(813\) −2.92677e6 −0.155296
\(814\) 0 0
\(815\) −1.09188e7 + 1.89119e7i −0.575813 + 0.997337i
\(816\) 0 0
\(817\) 2.41083e6 + 4.17568e6i 0.126360 + 0.218863i
\(818\) 0 0
\(819\) −1.77452e7 + 9.75411e6i −0.924424 + 0.508133i
\(820\) 0 0
\(821\) −9.17380e6 1.58895e7i −0.474998 0.822720i 0.524592 0.851354i \(-0.324218\pi\)
−0.999590 + 0.0286334i \(0.990884\pi\)
\(822\) 0 0
\(823\) 5.02115e6 8.69689e6i 0.258407 0.447574i −0.707408 0.706805i \(-0.750136\pi\)
0.965815 + 0.259231i \(0.0834692\pi\)
\(824\) 0 0
\(825\) −250906. −0.0128344
\(826\) 0 0
\(827\) 334853. 0.0170251 0.00851256 0.999964i \(-0.497290\pi\)
0.00851256 + 0.999964i \(0.497290\pi\)
\(828\) 0 0
\(829\) −1.56447e7 + 2.70974e7i −0.790643 + 1.36943i 0.134926 + 0.990856i \(0.456920\pi\)
−0.925569 + 0.378578i \(0.876413\pi\)
\(830\) 0 0
\(831\) 1.62485e6 + 2.81432e6i 0.0816224 + 0.141374i
\(832\) 0 0
\(833\) 1.97204e7 3.10661e7i 0.984701 1.55122i
\(834\) 0 0
\(835\) 8.66469e6 + 1.50077e7i 0.430068 + 0.744899i
\(836\) 0 0
\(837\) −3.55156e6 + 6.15148e6i −0.175229 + 0.303505i
\(838\) 0 0
\(839\) −2.42772e7 −1.19068 −0.595339 0.803475i \(-0.702982\pi\)
−0.595339 + 0.803475i \(0.702982\pi\)
\(840\) 0 0
\(841\) 7.33046e6 0.357389
\(842\) 0 0
\(843\) 561057. 971779.i 0.0271918 0.0470976i
\(844\) 0 0
\(845\) −1.51764e6 2.62862e6i −0.0731182 0.126644i
\(846\) 0 0
\(847\) 1.41076e7 7.75463e6i 0.675688 0.371409i
\(848\) 0 0
\(849\) −2.29253e6 3.97078e6i −0.109156 0.189063i
\(850\) 0 0
\(851\) −5.47771e6 + 9.48767e6i −0.259284 + 0.449092i
\(852\) 0 0
\(853\) −3.17995e7 −1.49640 −0.748200 0.663474i \(-0.769081\pi\)
−0.748200 + 0.663474i \(0.769081\pi\)
\(854\) 0 0
\(855\) −3.35535e6 −0.156972
\(856\) 0 0
\(857\) 1.71424e7 2.96915e7i 0.797296 1.38096i −0.124075 0.992273i \(-0.539596\pi\)
0.921371 0.388685i \(-0.127070\pi\)
\(858\) 0 0
\(859\) −3.81780e6 6.61263e6i −0.176535 0.305767i 0.764157 0.645031i \(-0.223155\pi\)
−0.940691 + 0.339264i \(0.889822\pi\)
\(860\) 0 0
\(861\) 604757. + 366304.i 0.0278018 + 0.0168397i
\(862\) 0 0
\(863\) −1.80224e7 3.12156e7i −0.823729 1.42674i −0.902887 0.429879i \(-0.858556\pi\)
0.0791571 0.996862i \(-0.474777\pi\)
\(864\) 0 0
\(865\) 1.12009e7 1.94006e7i 0.508996 0.881607i
\(866\) 0 0
\(867\) −7.68402e6 −0.347169
\(868\) 0 0
\(869\) −8.81773e6 −0.396102
\(870\) 0 0
\(871\) −1.73050e7 + 2.99731e7i −0.772905 + 1.33871i
\(872\) 0 0
\(873\) −8.73857e6 1.51356e7i −0.388065 0.672149i
\(874\) 0 0
\(875\) −508695. + 2.42146e7i −0.0224614 + 1.06920i
\(876\) 0 0
\(877\) −1.62877e7 2.82112e7i −0.715092 1.23858i −0.962924 0.269773i \(-0.913051\pi\)
0.247832 0.968803i \(-0.420282\pi\)
\(878\) 0 0
\(879\) −66075.8 + 114447.i −0.00288450 + 0.00499610i
\(880\) 0 0
