Properties

Label 1120.4.a.r
Level $1120$
Weight $4$
Character orbit 1120.a
Self dual yes
Analytic conductor $66.082$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1120,4,Mod(1,1120)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1120, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1120.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1120 = 2^{5} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1120.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.0821392064\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 99x^{3} - 98x^{2} + 924x + 168 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{3} - 5 q^{5} + 7 q^{7} + (\beta_{3} - \beta_1 + 14) q^{9} + ( - \beta_{4} + \beta_{2} + \beta_1 - 7) q^{11} + (\beta_{3} + \beta_{2} - \beta_1 - 7) q^{13} + ( - 5 \beta_1 + 5) q^{15}+ \cdots + (29 \beta_{4} - 33 \beta_{3} + \cdots - 748) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 5 q^{3} - 25 q^{5} + 35 q^{7} + 68 q^{9} - 35 q^{11} - 39 q^{13} + 25 q^{15} - 29 q^{17} - 84 q^{19} - 35 q^{21} + 128 q^{23} + 125 q^{25} - 35 q^{27} + 73 q^{29} + 318 q^{31} + 205 q^{33} - 175 q^{35}+ \cdots - 3734 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 99x^{3} - 98x^{2} + 924x + 168 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{4} + 4\nu^{3} + 83\nu^{2} - 198\nu - 348 ) / 18 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} - \nu - 40 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} + 2\nu^{3} - 95\nu^{2} - 252\nu + 456 ) / 18 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta _1 + 40 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{4} + 2\beta_{3} + 3\beta_{2} + 77\beta _1 + 62 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 12\beta_{4} + 91\beta_{3} - 6\beta_{2} + 193\beta _1 + 3220 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−8.70695
−3.87339
−0.179033
2.79130
9.96807
0 −9.70695 0 −5.00000 0 7.00000 0 67.2248 0
1.2 0 −4.87339 0 −5.00000 0 7.00000 0 −3.25002 0
1.3 0 −1.17903 0 −5.00000 0 7.00000 0 −25.6099 0
1.4 0 1.79130 0 −5.00000 0 7.00000 0 −23.7912 0
1.5 0 8.96807 0 −5.00000 0 7.00000 0 53.4263 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1120.4.a.r 5
4.b odd 2 1 1120.4.a.s yes 5
8.b even 2 1 2240.4.a.co 5
8.d odd 2 1 2240.4.a.cn 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1120.4.a.r 5 1.a even 1 1 trivial
1120.4.a.s yes 5 4.b odd 2 1
2240.4.a.cn 5 8.d odd 2 1
2240.4.a.co 5 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1120))\):

\( T_{3}^{5} + 5T_{3}^{4} - 89T_{3}^{3} - 385T_{3}^{2} + 436T_{3} + 896 \) Copy content Toggle raw display
\( T_{11}^{5} + 35T_{11}^{4} - 3817T_{11}^{3} - 112999T_{11}^{2} + 3316452T_{11} + 65668224 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} \) Copy content Toggle raw display
$3$ \( T^{5} + 5 T^{4} + \cdots + 896 \) Copy content Toggle raw display
$5$ \( (T + 5)^{5} \) Copy content Toggle raw display
$7$ \( (T - 7)^{5} \) Copy content Toggle raw display
$11$ \( T^{5} + 35 T^{4} + \cdots + 65668224 \) Copy content Toggle raw display
$13$ \( T^{5} + 39 T^{4} + \cdots - 32631244 \) Copy content Toggle raw display
$17$ \( T^{5} + 29 T^{4} + \cdots - 60507308 \) Copy content Toggle raw display
$19$ \( T^{5} + \cdots + 1070681600 \) Copy content Toggle raw display
$23$ \( T^{5} - 128 T^{4} + \cdots + 542924800 \) Copy content Toggle raw display
$29$ \( T^{5} + \cdots - 44854213484 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots - 118773702656 \) Copy content Toggle raw display
$37$ \( T^{5} + 236 T^{4} + \cdots - 290827392 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots + 20074389792 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots + 521644284928 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots + 260469006336 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots - 17732875299072 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots - 8244134363136 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots - 5296911597024 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots - 5266967707648 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots - 8718444505088 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots - 7501067288992 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots + 224450049813600 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots - 31391683936256 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots - 161865734411232 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots + 47617191825876 \) Copy content Toggle raw display
show more
show less