Properties

Label 1120.2.g.b.449.2
Level $1120$
Weight $2$
Character 1120.449
Analytic conductor $8.943$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1120,2,Mod(449,1120)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1120, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1120.449");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1120 = 2^{5} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1120.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.94324502638\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.65174749855744.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 13x^{8} + 56x^{6} + 97x^{4} + 61x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.2
Root \(-0.271831i\) of defining polynomial
Character \(\chi\) \(=\) 1120.449
Dual form 1120.2.g.b.449.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.19794i q^{3} +(1.64514 - 1.51444i) q^{5} +1.00000i q^{7} -1.83094 q^{9} +O(q^{10})\) \(q-2.19794i q^{3} +(1.64514 - 1.51444i) q^{5} +1.00000i q^{7} -1.83094 q^{9} -1.37460 q^{11} +2.74160i q^{13} +(-3.32864 - 3.61591i) q^{15} -6.94455i q^{17} -1.29028 q^{19} +2.19794 q^{21} -8.31915i q^{23} +(0.412961 - 4.98292i) q^{25} -2.56953i q^{27} +8.40089 q^{29} -9.49323 q^{31} +3.02128i q^{33} +(1.51444 + 1.64514i) q^{35} -1.73860i q^{37} +6.02587 q^{39} -5.30855 q^{41} +7.83136i q^{43} +(-3.01214 + 2.77284i) q^{45} -3.48822i q^{47} -1.00000 q^{49} -15.2637 q^{51} +6.13448i q^{53} +(-2.26140 + 2.08174i) q^{55} +2.83595i q^{57} -6.26070 q^{59} +6.59883 q^{61} -1.83094i q^{63} +(4.15198 + 4.51031i) q^{65} -1.66187i q^{67} -18.2850 q^{69} +16.0236 q^{71} +2.13448i q^{73} +(-10.9521 - 0.907662i) q^{75} -1.37460i q^{77} +5.45132 q^{79} -11.1405 q^{81} +2.54624i q^{83} +(-10.5171 - 11.4248i) q^{85} -18.4646i q^{87} -1.43548 q^{89} -2.74160 q^{91} +20.8655i q^{93} +(-2.12268 + 1.95404i) q^{95} +9.69375i q^{97} +2.51680 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 2 q^{5} - 14 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 10 q - 2 q^{5} - 14 q^{9} - 8 q^{11} - 4 q^{15} + 24 q^{19} - 4 q^{21} + 6 q^{25} + 24 q^{29} - 24 q^{31} + 64 q^{39} - 4 q^{41} + 10 q^{45} - 10 q^{49} - 24 q^{51} - 16 q^{55} + 32 q^{59} - 20 q^{61} - 8 q^{65} - 8 q^{69} - 8 q^{71} - 64 q^{75} + 64 q^{79} + 2 q^{81} - 12 q^{85} - 4 q^{89} - 60 q^{95} + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1120\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(421\) \(801\) \(897\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.19794i 1.26898i −0.772931 0.634490i \(-0.781210\pi\)
0.772931 0.634490i \(-0.218790\pi\)
\(4\) 0 0
\(5\) 1.64514 1.51444i 0.735728 0.677277i
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) −1.83094 −0.610312
\(10\) 0 0
\(11\) −1.37460 −0.414457 −0.207228 0.978293i \(-0.566444\pi\)
−0.207228 + 0.978293i \(0.566444\pi\)
\(12\) 0 0
\(13\) 2.74160i 0.760383i 0.924908 + 0.380192i \(0.124142\pi\)
−0.924908 + 0.380192i \(0.875858\pi\)
\(14\) 0 0
\(15\) −3.32864 3.61591i −0.859451 0.933625i
\(16\) 0 0
\(17\) 6.94455i 1.68430i −0.539242 0.842151i \(-0.681289\pi\)
0.539242 0.842151i \(-0.318711\pi\)
\(18\) 0 0
\(19\) −1.29028 −0.296010 −0.148005 0.988987i \(-0.547285\pi\)
−0.148005 + 0.988987i \(0.547285\pi\)
\(20\) 0 0
\(21\) 2.19794 0.479630
\(22\) 0 0
\(23\) 8.31915i 1.73466i −0.497731 0.867331i \(-0.665833\pi\)
0.497731 0.867331i \(-0.334167\pi\)
\(24\) 0 0
\(25\) 0.412961 4.98292i 0.0825921 0.996583i
\(26\) 0 0
\(27\) 2.56953i 0.494507i
\(28\) 0 0
\(29\) 8.40089 1.56001 0.780003 0.625775i \(-0.215217\pi\)
0.780003 + 0.625775i \(0.215217\pi\)
\(30\) 0 0
\(31\) −9.49323 −1.70503 −0.852517 0.522699i \(-0.824925\pi\)
−0.852517 + 0.522699i \(0.824925\pi\)
\(32\) 0 0
\(33\) 3.02128i 0.525937i
\(34\) 0 0
\(35\) 1.51444 + 1.64514i 0.255987 + 0.278079i
\(36\) 0 0
\(37\) 1.73860i 0.285824i −0.989735 0.142912i \(-0.954353\pi\)
0.989735 0.142912i \(-0.0456465\pi\)
\(38\) 0 0
\(39\) 6.02587 0.964912
\(40\) 0 0
\(41\) −5.30855 −0.829057 −0.414528 0.910036i \(-0.636053\pi\)
−0.414528 + 0.910036i \(0.636053\pi\)
\(42\) 0 0
\(43\) 7.83136i 1.19427i 0.802140 + 0.597136i \(0.203695\pi\)
−0.802140 + 0.597136i \(0.796305\pi\)
\(44\) 0 0
\(45\) −3.01214 + 2.77284i −0.449024 + 0.413350i
\(46\) 0 0
\(47\) 3.48822i 0.508809i −0.967098 0.254404i \(-0.918121\pi\)
0.967098 0.254404i \(-0.0818794\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) −15.2637 −2.13735
\(52\) 0 0
\(53\) 6.13448i 0.842635i 0.906913 + 0.421317i \(0.138432\pi\)
−0.906913 + 0.421317i \(0.861568\pi\)
\(54\) 0 0
\(55\) −2.26140 + 2.08174i −0.304927 + 0.280702i
\(56\) 0 0
\(57\) 2.83595i 0.375631i
\(58\) 0 0
