[N,k,chi] = [1120,4,Mod(1,1120)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1120, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1120.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 , β 4 1,\beta_1,\beta_2,\beta_3,\beta_4 1 , β 1 , β 2 , β 3 , β 4 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 5 − 99 x 3 − 98 x 2 + 924 x + 168 x^{5} - 99x^{3} - 98x^{2} + 924x + 168 x 5 − 9 9 x 3 − 9 8 x 2 + 9 2 4 x + 1 6 8
x^5 - 99*x^3 - 98*x^2 + 924*x + 168
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( − ν 4 + 4 ν 3 + 83 ν 2 − 198 ν − 348 ) / 18 ( -\nu^{4} + 4\nu^{3} + 83\nu^{2} - 198\nu - 348 ) / 18 ( − ν 4 + 4 ν 3 + 8 3 ν 2 − 1 9 8 ν − 3 4 8 ) / 1 8
(-v^4 + 4*v^3 + 83*v^2 - 198*v - 348) / 18
β 3 \beta_{3} β 3 = = =
ν 2 − ν − 40 \nu^{2} - \nu - 40 ν 2 − ν − 4 0
v^2 - v - 40
β 4 \beta_{4} β 4 = = =
( ν 4 + 2 ν 3 − 95 ν 2 − 252 ν + 456 ) / 18 ( \nu^{4} + 2\nu^{3} - 95\nu^{2} - 252\nu + 456 ) / 18 ( ν 4 + 2 ν 3 − 9 5 ν 2 − 2 5 2 ν + 4 5 6 ) / 1 8
(v^4 + 2*v^3 - 95*v^2 - 252*v + 456) / 18
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 3 + β 1 + 40 \beta_{3} + \beta _1 + 40 β 3 + β 1 + 4 0
b3 + b1 + 40
ν 3 \nu^{3} ν 3 = = =
3 β 4 + 2 β 3 + 3 β 2 + 77 β 1 + 62 3\beta_{4} + 2\beta_{3} + 3\beta_{2} + 77\beta _1 + 62 3 β 4 + 2 β 3 + 3 β 2 + 7 7 β 1 + 6 2
3*b4 + 2*b3 + 3*b2 + 77*b1 + 62
ν 4 \nu^{4} ν 4 = = =
12 β 4 + 91 β 3 − 6 β 2 + 193 β 1 + 3220 12\beta_{4} + 91\beta_{3} - 6\beta_{2} + 193\beta _1 + 3220 1 2 β 4 + 9 1 β 3 − 6 β 2 + 1 9 3 β 1 + 3 2 2 0
12*b4 + 91*b3 - 6*b2 + 193*b1 + 3220
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
5 5 5
+ 1 +1 + 1
7 7 7
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( Γ 0 ( 1120 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(1120)) S 4 n e w ( Γ 0 ( 1 1 2 0 ) ) :
T 3 5 + 5 T 3 4 − 89 T 3 3 − 385 T 3 2 + 436 T 3 + 896 T_{3}^{5} + 5T_{3}^{4} - 89T_{3}^{3} - 385T_{3}^{2} + 436T_{3} + 896 T 3 5 + 5 T 3 4 − 8 9 T 3 3 − 3 8 5 T 3 2 + 4 3 6 T 3 + 8 9 6
T3^5 + 5*T3^4 - 89*T3^3 - 385*T3^2 + 436*T3 + 896
T 11 5 + 35 T 11 4 − 3817 T 11 3 − 112999 T 11 2 + 3316452 T 11 + 65668224 T_{11}^{5} + 35T_{11}^{4} - 3817T_{11}^{3} - 112999T_{11}^{2} + 3316452T_{11} + 65668224 T 1 1 5 + 3 5 T 1 1 4 − 3 8 1 7 T 1 1 3 − 1 1 2 9 9 9 T 1 1 2 + 3 3 1 6 4 5 2 T 1 1 + 6 5 6 6 8 2 2 4
T11^5 + 35*T11^4 - 3817*T11^3 - 112999*T11^2 + 3316452*T11 + 65668224
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 5 T^{5} T 5
T^5
3 3 3
T 5 + 5 T 4 + ⋯ + 896 T^{5} + 5 T^{4} + \cdots + 896 T 5 + 5 T 4 + ⋯ + 8 9 6
T^5 + 5*T^4 - 89*T^3 - 385*T^2 + 436*T + 896
5 5 5
( T + 5 ) 5 (T + 5)^{5} ( T + 5 ) 5
(T + 5)^5
7 7 7
( T − 7 ) 5 (T - 7)^{5} ( T − 7 ) 5
(T - 7)^5
11 11 1 1
T 5 + 35 T 4 + ⋯ + 65668224 T^{5} + 35 T^{4} + \cdots + 65668224 T 5 + 3 5 T 4 + ⋯ + 6 5 6 6 8 2 2 4
T^5 + 35*T^4 - 3817*T^3 - 112999*T^2 + 3316452*T + 65668224
13 13 1 3
T 5 + 39 T 4 + ⋯ − 32631244 T^{5} + 39 T^{4} + \cdots - 32631244 T 5 + 3 9 T 4 + ⋯ − 3 2 6 3 1 2 4 4
T^5 + 39*T^4 - 4413*T^3 - 80439*T^2 + 5876992*T - 32631244
17 17 1 7
T 5 + 29 T 4 + ⋯ − 60507308 T^{5} + 29 T^{4} + \cdots - 60507308 T 5 + 2 9 T 4 + ⋯ − 6 0 5 0 7 3 0 8
T^5 + 29*T^4 - 8537*T^3 + 224251*T^2 + 1310220*T - 60507308
19 19 1 9