\(881\) 3.83192e7 1.66332 0.831661 0.555284i \(-0.187390\pi\)
0.831661 + 0.555284i \(0.187390\pi\)
\(882\) 0 0
\(883\) 3.50607e7 1.51328 0.756640 0.653832i \(-0.226840\pi\)
0.756640 + 0.653832i \(0.226840\pi\)
\(884\) 0 0
\(885\) 513998. 890272.i 0.0220599 0.0382089i
\(886\) 0 0
\(887\) 9.80677e6 + 1.69858e7i 0.418521 + 0.724899i 0.995791 0.0916541i \(-0.0292154\pi\)
−0.577270 + 0.816553i \(0.695882\pi\)
\(888\) 0 0
\(889\) −907093. + 4.31789e7i −0.0384944 + 1.83239i
\(890\) 0 0
\(891\) 5.30896e6 + 9.19539e6i 0.224035 + 0.388039i
\(892\) 0 0
\(893\) 1.07832e6 1.86771e6i 0.0452501 0.0783755i
\(894\) 0 0
\(895\) 4.81368e6 0.200872
\(896\) 0 0
\(897\) 5.55568e6 0.230545
\(898\) 0 0
\(899\) 1.71112e7 2.96375e7i 0.706125 1.22304i
\(900\) 0 0
\(901\) 9.30182e6 + 1.61112e7i 0.381730 + 0.661175i
\(902\) 0 0
\(903\) 4.35983e6 + 2.64077e6i 0.177930 + 0.107773i
\(904\) 0 0
\(905\) 1.98413e6 + 3.43662e6i 0.0805284 + 0.139479i
\(906\) 0 0
\(907\) −1.20621e7 + 2.08922e7i −0.486860 + 0.843267i −0.999886 0.0151065i \(-0.995191\pi\)
0.513026 + 0.858373i \(0.328525\pi\)
\(908\) 0 0
\(909\) 4.25349e7 1.70740
\(910\) 0 0
\(911\) 346019. 0.0138135 0.00690676 0.999976i \(-0.497801\pi\)
0.00690676 + 0.999976i \(0.497801\pi\)
\(912\) 0 0
\(913\) 9.33070e6 1.61612e7i 0.370457 0.641650i
\(914\) 0 0
\(915\) −1.28799e6 2.23087e6i −0.0508581 0.0880888i
\(916\) 0 0
\(917\) −6.61527e6 + 3.63625e6i −0.259791 + 0.142801i
\(918\) 0 0
\(919\) −3.27320e6 5.66935e6i −0.127845 0.221434i 0.794996 0.606614i \(-0.207473\pi\)
−0.922841 + 0.385180i \(0.874139\pi\)
\(920\) 0 0
\(921\) −3.50818e6 + 6.07635e6i −0.136280 + 0.236044i
\(922\) 0 0
\(923\) −1.67346e7 −0.646562
\(924\) 0 0
\(925\) −1.69227e6 −0.0650303
\(926\) 0 0
\(927\) −1.03590e6 + 1.79424e6i −0.0395931 + 0.0685773i
\(928\) 0 0
\(929\) 9.24280e6 + 1.60090e7i 0.351370 + 0.608590i 0.986490 0.163823i \(-0.0523827\pi\)
−0.635120 + 0.772414i \(0.719049\pi\)
\(930\) 0 0
\(931\) 2.17453e6 + 4.16073e6i 0.0822227 + 0.157324i
\(932\) 0 0
\(933\) 639887. + 1.10832e6i 0.0240657 + 0.0416831i
\(934\) 0 0
\(935\) 1.06179e7 1.83908e7i 0.397201 0.687972i
\(936\) 0 0
\(937\) −4.28083e7 −1.59286 −0.796432 0.604729i \(-0.793282\pi\)
−0.796432 + 0.604729i \(0.793282\pi\)
\(938\) 0 0
\(939\) −6.76789e6 −0.250490
\(940\) 0 0
\(941\) 9.20301e6 1.59401e7i 0.338810 0.586836i −0.645399 0.763845i \(-0.723309\pi\)
0.984209 + 0.177010i \(0.0566424\pi\)
\(942\) 0 0
\(943\) 4.44586e6 + 7.70045e6i 0.162808 + 0.281992i
\(944\) 0 0
\(945\) −6.28474e6 + 3.45457e6i −0.228933 + 0.125839i
\(946\) 0 0
\(947\) 8.59421e6 + 1.48856e7i 0.311409 + 0.539376i 0.978668 0.205450i \(-0.0658658\pi\)
−0.667259 + 0.744826i \(0.732532\pi\)
\(948\) 0 0
\(949\) −7.52301e6 + 1.30302e7i −0.271160 + 0.469664i