\(59\) −6.26070 −0.815074 −0.407537 0.913189i \(-0.633612\pi\)
−0.407537 + 0.913189i \(0.633612\pi\)
\(60\) 0 0
\(61\) 6.59883 0.844894 0.422447 0.906388i \(-0.361171\pi\)
0.422447 + 0.906388i \(0.361171\pi\)
\(62\) 0 0
\(63\) 1.83094i 0.230676i
\(64\) 0 0
\(65\) 4.15198 + 4.51031i 0.514990 + 0.559435i
\(66\) 0 0
\(67\) 1.66187i 0.203030i −0.994834 0.101515i \(-0.967631\pi\)
0.994834 0.101515i \(-0.0323690\pi\)
\(68\) 0 0
\(69\) −18.2850 −2.20125
\(70\) 0 0
\(71\) 16.0236 1.90165 0.950825 0.309730i \(-0.100239\pi\)
0.950825 + 0.309730i \(0.100239\pi\)
\(72\) 0 0
\(73\) 2.13448i 0.249821i 0.992168 + 0.124911i \(0.0398644\pi\)
−0.992168 + 0.124911i \(0.960136\pi\)
\(74\) 0 0
\(75\) −10.9521 0.907662i −1.26465 0.104808i
\(76\) 0 0
\(77\) 1.37460i 0.156650i
\(78\) 0 0
\(79\) 5.45132 0.613322 0.306661 0.951819i \(-0.400788\pi\)
0.306661 + 0.951819i \(0.400788\pi\)
\(80\) 0 0
\(81\) −11.1405 −1.23783
\(82\) 0 0
\(83\) 2.54624i 0.279486i 0.990188 + 0.139743i \(0.0446277\pi\)
−0.990188 + 0.139743i \(0.955372\pi\)
\(84\) 0 0
\(85\) −10.5171 11.4248i −1.14074 1.23919i
\(86\) 0 0
\(87\) 18.4646i 1.97962i
\(88\) 0 0
\(89\) −1.43548 −0.152161 −0.0760804 0.997102i \(-0.524241\pi\)
−0.0760804 + 0.997102i \(0.524241\pi\)
\(90\) 0 0
\(91\) −2.74160 −0.287398
\(92\) 0 0
\(93\) 20.8655i 2.16366i
\(94\) 0 0
\(95\) −2.12268 + 1.95404i −0.217783 + 0.200481i
\(96\) 0 0
\(97\) 9.69375i 0.984251i 0.870524 + 0.492125i \(0.163780\pi\)
−0.870524 + 0.492125i \(0.836220\pi\)
\(98\) 0 0
\(99\) 2.51680 0.252948
\(100\) 0 0
\(101\) 8.25067 0.820973 0.410486 0.911867i \(-0.365359\pi\)
0.410486 + 0.911867i \(0.365359\pi\)
\(102\) 0 0
\(103\) 13.1501i 1.29572i −0.761761 0.647858i \(-0.775665\pi\)
0.761761 0.647858i \(-0.224335\pi\)
\(104\) 0 0
\(105\) 3.61591 3.32864i 0.352877 0.324842i
\(106\) 0 0
\(107\) 0.153454i 0.0148349i −0.999972 0.00741746i \(-0.997639\pi\)
0.999972 0.00741746i \(-0.00236107\pi\)
\(108\) 0 0
\(109\) 8.23741 0.789001 0.394500 0.918896i \(-0.370918\pi\)
0.394500 + 0.918896i \(0.370918\pi\)
\(110\) 0 0
\(111\) −3.82133 −0.362705
\(112\) 0 0
\(113\) 11.0532i 1.03979i 0.854229 + 0.519897i \(0.174030\pi\)
−0.854229 + 0.519897i \(0.825970\pi\)
\(114\) 0 0
\(115\) −12.5988 13.6862i −1.17485 1.27624i
\(116\) 0 0
\(117\) 5.01969i 0.464071i
\(118\) 0 0
\(119\) 6.94455 0.636606
\(120\) 0 0
\(121\) −9.11048 −0.828226
\(122\) 0 0
\(123\) 11.6679i 1.05206i
\(124\) 0 0
\(125\) −6.86694 8.82299i −0.614198 0.789152i
\(126\) 0 0
\(127\) 7.74460i 0.687222i 0.939112 + 0.343611i \(0.111650\pi\)
−0.939112 + 0.343611i \(0.888350\pi\)
\(128\) 0 0
\(129\) 17.2128 1.51551
\(130\) 0 0
\(131\) −4.75228 −0.415209 −0.207605 0.978213i \(-0.566567\pi\)
−0.207605 + 0.978213i \(0.566567\pi\)
\(132\) 0 0
\(133\) 1.29028i 0.111881i
\(134\) 0 0
\(135\) −3.89140 4.22724i −0.334918 0.363823i
\(136\) 0 0
\(137\) 18.3002i 1.56349i −0.623599 0.781745i \(-0.714330\pi\)
0.623599 0.781745i \(-0.285670\pi\)
\(138\) 0 0
\(139\) 18.9370 1.60621 0.803106 0.595836i \(-0.203179\pi\)
0.803106 + 0.595836i \(0.203179\pi\)
\(140\) 0 0
\(141\) −7.66688 −0.645668
\(142\) 0 0
\(143\) 3.76860i 0.315146i
\(144\) 0 0
\(145\) 13.8206 12.7226i 1.14774 1.05656i
\(146\) 0 0
\(147\) 2.19794i 0.181283i
\(148\) 0 0
\(149\) −10.1155 −0.828694 −0.414347 0.910119i \(-0.635990\pi\)
−0.414347 + 0.910119i \(0.635990\pi\)
\(150\) 0 0
\(151\) −0.567654 −0.0461951 −0.0230975 0.999733i \(-0.507353\pi\)
−0.0230975 + 0.999733i \(0.507353\pi\)
\(152\) 0 0
\(153\) 12.7150i 1.02795i
\(154\) 0 0
\(155\) −15.6177 + 14.3769i −1.25444 + 1.15478i
\(156\) 0 0
\(157\) 2.87542i 0.229484i −0.993395 0.114742i \(-0.963396\pi\)
0.993395 0.114742i \(-0.0366041\pi\)
\(158\) 0 0
\(159\) 13.4832 1.06929
\(160\) 0 0
\(161\) 8.31915 0.655641
\(162\) 0 0
\(163\) 10.2212i 0.800589i 0.916387 + 0.400294i \(0.131092\pi\)
−0.916387 + 0.400294i \(0.868908\pi\)
\(164\) 0 0
\(165\) 4.57554 + 4.97042i 0.356205 + 0.386947i
\(166\) 0 0
\(167\) 19.7672i 1.52963i 0.644249 + 0.764816i \(0.277170\pi\)
−0.644249 + 0.764816i \(0.722830\pi\)
\(168\) 0 0
\(169\) 5.48363 0.421817
\(170\) 0 0
\(171\) 2.36241 0.180658
\(172\) 0 0
\(173\) 21.7281i 1.65195i −0.563704 0.825977i \(-0.690624\pi\)
0.563704 0.825977i \(-0.309376\pi\)
\(174\) 0 0
\(175\) 4.98292 + 0.412961i 0.376673 + 0.0312169i
\(176\) 0 0
\(177\) 13.7606i 1.03431i
\(178\) 0 0
\(179\) 21.1611 1.58166 0.790828 0.612039i \(-0.209650\pi\)
0.790828 + 0.612039i \(0.209650\pi\)
\(180\) 0 0
\(181\) 11.8396 0.880031 0.440016 0.897990i \(-0.354973\pi\)
0.440016 + 0.897990i \(0.354973\pi\)
\(182\) 0 0
\(183\) 14.5038i 1.07215i
\(184\) 0 0
\(185\) −2.63300 2.86023i −0.193582 0.210289i