T 5 + ⋯ + 1070681600 T^{5} + \cdots + 1070681600 T 5 + ⋯ + 1 0 7 0 6 8 1 6 0 0
T^5 + 84*T^4 - 9504*T^3 - 838944*T^2 + 6856960*T + 1070681600
23 23 2 3
T 5 − 128 T 4 + ⋯ + 542924800 T^{5} - 128 T^{4} + \cdots + 542924800 T 5 − 1 2 8 T 4 + ⋯ + 5 4 2 9 2 4 8 0 0
T^5 - 128*T^4 - 9600*T^3 + 698976*T^2 + 45369600*T + 542924800
29 29 2 9
T 5 + ⋯ − 44854213484 T^{5} + \cdots - 44854213484 T 5 + ⋯ − 4 4 8 5 4 2 1 3 4 8 4
T^5 - 73*T^4 - 97541*T^3 + 8945161*T^2 + 1227589080*T - 44854213484
31 31 3 1
T 5 + ⋯ − 118773702656 T^{5} + \cdots - 118773702656 T 5 + ⋯ − 1 1 8 7 7 3 7 0 2 6 5 6
T^5 - 318*T^4 - 34180*T^3 + 14201208*T^2 + 71736256*T - 118773702656
37 37 3 7
T 5 + 236 T 4 + ⋯ − 290827392 T^{5} + 236 T^{4} + \cdots - 290827392 T 5 + 2 3 6 T 4 + ⋯ − 2 9 0 8 2 7 3 9 2
T^5 + 236*T^4 - 39172*T^3 - 235312*T^2 + 93327936*T - 290827392
41 41 4 1
T 5 + ⋯ + 20074389792 T^{5} + \cdots + 20074389792 T 5 + ⋯ + 2 0 0 7 4 3 8 9 7 9 2
T^5 - 262*T^4 - 57768*T^3 + 21626512*T^2 - 1673277168*T + 20074389792
43 43 4 3
T 5 + ⋯ + 521644284928 T^{5} + \cdots + 521644284928 T 5 + ⋯ + 5 2 1 6 4 4 2 8 4 9 2 8
T^5 + 372*T^4 - 181824*T^3 - 66541536*T^2 + 1441656448*T + 521644284928
47 47 4 7
T 5 + ⋯ + 260469006336 T^{5} + \cdots + 260469006336 T 5 + ⋯ + 2 6 0 4 6 9 0 0 6 3 3 6
T^5 - 603*T^4 - 124141*T^3 + 103403111*T^2 - 13214553792*T + 260469006336
53 53 5 3
T 5 + ⋯ − 17732875299072 T^{5} + \cdots - 17732875299072 T 5 + ⋯ − 1 7 7 3 2 8 7 5 2 9 9 0 7 2
T^5 - 20*T^4 - 542100*T^3 + 75663632*T^2 + 76481886528*T - 17732875299072
59 59 5 9
T 5 + ⋯ − 8244134363136 T^{5} + \cdots - 8244134363136 T 5 + ⋯ − 8 2 4 4 1 3 4 3 6 3 1 3 6
T^5 + 960*T^4 - 110544*T^3 - 318192896*T^2 - 95197605888*T - 8244134363136
61 61 6 1
T 5 + ⋯ − 5296911597024 T^{5} + \cdots - 5296911597024 T 5 + ⋯ − 5 2 9 6 9 1 1 5 9 7 0 2 4
T^5 - 246*T^4 - 397384*T^3 + 70241552*T^2 + 35852908944*T - 5296911597024
67 67 6 7
T 5 + ⋯ − 5266967707648 T^{5} + \cdots - 5266967707648 T 5 + ⋯ − 5 2 6 6 9 6 7 7 0 7 6 4 8
T^5 + 1360*T^4 + 298720*T^3 - 235028224*T^2 - 94082639616*T - 5266967707648
71 71 7 1
T 5 + ⋯ − 8718444505088 T^{5} + \cdots - 8718444505088 T 5 + ⋯ − 8 7 1 8 4 4 4 5 0 5 0 8 8
T^5 + 696*T^4 - 921440*T^3 - 356425472*T^2 + 250917305600*T - 8718444505088
73 73 7 3
T 5 + ⋯ − 7501067288992 T^{5} + \cdots - 7501067288992 T 5 + ⋯ − 7 5 0 1 0 6 7 2 8 8 9 9 2
T^5 - 1122*T^4 - 701464*T^3 + 576742896*T^2 + 245037860944*T - 7501067288992
79 79 7 9
T 5 + ⋯ + 224450049813600 T^{5} + \cdots + 224450049813600 T 5 + ⋯ + 2 2 4 4 5 0 0 4 9 8 1 3 6 0 0
T^5 + 93*T^4 - 1898865*T^3 - 325854793*T^2 + 800472387900*T + 224450049813600
83 83 8 3
T 5 + ⋯ − 31391683936256 T^{5} + \cdots - 31391683936256 T 5 + ⋯ − 3 1 3 9 1 6 8 3 9 3 6 2 5 6
T^5 - 1412*T^4 + 49440*T^3 + 444854528*T^2 - 34001974272*T - 31391683936256
89 89 8 9
T 5 + ⋯ − 161865734411232 T^{5} + \cdots - 161865734411232 T 5 + ⋯ − 1 6 1 8 6 5 7 3 4 4 1 1 2 3 2
T^5 - 2854*T^4 + 1779320*T^3 + 781023824*T^2 - 541280996208*T - 161865734411232
97 97 9 7
T 5 + ⋯ + 47617191825876 T^{5} + \cdots + 47617191825876 T 5 + ⋯ + 4 7 6 1 7 1 9 1 8 2 5 8 7 6
T^5 - 1739*T^4 - 790137*T^3 + 2261555123*T^2 - 792236207652*T + 47617191825876
show more
show less