Properties

Label 1120.4.a.r
Level 11201120
Weight 44
Character orbit 1120.a
Self dual yes
Analytic conductor 66.08266.082
Analytic rank 00
Dimension 55
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1120,4,Mod(1,1120)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1120, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1120.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 1120=2557 1120 = 2^{5} \cdot 5 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1120.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 66.082139206466.0821392064
Analytic rank: 00
Dimension: 55
Coefficient field: Q[x]/(x5)\mathbb{Q}[x]/(x^{5} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x599x398x2+924x+168 x^{5} - 99x^{3} - 98x^{2} + 924x + 168 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 25 2^{5}
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β3,β41,\beta_1,\beta_2,\beta_3,\beta_4 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β11)q35q5+7q7+(β3β1+14)q9+(β4+β2+β17)q11+(β3+β2β17)q13+(5β1+5)q15++(29β433β3+748)q99+O(q100) q + (\beta_1 - 1) q^{3} - 5 q^{5} + 7 q^{7} + (\beta_{3} - \beta_1 + 14) q^{9} + ( - \beta_{4} + \beta_{2} + \beta_1 - 7) q^{11} + (\beta_{3} + \beta_{2} - \beta_1 - 7) q^{13} + ( - 5 \beta_1 + 5) q^{15}+ \cdots + (29 \beta_{4} - 33 \beta_{3} + \cdots - 748) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 5q5q325q5+35q7+68q935q1139q13+25q1529q1784q1935q21+128q23+125q2535q27+73q29+318q31+205q33175q35+3734q99+O(q100) 5 q - 5 q^{3} - 25 q^{5} + 35 q^{7} + 68 q^{9} - 35 q^{11} - 39 q^{13} + 25 q^{15} - 29 q^{17} - 84 q^{19} - 35 q^{21} + 128 q^{23} + 125 q^{25} - 35 q^{27} + 73 q^{29} + 318 q^{31} + 205 q^{33} - 175 q^{35}+ \cdots - 3734 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x599x398x2+924x+168 x^{5} - 99x^{3} - 98x^{2} + 924x + 168 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν4+4ν3+83ν2198ν348)/18 ( -\nu^{4} + 4\nu^{3} + 83\nu^{2} - 198\nu - 348 ) / 18 Copy content Toggle raw display
β3\beta_{3}== ν2ν40 \nu^{2} - \nu - 40 Copy content Toggle raw display
β4\beta_{4}== (ν4+2ν395ν2252ν+456)/18 ( \nu^{4} + 2\nu^{3} - 95\nu^{2} - 252\nu + 456 ) / 18 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β3+β1+40 \beta_{3} + \beta _1 + 40 Copy content Toggle raw display
ν3\nu^{3}== 3β4+2β3+3β2+77β1+62 3\beta_{4} + 2\beta_{3} + 3\beta_{2} + 77\beta _1 + 62 Copy content Toggle raw display
ν4\nu^{4}== 12β4+91β36β2+193β1+3220 12\beta_{4} + 91\beta_{3} - 6\beta_{2} + 193\beta _1 + 3220 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−8.70695
−3.87339
−0.179033
2.79130
9.96807
0 −9.70695 0 −5.00000 0 7.00000 0 67.2248 0
1.2 0 −4.87339 0 −5.00000 0 7.00000 0 −3.25002 0
1.3 0 −1.17903 0 −5.00000 0 7.00000 0 −25.6099 0
1.4 0 1.79130 0 −5.00000 0 7.00000 0 −23.7912 0
1.5 0 8.96807 0 −5.00000 0 7.00000 0 53.4263 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
55 +1 +1
77 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1120.4.a.r 5
4.b odd 2 1 1120.4.a.s yes 5
8.b even 2 1 2240.4.a.co 5
8.d odd 2 1 2240.4.a.cn 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1120.4.a.r 5 1.a even 1 1 trivial
1120.4.a.s yes 5 4.b odd 2 1
2240.4.a.cn 5 8.d odd 2 1
2240.4.a.co 5 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(1120))S_{4}^{\mathrm{new}}(\Gamma_0(1120)):

T35+5T3489T33385T32+436T3+896 T_{3}^{5} + 5T_{3}^{4} - 89T_{3}^{3} - 385T_{3}^{2} + 436T_{3} + 896 Copy content Toggle raw display
T115+35T1143817T113112999T112+3316452T11+65668224 T_{11}^{5} + 35T_{11}^{4} - 3817T_{11}^{3} - 112999T_{11}^{2} + 3316452T_{11} + 65668224 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T5 T^{5} Copy content Toggle raw display
33 T5+5T4++896 T^{5} + 5 T^{4} + \cdots + 896 Copy content Toggle raw display
55 (T+5)5 (T + 5)^{5} Copy content Toggle raw display
77 (T7)5 (T - 7)^{5} Copy content Toggle raw display
1111 T5+35T4++65668224 T^{5} + 35 T^{4} + \cdots + 65668224 Copy content Toggle raw display
1313 T5+39T4+32631244 T^{5} + 39 T^{4} + \cdots - 32631244 Copy content Toggle raw display
1717 T5+29T4+60507308 T^{5} + 29 T^{4} + \cdots - 60507308 Copy content Toggle raw display
1919 T5++1070681600 T^{5} + \cdots + 1070681600 Copy content Toggle raw display
2323 T5128T4++542924800 T^{5} - 128 T^{4} + \cdots + 542924800 Copy content Toggle raw display
2929 T5+44854213484 T^{5} + \cdots - 44854213484 Copy content Toggle raw display
3131 T5+118773702656 T^{5} + \cdots - 118773702656 Copy content Toggle raw display
3737 T5+236T4+290827392 T^{5} + 236 T^{4} + \cdots - 290827392 Copy content Toggle raw display
4141 T5++20074389792 T^{5} + \cdots + 20074389792 Copy content Toggle raw display
4343 T5++521644284928 T^{5} + \cdots + 521644284928 Copy content Toggle raw display
4747 T5++260469006336 T^{5} + \cdots + 260469006336 Copy content Toggle raw display
5353 T5+17732875299072 T^{5} + \cdots - 17732875299072 Copy content Toggle raw display
5959 T5+8244134363136 T^{5} + \cdots - 8244134363136 Copy content Toggle raw display
6161 T5+5296911597024 T^{5} + \cdots - 5296911597024 Copy content Toggle raw display
6767 T5+5266967707648 T^{5} + \cdots - 5266967707648 Copy content Toggle raw display
7171 T5+8718444505088 T^{5} + \cdots - 8718444505088 Copy content Toggle raw display
7373 T5+7501067288992 T^{5} + \cdots - 7501067288992 Copy content Toggle raw display
7979 T5++224450049813600 T^{5} + \cdots + 224450049813600 Copy content Toggle raw display
8383 T5+31391683936256 T^{5} + \cdots - 31391683936256 Copy content Toggle raw display
8989 T5+161865734411232 T^{5} + \cdots - 161865734411232 Copy content Toggle raw display
9797 T5++47617191825876 T^{5} + \cdots + 47617191825876 Copy content Toggle raw display
show more
show less