\(186\) 0 0
\(187\) 9.54596i 0.698070i
\(188\) 0 0
\(189\) 2.56953 0.186906
\(190\) 0 0
\(191\) 1.82068 0.131739 0.0658697 0.997828i \(-0.479018\pi\)
0.0658697 + 0.997828i \(0.479018\pi\)
\(192\) 0 0
\(193\) 3.62770i 0.261128i −0.991440 0.130564i \(-0.958321\pi\)
0.991440 0.130564i \(-0.0416788\pi\)
\(194\) 0 0
\(195\) 9.91339 9.12580i 0.709913 0.653512i
\(196\) 0 0
\(197\) 6.49380i 0.462664i 0.972875 + 0.231332i \(0.0743084\pi\)
−0.972875 + 0.231332i \(0.925692\pi\)
\(198\) 0 0
\(199\) 4.69145 0.332568 0.166284 0.986078i \(-0.446823\pi\)
0.166284 + 0.986078i \(0.446823\pi\)
\(200\) 0 0
\(201\) −3.65269 −0.257641
\(202\) 0 0
\(203\) 8.40089i 0.589627i
\(204\) 0 0
\(205\) −8.73331 + 8.03947i −0.609961 + 0.561501i
\(206\) 0 0
\(207\) 15.2318i 1.05869i
\(208\) 0 0
\(209\) 1.77361 0.122683
\(210\) 0 0
\(211\) 17.0159 1.17142 0.585710 0.810521i \(-0.300816\pi\)
0.585710 + 0.810521i \(0.300816\pi\)
\(212\) 0 0
\(213\) 35.2189i 2.41316i
\(214\) 0 0
\(215\) 11.8601 + 12.8837i 0.808852 + 0.878659i
\(216\) 0 0
\(217\) 9.49323i 0.644442i
\(218\) 0 0
\(219\) 4.69145 0.317019
\(220\) 0 0
\(221\) 19.0392 1.28071
\(222\) 0 0
\(223\) 9.39251i 0.628969i 0.949263 + 0.314485i \(0.101832\pi\)
−0.949263 + 0.314485i \(0.898168\pi\)
\(224\) 0 0
\(225\) −0.756104 + 9.12340i −0.0504069 + 0.608227i
\(226\) 0 0
\(227\) 14.3134i 0.950016i 0.879981 + 0.475008i \(0.157555\pi\)
−0.879981 + 0.475008i \(0.842445\pi\)
\(228\) 0 0
\(229\) 8.78351 0.580430 0.290215 0.956961i \(-0.406273\pi\)
0.290215 + 0.956961i \(0.406273\pi\)
\(230\) 0 0
\(231\) −3.02128 −0.198786
\(232\) 0 0
\(233\) 14.7706i 0.967652i −0.875164 0.483826i \(-0.839247\pi\)
0.875164 0.483826i \(-0.160753\pi\)
\(234\) 0 0
\(235\) −5.28268 5.73860i −0.344604 0.374345i
\(236\) 0 0
\(237\) 11.9817i 0.778294i
\(238\) 0 0
\(239\) 25.0525 1.62051 0.810256 0.586076i \(-0.199328\pi\)
0.810256 + 0.586076i \(0.199328\pi\)
\(240\) 0 0
\(241\) 3.32975 0.214488 0.107244 0.994233i \(-0.465797\pi\)
0.107244 + 0.994233i \(0.465797\pi\)
\(242\) 0 0
\(243\) 16.7775i 1.07628i
\(244\) 0 0
\(245\) −1.64514 + 1.51444i −0.105104 + 0.0967538i
\(246\) 0 0
\(247\) 3.53742i 0.225081i
\(248\) 0 0
\(249\) 5.59648 0.354663
\(250\) 0 0
\(251\) −9.89135 −0.624336 −0.312168 0.950027i \(-0.601055\pi\)
−0.312168 + 0.950027i \(0.601055\pi\)
\(252\) 0 0
\(253\) 11.4355i 0.718943i
\(254\) 0 0
\(255\) −25.1109 + 23.1159i −1.57251 + 1.44758i
\(256\) 0 0
\(257\) 13.6117i 0.849073i 0.905411 + 0.424536i \(0.139563\pi\)
−0.905411 + 0.424536i \(0.860437\pi\)
\(258\) 0 0
\(259\) 1.73860 0.108031
\(260\) 0 0
\(261\) −15.3815 −0.952090
\(262\) 0 0
\(263\) 4.11550i 0.253772i 0.991917 + 0.126886i \(0.0404983\pi\)
−0.991917 + 0.126886i \(0.959502\pi\)
\(264\) 0 0
\(265\) 9.29028 + 10.0921i 0.570697 + 0.619950i
\(266\) 0 0
\(267\) 3.15510i 0.193089i
\(268\) 0 0
\(269\) −10.7409 −0.654887 −0.327443 0.944871i \(-0.606187\pi\)
−0.327443 + 0.944871i \(0.606187\pi\)
\(270\) 0 0
\(271\) −32.7438 −1.98904 −0.994521 0.104535i \(-0.966665\pi\)
−0.994521 + 0.104535i \(0.966665\pi\)
\(272\) 0 0
\(273\) 6.02587i 0.364702i
\(274\) 0 0
\(275\) −0.567654 + 6.84950i −0.0342309 + 0.413041i
\(276\) 0 0
\(277\) 6.92623i 0.416157i 0.978112 + 0.208078i \(0.0667209\pi\)
−0.978112 + 0.208078i \(0.933279\pi\)
\(278\) 0 0
\(279\) 17.3815 1.04060
\(280\) 0 0
\(281\) −2.61209 −0.155824 −0.0779122 0.996960i \(-0.524825\pi\)
−0.0779122 + 0.996960i \(0.524825\pi\)
\(282\) 0 0
\(283\) 6.99972i 0.416090i −0.978119 0.208045i \(-0.933290\pi\)
0.978119 0.208045i \(-0.0667101\pi\)
\(284\) 0 0
\(285\) 4.29487 + 4.66553i 0.254406 + 0.276362i
\(286\) 0 0
\(287\) 5.30855i 0.313354i
\(288\) 0 0
\(289\) −31.2268 −1.83687
\(290\) 0 0
\(291\) 21.3063 1.24900
\(292\) 0 0
\(293\) 14.7099i 0.859362i 0.902981 + 0.429681i \(0.141374\pi\)
−0.902981 + 0.429681i \(0.858626\pi\)
\(294\) 0 0
\(295\) −10.2997 + 9.48144i −0.599673 + 0.552031i
\(296\) 0 0
\(297\) 3.53207i 0.204952i
\(298\) 0 0
\(299\) 22.8078 1.31901
\(300\) 0 0
\(301\) −7.83136 −0.451392
\(302\) 0 0
\(303\) 18.1345i 1.04180i
\(304\) 0 0
\(305\) 10.8560 9.99351i 0.621612 0.572227i
\(306\) 0 0
\(307\) 32.5567i 1.85811i −0.369942 0.929055i \(-0.620623\pi\)
0.369942 0.929055i \(-0.379377\pi\)
\(308\) 0 0
\(309\) −28.9031 −1.64424
\(310\) 0 0
\(311\) 32.4065 1.83760 0.918802 0.394719i \(-0.129158\pi\)
0.918802 + 0.394719i \(0.129158\pi\)
\(312\) 0 0
\(313\) 21.2347i 1.20026i −0.799904 0.600128i \(-0.795116\pi\)
0.799904 0.600128i \(-0.204884\pi\)
\(314\) 0 0
\(315\) −2.77284 3.01214i −0.156232 0.169715i
\(316\) 0 0
\(317\) 33.1847i 1.86384i 0.362667 + 0.931919i \(0.381866\pi\)
−0.362667 + 0.931919i \(0.618134\pi\)