\(950\) 0 0
\(951\) 1.70944e6 0.0612918
\(952\) 0 0
\(953\) 3.40220e7 1.21347 0.606733 0.794905i \(-0.292480\pi\)
0.606733 + 0.794905i \(0.292480\pi\)
\(954\) 0 0
\(955\) 7.44434e6 1.28940e7i 0.264130 0.457487i
\(956\) 0 0
\(957\) 1.15396e6 + 1.99872e6i 0.0407297 + 0.0705460i
\(958\) 0 0
\(959\) 3.63360e7 + 2.20089e7i 1.27582 + 0.772772i
\(960\) 0 0
\(961\) −6.71821e6 1.16363e7i −0.234663 0.406449i
\(962\) 0 0
\(963\) 2.05373e7 3.55716e7i 0.713637 1.23606i
\(964\) 0 0
\(965\) −4.41798e7 −1.52723
\(966\) 0 0
\(967\) 1.22029e6 0.0419658 0.0209829 0.999780i \(-0.493320\pi\)
0.0209829 + 0.999780i \(0.493320\pi\)
\(968\) 0 0
\(969\) 696494. 1.20636e6i 0.0238291 0.0412732i
\(970\) 0 0
\(971\) −9.34534e6 1.61866e7i −0.318088 0.550944i 0.662001 0.749503i \(-0.269707\pi\)
−0.980089 + 0.198558i \(0.936374\pi\)
\(972\) 0 0
\(973\) −449479. + 2.13958e7i −0.0152205 + 0.724514i
\(974\) 0 0
\(975\) 429091. + 743207.i 0.0144556 + 0.0250379i
\(976\) 0 0
\(977\) 1.37254e7 2.37730e7i 0.460031 0.796797i −0.538931 0.842350i \(-0.681172\pi\)
0.998962 + 0.0455527i \(0.0145049\pi\)
\(978\) 0 0
\(979\) 1.13549e7 0.378639
\(980\) 0 0
\(981\) 3.95496e7 1.31211
\(982\) 0 0
\(983\) 5.58131e6 9.66711e6i 0.184227 0.319090i −0.759089 0.650987i \(-0.774355\pi\)
0.943316 + 0.331897i \(0.107689\pi\)
\(984\) 0 0
\(985\) −8.53832e6 1.47888e7i −0.280403 0.485672i
\(986\) 0 0
\(987\) 47885.1 2.27940e6i 0.00156462 0.0744779i
\(988\) 0 0
\(989\) 3.20511e7 + 5.55142e7i 1.04196 + 1.80473i
\(990\) 0 0
\(991\) 2.24404e7 3.88679e7i 0.725850 1.25721i −0.232773 0.972531i \(-0.574780\pi\)
0.958623 0.284678i \(-0.0918867\pi\)
\(992\) 0 0
\(993\) 6.11985e6 0.196955
\(994\) 0 0
\(995\) 1.78326e7 0.571028
\(996\) 0 0
\(997\) 1.03154e6 1.78668e6i 0.0328661 0.0569257i −0.849125 0.528193i \(-0.822870\pi\)
0.881991 + 0.471267i \(0.156203\pi\)
\(998\) 0 0
\(999\) −1.61543e6 2.79801e6i −0.0512125 0.0887026i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.6.i.f.81.3 10
4.3 odd 2 56.6.i.b.25.3 yes 10
7.2 even 3 inner 112.6.i.f.65.3 10
7.3 odd 6 784.6.a.bl.1.3 5
7.4 even 3 784.6.a.bk.1.3 5
12.11 even 2 504.6.s.b.361.5 10
28.3 even 6 392.6.a.j.1.3 5
28.11 odd 6 392.6.a.k.1.3 5
28.19 even 6 392.6.i.o.177.3 10
28.23 odd 6 56.6.i.b.9.3 10
28.27 even 2 392.6.i.o.361.3 10
84.23 even 6 504.6.s.b.289.5 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.6.i.b.9.3 10 28.23 odd 6
56.6.i.b.25.3 yes 10 4.3 odd 2
112.6.i.f.65.3 10 7.2 even 3 inner
112.6.i.f.81.3 10 1.1 even 1 trivial
392.6.a.j.1.3 5 28.3 even 6
392.6.a.k.1.3 5 28.11 odd 6
392.6.i.o.177.3 10 28.19 even 6
392.6.i.o.361.3 10 28.27 even 2
504.6.s.b.289.5 10 84.23 even 6
504.6.s.b.361.5 10 12.11 even 2
784.6.a.bk.1.3 5 7.4 even 3
784.6.a.bl.1.3 5 7.3 odd 6