\(318\) 0 0
\(319\) −11.5478 −0.646555
\(320\) 0 0
\(321\) −0.337282 −0.0188252
\(322\) 0 0
\(323\) 8.96040i 0.498570i
\(324\) 0 0
\(325\) 13.6612 + 1.13217i 0.757785 + 0.0628017i
\(326\) 0 0
\(327\) 18.1053i 1.00123i
\(328\) 0 0
\(329\) 3.48822 0.192312
\(330\) 0 0
\(331\) −8.38585 −0.460928 −0.230464 0.973081i \(-0.574024\pi\)
−0.230464 + 0.973081i \(0.574024\pi\)
\(332\) 0 0
\(333\) 3.18326i 0.174442i
\(334\) 0 0
\(335\) −2.51680 2.73401i −0.137507 0.149375i
\(336\) 0 0
\(337\) 8.59953i 0.468446i −0.972183 0.234223i \(-0.924745\pi\)
0.972183 0.234223i \(-0.0752546\pi\)
\(338\) 0 0
\(339\) 24.2942 1.31948
\(340\) 0 0
\(341\) 13.0494 0.706663
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) −30.0813 + 27.6915i −1.61952 + 1.49086i
\(346\) 0 0
\(347\) 5.37773i 0.288692i −0.989527 0.144346i \(-0.953892\pi\)
0.989527 0.144346i \(-0.0461078\pi\)
\(348\) 0 0
\(349\) 11.1582 0.597284 0.298642 0.954365i \(-0.403466\pi\)
0.298642 + 0.954365i \(0.403466\pi\)
\(350\) 0 0
\(351\) 7.04463 0.376015
\(352\) 0 0
\(353\) 25.1040i 1.33615i −0.744093 0.668076i \(-0.767118\pi\)
0.744093 0.668076i \(-0.232882\pi\)
\(354\) 0 0
\(355\) 26.3610 24.2667i 1.39910 1.28794i
\(356\) 0 0
\(357\) 15.2637i 0.807841i
\(358\) 0 0
\(359\) 24.4545 1.29066 0.645329 0.763905i \(-0.276720\pi\)
0.645329 + 0.763905i \(0.276720\pi\)
\(360\) 0 0
\(361\) −17.3352 −0.912378
\(362\) 0 0
\(363\) 20.0243i 1.05100i
\(364\) 0 0
\(365\) 3.23253 + 3.51151i 0.169198 + 0.183801i
\(366\) 0 0
\(367\) 22.6016i 1.17979i 0.807478 + 0.589897i \(0.200832\pi\)
−0.807478 + 0.589897i \(0.799168\pi\)
\(368\) 0 0
\(369\) 9.71962 0.505983
\(370\) 0 0
\(371\) −6.13448 −0.318486
\(372\) 0 0
\(373\) 11.4377i 0.592221i 0.955154 + 0.296111i \(0.0956897\pi\)
−0.955154 + 0.296111i \(0.904310\pi\)
\(374\) 0 0
\(375\) −19.3924 + 15.0931i −1.00142 + 0.779405i
\(376\) 0 0
\(377\) 23.0319i 1.18620i
\(378\) 0 0
\(379\) −22.5122 −1.15638 −0.578188 0.815904i \(-0.696240\pi\)
−0.578188 + 0.815904i \(0.696240\pi\)
\(380\) 0 0
\(381\) 17.0222 0.872072
\(382\) 0 0
\(383\) 20.0106i 1.02249i 0.859434 + 0.511247i \(0.170816\pi\)
−0.859434 + 0.511247i \(0.829184\pi\)
\(384\) 0 0
\(385\) −2.08174 2.26140i −0.106095 0.115252i
\(386\) 0 0
\(387\) 14.3387i 0.728878i
\(388\) 0 0
\(389\) 22.5476 1.14321 0.571605 0.820529i \(-0.306321\pi\)
0.571605 + 0.820529i \(0.306321\pi\)
\(390\) 0 0
\(391\) −57.7728 −2.92170
\(392\) 0 0
\(393\) 10.4452i 0.526892i
\(394\) 0 0
\(395\) 8.96818 8.25569i 0.451238 0.415389i
\(396\) 0 0
\(397\) 9.35871i 0.469700i 0.972032 + 0.234850i \(0.0754599\pi\)
−0.972032 + 0.234850i \(0.924540\pi\)
\(398\) 0 0
\(399\) −2.83595 −0.141975
\(400\) 0 0
\(401\) −31.2475 −1.56042 −0.780212 0.625516i \(-0.784889\pi\)
−0.780212 + 0.625516i \(0.784889\pi\)
\(402\) 0 0
\(403\) 26.0266i 1.29648i
\(404\) 0 0
\(405\) −18.3276 + 16.8716i −0.910707 + 0.838355i
\(406\) 0 0
\(407\) 2.38987i 0.118462i
\(408\) 0 0
\(409\) 28.0098 1.38499 0.692497 0.721421i \(-0.256511\pi\)
0.692497 + 0.721421i \(0.256511\pi\)
\(410\) 0 0
\(411\) −40.2227 −1.98404
\(412\) 0 0
\(413\) 6.26070i 0.308069i
\(414\) 0 0
\(415\) 3.85612 + 4.18892i 0.189290 + 0.205626i
\(416\) 0 0
\(417\) 41.6223i 2.03825i
\(418\) 0 0
\(419\) 16.8212 0.821769 0.410885 0.911687i \(-0.365220\pi\)
0.410885 + 0.911687i \(0.365220\pi\)
\(420\) 0 0
\(421\) −0.354309 −0.0172680 −0.00863398 0.999963i \(-0.502748\pi\)
−0.00863398 + 0.999963i \(0.502748\pi\)
\(422\) 0 0
\(423\) 6.38670i 0.310532i
\(424\) 0 0
\(425\) −34.6041 2.86783i −1.67855 0.139110i
\(426\) 0 0
\(427\) 6.59883i 0.319340i
\(428\) 0 0
\(429\) −8.28315 −0.399914
\(430\) 0 0
\(431\) 14.8578 0.715675 0.357837 0.933784i \(-0.383514\pi\)
0.357837 + 0.933784i \(0.383514\pi\)
\(432\) 0 0
\(433\) 13.6602i 0.656469i −0.944596 0.328235i \(-0.893546\pi\)
0.944596 0.328235i \(-0.106454\pi\)
\(434\) 0 0
\(435\) −27.9635 30.3769i −1.34075 1.45646i
\(436\) 0 0
\(437\) 10.7340i 0.513477i
\(438\) 0 0
\(439\) 25.3663 1.21067 0.605334 0.795972i \(-0.293040\pi\)
0.605334 + 0.795972i \(0.293040\pi\)
\(440\) 0 0
\(441\) 1.83094 0.0871874
\(442\) 0 0
\(443\) 32.8555i 1.56101i 0.625148 + 0.780506i \(0.285039\pi\)
−0.625148 + 0.780506i \(0.714961\pi\)
\(444\) 0 0
\(445\) −2.36157 + 2.17395i −0.111949 + 0.103055i
\(446\) 0 0
\(447\) 22.2332i 1.05160i
\(448\) 0 0
\(449\) −34.2268 −1.61526 −0.807632 0.589687i \(-0.799251\pi\)
−0.807632 + 0.589687i \(0.799251\pi\)
\(450\) 0 0
\(451\) 7.29712 0.343608
\(452\) 0 0
\(453\) 1.24767i 0.0586206i
\(454\) 0 0
\(455\) −4.51031 + 4.15198i −0.211447 + 0.194648i
\(456\) 0 0
\(457\) 21.8661i 1.02285i 0.859327 + 0.511427i \(0.170883\pi\)
−0.859327 + 0.511427i \(0.829117\pi\)
\(458\) 0 0
\(459\) −17.8443 −0.832899
\(460\) 0 0
\(461\) −32.8358 −1.52932 −0.764659 0.644436i \(-0.777092\pi\)
−0.764659 + 0.644436i \(0.777092\pi\)
\(462\) 0 0
\(463\) 20.9970i 0.975811i −0.872896 0.487906i \(-0.837761\pi\)
0.872896 0.487906i \(-0.162239\pi\)
\(464\) 0 0
\(465\) 31.5995 + 34.3267i 1.46539 + 1.59186i
\(466\) 0 0
\(467\) 9.88718i 0.457524i 0.973482 + 0.228762i \(0.0734678\pi\)
−0.973482 + 0.228762i \(0.926532\pi\)
\(468\) 0 0
\(469\) 1.66187 0.0767381
\(470\) 0 0
\(471\) −6.32000 −0.291210
\(472\) 0 0
\(473\) 10.7650i 0.494974i
\(474\) 0 0
\(475\) −0.532833 + 6.42934i −0.0244481 + 0.294998i
\(476\) 0 0
\(477\) 11.2318i 0.514270i
\(478\) 0 0
\(479\) −18.1115 −0.827534 −0.413767 0.910383i \(-0.635787\pi\)
−0.413767 + 0.910383i \(0.635787\pi\)
\(480\) 0 0
\(481\) 4.76654 0.217336
\(482\) 0 0
\(483\) 18.2850i 0.831996i
\(484\) 0 0
\(485\) 14.6806 + 15.9476i 0.666610 + 0.724141i
\(486\) 0 0
\(487\) 23.4907i 1.06447i −0.846597 0.532234i \(-0.821353\pi\)
0.846597 0.532234i \(-0.178647\pi\)
\(488\) 0 0
\(489\) 22.4656 1.01593
\(490\) 0 0
\(491\) 25.1693 1.13588 0.567938 0.823072i \(-0.307742\pi\)
0.567938 + 0.823072i \(0.307742\pi\)
\(492\) 0 0
\(493\) 58.3404i 2.62752i
\(494\) 0 0
\(495\) 4.14048 3.81153i 0.186101 0.171316i
\(496\) 0 0
\(497\) 16.0236i 0.718756i
\(498\) 0 0
\(499\) 17.5266 0.784601 0.392300 0.919837i \(-0.371679\pi\)
0.392300 + 0.919837i \(0.371679\pi\)
\(500\) 0 0
\(501\) 43.4471 1.94107
\(502\) 0 0
\(503\) 33.0352i 1.47297i −0.676456 0.736483i \(-0.736485\pi\)
0.676456 0.736483i \(-0.263515\pi\)
\(504\) 0 0
\(505\) 13.5735 12.4951i 0.604013 0.556026i
\(506\) 0 0
\(507\) 12.0527i 0.535278i
\(508\) 0 0
\(509\) 21.4535 0.950909 0.475455 0.879740i \(-0.342284\pi\)
0.475455 + 0.879740i \(0.342284\pi\)
\(510\) 0 0
\(511\) −2.13448 −0.0944236
\(512\) 0 0
\(513\) 3.31541i 0.146379i
\(514\) 0 0
\(515\) −19.9150 21.6337i −0.877559 0.953295i
\(516\) 0 0
\(517\) 4.79489i 0.210879i
\(518\) 0 0
\(519\) −47.7569 −2.09630
\(520\) 0 0
\(521\) 23.4249 1.02626 0.513132 0.858310i \(-0.328485\pi\)
0.513132 + 0.858310i \(0.328485\pi\)
\(522\) 0 0
\(523\) 15.4736i 0.676611i −0.941036 0.338306i \(-0.890146\pi\)
0.941036 0.338306i \(-0.109854\pi\)
\(524\) 0 0
\(525\) 0.907662 10.9521i 0.0396136 0.477991i
\(526\) 0 0
\(527\) 65.9262i 2.87179i
\(528\) 0 0
\(529\) −46.2083 −2.00906
\(530\) 0 0
\(531\) 11.4629 0.497449
\(532\) 0 0
\(533\) 14.5539i 0.630401i
\(534\) 0 0
\(535\) −0.232396 0.252452i −0.0100473 0.0109145i
\(536\) 0 0
\(537\) 46.5108i 2.00709i
\(538\) 0 0
\(539\) 1.37460 0.0592081
\(540\) 0 0
\(541\) −6.24274 −0.268396 −0.134198 0.990955i \(-0.542846\pi\)
−0.134198 + 0.990955i \(0.542846\pi\)
\(542\) 0 0
\(543\) 26.0227i 1.11674i
\(544\) 0 0
\(545\) 13.5517 12.4750i 0.580490 0.534372i
\(546\) 0 0
\(547\) 33.8997i 1.44945i −0.689040 0.724724i \(-0.741967\pi\)
0.689040 0.724724i \(-0.258033\pi\)
\(548\) 0 0
\(549\) −12.0820 −0.515649
\(550\) 0 0
\(551\) −10.8395 −0.461777
\(552\) 0 0
\(553\) 5.45132i 0.231814i
\(554\) 0 0
\(555\) −6.28662 + 5.78717i −0.266852 + 0.245651i
\(556\) 0 0
\(557\) 0.161941i 0.00686165i −0.999994 0.00343083i \(-0.998908\pi\)
0.999994 0.00343083i \(-0.00109207\pi\)
\(558\) 0 0
\(559\) −21.4705 −0.908104
\(560\) 0 0
\(561\) 20.9814 0.885837
\(562\) 0 0
\(563\) 38.6514i 1.62896i 0.580189 + 0.814482i \(0.302979\pi\)
−0.580189 + 0.814482i \(0.697021\pi\)
\(564\) 0 0
\(565\) 16.7393 + 18.1840i 0.704228 + 0.765006i
\(566\) 0 0
\(567\) 11.1405i 0.467856i
\(568\) 0 0
\(569\) 26.9523 1.12990 0.564949 0.825126i \(-0.308896\pi\)
0.564949 + 0.825126i \(0.308896\pi\)
\(570\) 0 0
\(571\) −24.2525 −1.01493 −0.507467 0.861671i \(-0.669418\pi\)
−0.507467 + 0.861671i \(0.669418\pi\)
\(572\) 0 0
\(573\) 4.00173i 0.167175i
\(574\) 0 0
\(575\) −41.4536 3.43548i −1.72874 0.143269i
\(576\) 0 0
\(577\) 14.2848i 0.594684i 0.954771 + 0.297342i \(0.0961001\pi\)
−0.954771 + 0.297342i \(0.903900\pi\)
\(578\) 0 0
\(579\) −7.97347 −0.331366
\(580\) 0 0
\(581\) −2.54624 −0.105636
\(582\) 0 0
\(583\) 8.43243i 0.349236i
\(584\) 0 0
\(585\) −7.60201 8.25809i −0.314304 0.341430i
\(586\) 0 0
\(587\) 30.6314i 1.26429i −0.774849 0.632146i \(-0.782174\pi\)
0.774849 0.632146i \(-0.217826\pi\)
\(588\) 0 0
\(589\) 12.2489 0.504707
\(590\) 0 0
\(591\) 14.2730 0.587112
\(592\) 0 0
\(593\) 37.4568i 1.53817i −0.639149 0.769083i \(-0.720713\pi\)
0.639149 0.769083i \(-0.279287\pi\)
\(594\) 0 0
\(595\) 11.4248 10.5171i 0.468369 0.431159i
\(596\) 0 0
\(597\) 10.3115i 0.422022i
\(598\) 0 0
\(599\) −18.9394 −0.773843 −0.386921 0.922113i \(-0.626462\pi\)
−0.386921 + 0.922113i \(0.626462\pi\)
\(600\) 0 0
\(601\) −8.49158 −0.346379 −0.173189 0.984889i \(-0.555407\pi\)
−0.173189 + 0.984889i \(0.555407\pi\)
\(602\) 0 0
\(603\) 3.04278i 0.123911i
\(604\) 0 0
\(605\) −14.9880 + 13.7973i −0.609349 + 0.560938i
\(606\) 0 0
\(607\) 23.4717i 0.952688i 0.879259 + 0.476344i \(0.158038\pi\)
−0.879259 + 0.476344i \(0.841962\pi\)
\(608\) 0 0
\(609\) 18.4646 0.748225
\(610\) 0 0
\(611\) 9.56329 0.386889
\(612\) 0 0
\(613\) 33.9078i 1.36952i 0.728767 + 0.684762i \(0.240094\pi\)
−0.728767 + 0.684762i \(0.759906\pi\)
\(614\) 0 0
\(615\) 17.6703 + 19.1953i 0.712534 + 0.774028i
\(616\) 0 0
\(617\) 23.7015i 0.954186i 0.878853 + 0.477093i \(0.158310\pi\)
−0.878853 + 0.477093i \(0.841690\pi\)
\(618\) 0 0
\(619\) 17.5275 0.704491 0.352246 0.935908i \(-0.385418\pi\)
0.352246 + 0.935908i \(0.385418\pi\)
\(620\) 0 0
\(621\) −21.3763 −0.857803
\(622\) 0 0
\(623\) 1.43548i 0.0575113i
\(624\) 0 0
\(625\) −24.6589 4.11550i −0.986357 0.164620i
\(626\) 0 0
\(627\) 3.89829i 0.155683i
\(628\) 0 0
\(629\) −12.0738 −0.481413
\(630\) 0 0
\(631\) 13.9892 0.556902 0.278451 0.960450i \(-0.410179\pi\)
0.278451 + 0.960450i \(0.410179\pi\)
\(632\) 0 0
\(633\) 37.3998i 1.48651i
\(634\) 0 0
\(635\) 11.7287 + 12.7409i 0.465440 + 0.505609i
\(636\) 0 0
\(637\) 2.74160i 0.108626i
\(638\) 0 0
\(639\) −29.3381 −1.16060
\(640\) 0 0
\(641\) 38.7939 1.53227 0.766133 0.642682i \(-0.222178\pi\)
0.766133 + 0.642682i \(0.222178\pi\)
\(642\) 0 0
\(643\) 40.9729i 1.61581i −0.589310 0.807907i \(-0.700600\pi\)
0.589310 0.807907i \(-0.299400\pi\)
\(644\) 0 0
\(645\) 28.3175 26.0678i 1.11500 1.02642i
\(646\) 0 0
\(647\) 7.17647i 0.282136i −0.990000 0.141068i \(-0.954946\pi\)
0.990000 0.141068i \(-0.0450536\pi\)
\(648\) 0 0
\(649\) 8.60594 0.337813
\(650\) 0 0
\(651\) −20.8655 −0.817785
\(652\) 0 0
\(653\) 21.6869i 0.848672i −0.905505 0.424336i \(-0.860508\pi\)
0.905505 0.424336i \(-0.139492\pi\)
\(654\) 0 0
\(655\) −7.81817 + 7.19704i −0.305481 + 0.281211i
\(656\) 0 0
\(657\) 3.90809i 0.152469i
\(658\) 0 0
\(659\) 5.56012 0.216592 0.108296 0.994119i \(-0.465461\pi\)
0.108296 + 0.994119i \(0.465461\pi\)
\(660\) 0 0
\(661\) −35.4543 −1.37901 −0.689507 0.724279i \(-0.742173\pi\)
−0.689507 + 0.724279i \(0.742173\pi\)
\(662\) 0 0
\(663\) 41.8470i 1.62520i
\(664\) 0 0
\(665\) −1.95404 2.12268i −0.0757745 0.0823141i
\(666\) 0 0
\(667\) 69.8883i 2.70609i
\(668\) 0 0
\(669\) 20.6442 0.798149
\(670\) 0 0
\(671\) −9.07073 −0.350172
\(672\) 0 0
\(673\) 28.8018i 1.11023i 0.831775 + 0.555114i \(0.187325\pi\)
−0.831775 + 0.555114i \(0.812675\pi\)
\(674\) 0 0
\(675\) −12.8038 1.06112i −0.492817 0.0408424i
\(676\) 0 0
\(677\) 4.41481i 0.169675i 0.996395 + 0.0848375i \(0.0270371\pi\)
−0.996395 + 0.0848375i \(0.972963\pi\)
\(678\) 0 0
\(679\) −9.69375 −0.372012
\(680\) 0 0
\(681\) 31.4601 1.20555
\(682\) 0 0
\(683\) 29.9092i 1.14444i 0.820099 + 0.572221i \(0.193918\pi\)
−0.820099 + 0.572221i \(0.806082\pi\)
\(684\) 0 0
\(685\) −27.7145 30.1063i −1.05892 1.15030i
\(686\) 0 0
\(687\) 19.3056i 0.736555i
\(688\) 0 0
\(689\) −16.8183 −0.640726
\(690\) 0 0
\(691\) 2.79869 0.106467 0.0532337 0.998582i \(-0.483047\pi\)
0.0532337 + 0.998582i \(0.483047\pi\)
\(692\) 0 0
\(693\) 2.51680i 0.0956053i
\(694\) 0 0
\(695\) 31.1539 28.6788i 1.18174 1.08785i
\(696\) 0 0
\(697\) 36.8655i 1.39638i
\(698\) 0 0
\(699\) −32.4648 −1.22793
\(700\) 0 0
\(701\) −45.3081 −1.71126 −0.855632 0.517584i \(-0.826832\pi\)
−0.855632 + 0.517584i \(0.826832\pi\)
\(702\) 0 0
\(703\) 2.24327i 0.0846066i
\(704\) 0 0
\(705\) −12.6131 + 11.6110i −0.475036 + 0.437296i
\(706\) 0 0
\(707\) 8.25067i 0.310298i
\(708\) 0 0
\(709\) −11.2038 −0.420768 −0.210384 0.977619i \(-0.567471\pi\)
−0.210384 + 0.977619i \(0.567471\pi\)
\(710\) 0 0
\(711\) −9.98102 −0.374318
\(712\) 0 0
\(713\) 78.9756i 2.95766i
\(714\) 0 0
\(715\) −5.70730 6.19986i −0.213441 0.231862i
\(716\) 0 0
\(717\) 55.0639i 2.05640i
\(718\) 0 0
\(719\) −22.1695 −0.826782 −0.413391 0.910554i \(-0.635656\pi\)
−0.413391 + 0.910554i \(0.635656\pi\)
\(720\) 0 0
\(721\) 13.1501 0.489735
\(722\) 0 0
\(723\) 7.31858i 0.272181i
\(724\) 0 0
\(725\) 3.46924 41.8609i 0.128844 1.55468i
\(726\) 0 0
\(727\) 17.4515i 0.647241i −0.946187 0.323620i \(-0.895100\pi\)
0.946187 0.323620i \(-0.104900\pi\)
\(728\) 0 0
\(729\) 3.45447 0.127943
\(730\) 0 0
\(731\) 54.3853 2.01151
\(732\) 0 0
\(733\) 26.0171i 0.960962i 0.877005 + 0.480481i \(0.159538\pi\)
−0.877005 + 0.480481i \(0.840462\pi\)
\(734\) 0 0
\(735\) 3.32864 + 3.61591i 0.122779 + 0.133375i
\(736\) 0 0
\(737\) 2.28440i 0.0841471i
\(738\) 0 0
\(739\) −2.81093 −0.103402 −0.0517008 0.998663i \(-0.516464\pi\)
−0.0517008 + 0.998663i \(0.516464\pi\)
\(740\) 0 0
\(741\) −7.77504 −0.285623
\(742\) 0 0
\(743\) 22.8466i 0.838159i 0.907950 + 0.419080i \(0.137647\pi\)
−0.907950 + 0.419080i \(0.862353\pi\)
\(744\) 0 0
\(745\) −16.6414 + 15.3193i −0.609693 + 0.561255i
\(746\) 0 0
\(747\) 4.66200i 0.170574i
\(748\) 0 0
\(749\) 0.153454 0.00560707
\(750\) 0 0
\(751\) −51.7651 −1.88893 −0.944467 0.328607i \(-0.893421\pi\)
−0.944467 + 0.328607i \(0.893421\pi\)
\(752\) 0 0
\(753\) 21.7406i 0.792271i
\(754\) 0 0
\(755\) −0.933870 + 0.859677i −0.0339870 + 0.0312868i
\(756\) 0 0
\(757\) 8.13016i 0.295496i 0.989025 + 0.147748i \(0.0472024\pi\)
−0.989025 + 0.147748i \(0.952798\pi\)
\(758\) 0 0
\(759\) 25.1345 0.912324
\(760\) 0 0
\(761\) 31.2494 1.13279 0.566395 0.824134i \(-0.308338\pi\)
0.566395 + 0.824134i \(0.308338\pi\)
\(762\) 0 0
\(763\) 8.23741i 0.298214i
\(764\) 0 0
\(765\) 19.2561 + 20.9180i 0.696206 + 0.756291i
\(766\) 0 0
\(767\) 17.1643i 0.619769i
\(768\) 0 0
\(769\) −28.7711 −1.03751 −0.518757 0.854922i \(-0.673605\pi\)
−0.518757 + 0.854922i \(0.673605\pi\)
\(770\) 0 0
\(771\) 29.9176 1.07746
\(772\) 0 0
\(773\) 15.7175i 0.565318i 0.959220 + 0.282659i \(0.0912165\pi\)
−0.959220 + 0.282659i \(0.908783\pi\)
\(774\) 0 0
\(775\) −3.92033 + 47.3040i −0.140822 + 1.69921i
\(776\) 0 0
\(777\) 3.82133i 0.137089i
\(778\) 0 0
\(779\) 6.84950 0.245409
\(780\) 0 0
\(781\) −22.0260 −0.788151
\(782\) 0 0
\(783\) 21.5864i 0.771434i
\(784\) 0 0
\(785\) −4.35464 4.73046i −0.155424 0.168838i
\(786\) 0 0
\(787\) 28.8516i 1.02845i 0.857656 + 0.514224i \(0.171920\pi\)
−0.857656 + 0.514224i \(0.828080\pi\)
\(788\) 0 0
\(789\) 9.04561 0.322032
\(790\) 0 0
\(791\) −11.0532 −0.393005
\(792\) 0 0
\(793\) 18.0914i 0.642443i
\(794\) 0 0
\(795\) 22.1817 20.4195i 0.786705 0.724204i
\(796\) 0 0
\(797\) 5.81776i 0.206076i −0.994677 0.103038i \(-0.967144\pi\)
0.994677 0.103038i \(-0.0328563\pi\)
\(798\) 0 0
\(799\) −24.2241 −0.856987
\(800\) 0 0
\(801\) 2.62827 0.0928655
\(802\) 0 0
\(803\) 2.93404i 0.103540i
\(804\) 0 0
\(805\) 13.6862 12.5988i 0.482374 0.444050i
\(806\) 0 0
\(807\) 23.6079i 0.831039i
\(808\) 0 0
\(809\) −26.5157 −0.932242 −0.466121 0.884721i \(-0.654349\pi\)
−0.466121 + 0.884721i \(0.654349\pi\)
\(810\) 0 0
\(811\) −55.5069 −1.94911 −0.974556 0.224144i \(-0.928041\pi\)
−0.974556 + 0.224144i \(0.928041\pi\)
\(812\) 0 0
\(813\) 71.9688i 2.52406i
\(814\) 0 0
\(815\) 15.4794 + 16.8153i 0.542220 + 0.589016i
\(816\) 0 0
\(817\) 10.1046i 0.353516i
\(818\) 0 0
\(819\) 5.01969 0.175402
\(820\) 0 0
\(821\) −44.1325 −1.54024 −0.770118 0.637902i \(-0.779803\pi\)
−0.770118 + 0.637902i \(0.779803\pi\)
\(822\) 0 0
\(823\) 19.1816i 0.668629i 0.942461 + 0.334315i \(0.108505\pi\)
−0.942461 + 0.334315i \(0.891495\pi\)
\(824\) 0 0
\(825\) 15.0548 + 1.24767i 0.524141 + 0.0434383i
\(826\) 0 0
\(827\) 1.36085i 0.0473214i −0.999720 0.0236607i \(-0.992468\pi\)
0.999720 0.0236607i \(-0.00753214\pi\)
\(828\) 0 0
\(829\) −7.04654 −0.244737 −0.122368 0.992485i \(-0.539049\pi\)
−0.122368 + 0.992485i \(0.539049\pi\)
\(830\) 0 0
\(831\) 15.2234 0.528095
\(832\) 0 0
\(833\) 6.94455i 0.240615i
\(834\) 0 0
\(835\) 29.9362 + 32.5198i 1.03598 + 1.12539i
\(836\) 0 0
\(837\) 24.3932i 0.843151i
\(838\) 0 0
\(839\) 14.4808 0.499934 0.249967 0.968254i \(-0.419580\pi\)
0.249967 + 0.968254i \(0.419580\pi\)
\(840\) 0 0
\(841\) 41.5750 1.43362
\(842\) 0 0
\(843\) 5.74122i 0.197738i
\(844\) 0 0
\(845\) 9.02132 8.30461i 0.310343 0.285687i
\(846\) 0 0
\(847\) 9.11048i 0.313040i
\(848\) 0 0
\(849\) −15.3850 −0.528011
\(850\) 0 0
\(851\) −14.4637 −0.495808
\(852\) 0 0
\(853\) 13.3025i 0.455470i −0.973723 0.227735i \(-0.926868\pi\)
0.973723 0.227735i \(-0.0731319\pi\)
\(854\) 0 0
\(855\) 3.88650 3.57773i 0.132915 0.122356i
\(856\) 0 0
\(857\) 36.0508i 1.23147i 0.787953 + 0.615736i \(0.211141\pi\)
−0.787953 + 0.615736i \(0.788859\pi\)
\(858\) 0 0
\(859\) 6.42934 0.219366 0.109683 0.993967i \(-0.465016\pi\)
0.109683 + 0.993967i \(0.465016\pi\)
\(860\) 0 0
\(861\) −11.6679 −0.397640
\(862\) 0 0
\(863\) 2.28639i 0.0778295i −0.999243 0.0389148i \(-0.987610\pi\)
0.999243 0.0389148i \(-0.0123901\pi\)
\(864\) 0 0
\(865\) −32.9058 35.7457i −1.11883 1.21539i
\(866\) 0 0
\(867\) 68.6347i 2.33096i
\(868\) 0 0
\(869\) −7.49337 −0.254195
\(870\) 0 0
\(871\) 4.55619 0.154380
\(872\) 0 0
\(873\) 17.7486i 0.600700i
\(874\) 0 0
\(875\) 8.82299 6.86694i 0.298272 0.232145i
\(876\) 0 0
\(877\) 28.7188i 0.969764i 0.874579 + 0.484882i \(0.161138\pi\)
−0.874579 + 0.484882i \(0.838862\pi\)
\(878\) 0 0
\(879\) 32.3315 1.09051
\(880\) 0 0
\(881\) −36.4536 −1.22815 −0.614077 0.789246i \(-0.710472\pi\)
−0.614077 + 0.789246i \(0.710472\pi\)
\(882\) 0 0
\(883\) 22.6608i 0.762597i 0.924452 + 0.381298i \(0.124523\pi\)
−0.924452 + 0.381298i \(0.875477\pi\)
\(884\) 0 0
\(885\) 20.8396 + 22.6382i 0.700516 + 0.760973i
\(886\) 0 0
\(887\) 13.7308i 0.461035i −0.973068 0.230517i \(-0.925958\pi\)
0.973068 0.230517i \(-0.0740418\pi\)
\(888\) 0 0
\(889\) −7.74460 −0.259746
\(890\) 0 0
\(891\) 15.3137 0.513027
\(892\) 0 0
\(893\) 4.50076i 0.150612i
\(894\) 0 0
\(895\) 34.8129 32.0472i 1.16367 1.07122i
\(896\) 0 0
\(897\) 50.1301i 1.67380i
\(898\) 0 0
\(899\) −79.7516 −2.65986
\(900\) 0 0
\(901\) 42.6012 1.41925
\(902\) 0 0
\(903\) 17.2128i 0.572808i
\(904\) 0 0
\(905\) 19.4778 17.9303i 0.647464 0.596025i
\(906\) 0 0
\(907\) 48.7472i 1.61863i 0.587378 + 0.809313i \(0.300160\pi\)
−0.587378 + 0.809313i \(0.699840\pi\)
\(908\) 0 0
\(909\) −15.1064 −0.501049
\(910\) 0 0
\(911\) 54.1839 1.79519 0.897596 0.440820i \(-0.145312\pi\)
0.897596 + 0.440820i \(0.145312\pi\)
\(912\) 0 0
\(913\) 3.50006i 0.115835i
\(914\) 0 0
\(915\) −21.9651 23.8608i −0.726145 0.788814i
\(916\) 0 0
\(917\) 4.75228i 0.156934i
\(918\) 0 0
\(919\) 29.3450 0.968003 0.484002 0.875067i \(-0.339183\pi\)
0.484002 + 0.875067i \(0.339183\pi\)
\(920\) 0 0
\(921\) −71.5577 −2.35790
\(922\) 0 0
\(923\) 43.9303i 1.44598i
\(924\) 0 0
\(925\) −8.66329 0.717972i −0.284847 0.0236068i
\(926\) 0 0
\(927\) 24.0770i 0.790791i
\(928\) 0 0
\(929\) −36.9346 −1.21179 −0.605893 0.795546i \(-0.707184\pi\)
−0.605893 + 0.795546i \(0.707184\pi\)
\(930\) 0 0
\(931\) 1.29028 0.0422871
\(932\) 0 0
\(933\) 71.2275i 2.33188i
\(934\) 0 0
\(935\) 14.4568 + 15.7044i 0.472787 + 0.513590i
\(936\) 0 0
\(937\) 19.3625i 0.632544i −0.948668 0.316272i \(-0.897569\pi\)
0.948668 0.316272i \(-0.102431\pi\)
\(938\) 0 0
\(939\) −46.6726 −1.52310
\(940\) 0 0
\(941\) −13.6807 −0.445979 −0.222990 0.974821i \(-0.571582\pi\)
−0.222990 + 0.974821i \(0.571582\pi\)
\(942\) 0 0
\(943\) 44.1627i 1.43813i
\(944\) 0 0
\(945\) 4.22724 3.89140i 0.137512 0.126587i
\(946\) 0 0
\(947\) 12.0479i 0.391504i −0.980653 0.195752i \(-0.937285\pi\)
0.980653 0.195752i \(-0.0627147\pi\)
\(948\) 0 0
\(949\) −5.85188 −0.189960
\(950\) 0 0
\(951\) 72.9379 2.36517
\(952\) 0 0
\(953\) 34.6708i 1.12310i 0.827443 + 0.561549i \(0.189794\pi\)
−0.827443 + 0.561549i \(0.810206\pi\)
\(954\) 0 0
\(955\) 2.99526 2.75730i 0.0969244 0.0892241i
\(956\) 0 0
\(957\) 25.3815i 0.820466i
\(958\) 0 0
\(959\) 18.3002 0.590943
\(960\) 0 0
\(961\) 59.1214 1.90714
\(962\) 0 0
\(963\) 0.280964i 0.00905393i
\(964\) 0 0
\(965\) −5.49393 5.96808i −0.176856 0.192119i
\(966\) 0 0
\(967\) 27.6483i 0.889111i 0.895751 + 0.444555i \(0.146638\pi\)
−0.895751 + 0.444555i \(0.853362\pi\)
\(968\) 0 0
\(969\) 19.6944 0.632675
\(970\) 0 0
\(971\) 50.6217 1.62453 0.812264 0.583290i \(-0.198235\pi\)
0.812264 + 0.583290i \(0.198235\pi\)
\(972\) 0 0
\(973\) 18.9370i 0.607091i
\(974\) 0 0
\(975\) 2.48845 30.0264i 0.0796941 0.961615i
\(976\) 0 0
\(977\) 27.3458i 0.874869i −0.899250 0.437435i \(-0.855887\pi\)
0.899250 0.437435i \(-0.144113\pi\)
\(978\) 0 0
\(979\) 1.97321 0.0630640
\(980\) 0 0
\(981\) −15.0822 −0.481536
\(982\) 0 0
\(983\) 32.6694i 1.04199i −0.853559 0.520996i \(-0.825561\pi\)
0.853559 0.520996i \(-0.174439\pi\)
\(984\) 0 0
\(985\) 9.83445 + 10.6832i 0.313352 + 0.340395i
\(986\) 0 0
\(987\) 7.66688i 0.244040i
\(988\) 0 0
\(989\) 65.1503 2.07166
\(990\) 0 0
\(991\) 4.85330 0.154170 0.0770850 0.997025i \(-0.475439\pi\)
0.0770850 + 0.997025i \(0.475439\pi\)
\(992\) 0 0
\(993\) 18.4316i 0.584909i
\(994\) 0 0
\(995\) 7.71808 7.10490i 0.244680 0.225240i
\(996\) 0 0
\(997\) 41.2053i 1.30498i 0.757796 + 0.652492i \(0.226276\pi\)
−0.757796 + 0.652492i \(0.773724\pi\)
\(998\) 0 0
\(999\) −4.46738 −0.141342
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1120.2.g.b.449.2 10
4.3 odd 2 1120.2.g.c.449.9 yes 10
5.2 odd 4 5600.2.a.bw.1.1 5
5.3 odd 4 5600.2.a.bu.1.5 5
5.4 even 2 inner 1120.2.g.b.449.9 yes 10
8.3 odd 2 2240.2.g.n.449.2 10
8.5 even 2 2240.2.g.o.449.9 10
20.3 even 4 5600.2.a.bx.1.1 5
20.7 even 4 5600.2.a.bv.1.5 5
20.19 odd 2 1120.2.g.c.449.2 yes 10
40.19 odd 2 2240.2.g.n.449.9 10
40.29 even 2 2240.2.g.o.449.2 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1120.2.g.b.449.2 10 1.1 even 1 trivial
1120.2.g.b.449.9 yes 10 5.4 even 2 inner
1120.2.g.c.449.2 yes 10 20.19 odd 2
1120.2.g.c.449.9 yes 10 4.3 odd 2
2240.2.g.n.449.2 10 8.3 odd 2
2240.2.g.n.449.9 10 40.19 odd 2
2240.2.g.o.449.2 10 40.29 even 2
2240.2.g.o.449.9 10 8.5 even 2
5600.2.a.bu.1.5 5 5.3 odd 4
5600.2.a.bv.1.5 5 20.7 even 4
5600.2.a.bw.1.1 5 5.2 odd 4
5600.2.a.bx.1.1 5 20.3 even 4