Properties

Label 1127.1.f.f
Level $1127$
Weight $1$
Character orbit 1127.f
Analytic conductor $0.562$
Analytic rank $0$
Dimension $8$
Projective image $D_{12}$
CM discriminant -23
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1127,1,Mod(275,1127)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1127, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1127.275");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1127 = 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1127.f (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.562446269237\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Projective image: \(D_{12}\)
Projective field: Galois closure of 12.0.259729655939201.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + (\zeta_{24}^{10} + \zeta_{24}^{6}) q^{2} + (\zeta_{24}^{11} - \zeta_{24}^{9}) q^{3} + ( - \zeta_{24}^{8} - \zeta_{24}^{4} - 1) q^{4} + ( - \zeta_{24}^{9} + \cdots + \zeta_{24}^{3}) q^{6} + ( - \zeta_{24}^{10} + \zeta_{24}^{2}) q^{8}+ \cdots + (\zeta_{24}^{11} - \zeta_{24}^{9} + \cdots + \zeta_{24}) q^{94}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} - 4 q^{9} - 4 q^{16} + 12 q^{18} + 4 q^{23} - 4 q^{25} - 8 q^{29} + 16 q^{36} + 4 q^{39} - 8 q^{64} + 8 q^{71} + 12 q^{72} - 8 q^{81} - 16 q^{92} - 4 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1127\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\)
\(\chi(n)\) \(\zeta_{24}^{8}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
275.1
0.965926 + 0.258819i
−0.965926 0.258819i
0.258819 0.965926i
−0.258819 + 0.965926i
0.965926 0.258819i
−0.965926 + 0.258819i
0.258819 + 0.965926i
−0.258819 0.965926i
−0.866025 + 1.50000i −0.258819 0.448288i −1.00000 1.73205i 0 0.896575 0 1.73205 0.366025 0.633975i 0
275.2 −0.866025 + 1.50000i 0.258819 + 0.448288i −1.00000 1.73205i 0 −0.896575 0 1.73205 0.366025 0.633975i 0
275.3 0.866025 1.50000i −0.965926 1.67303i −1.00000 1.73205i 0 −3.34607 0 −1.73205 −1.36603 + 2.36603i 0
275.4 0.866025 1.50000i 0.965926 + 1.67303i −1.00000 1.73205i 0 3.34607 0 −1.73205 −1.36603 + 2.36603i 0
459.1 −0.866025 1.50000i −0.258819 + 0.448288i −1.00000 + 1.73205i 0 0.896575 0 1.73205 0.366025 + 0.633975i 0
459.2 −0.866025 1.50000i 0.258819 0.448288i −1.00000 + 1.73205i 0 −0.896575 0 1.73205 0.366025 + 0.633975i 0
459.3 0.866025 + 1.50000i −0.965926 + 1.67303i −1.00000 + 1.73205i 0 −3.34607 0 −1.73205 −1.36603 2.36603i 0
459.4 0.866025 + 1.50000i 0.965926 1.67303i −1.00000 + 1.73205i 0 3.34607 0 −1.73205 −1.36603 2.36603i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 275.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.b odd 2 1 CM by \(\Q(\sqrt{-23}) \)
7.b odd 2 1 inner
7.c even 3 1 inner
7.d odd 6 1 inner
161.c even 2 1 inner
161.f odd 6 1 inner
161.g even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1127.1.f.f 8
7.b odd 2 1 inner 1127.1.f.f 8
7.c even 3 1 1127.1.d.e 4
7.c even 3 1 inner 1127.1.f.f 8
7.d odd 6 1 1127.1.d.e 4
7.d odd 6 1 inner 1127.1.f.f 8
23.b odd 2 1 CM 1127.1.f.f 8
161.c even 2 1 inner 1127.1.f.f 8
161.f odd 6 1 1127.1.d.e 4
161.f odd 6 1 inner 1127.1.f.f 8
161.g even 6 1 1127.1.d.e 4
161.g even 6 1 inner 1127.1.f.f 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1127.1.d.e 4 7.c even 3 1
1127.1.d.e 4 7.d odd 6 1
1127.1.d.e 4 161.f odd 6 1
1127.1.d.e 4 161.g even 6 1
1127.1.f.f 8 1.a even 1 1 trivial
1127.1.f.f 8 7.b odd 2 1 inner
1127.1.f.f 8 7.c even 3 1 inner
1127.1.f.f 8 7.d odd 6 1 inner
1127.1.f.f 8 23.b odd 2 1 CM
1127.1.f.f 8 161.c even 2 1 inner
1127.1.f.f 8 161.f odd 6 1 inner
1127.1.f.f 8 161.g even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(1127, [\chi])\):

\( T_{2}^{4} + 3T_{2}^{2} + 9 \) Copy content Toggle raw display
\( T_{3}^{8} + 4T_{3}^{6} + 15T_{3}^{4} + 4T_{3}^{2} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} + 3 T^{2} + 9)^{2} \) Copy content Toggle raw display
$3$ \( T^{8} + 4 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( T^{8} \) Copy content Toggle raw display
$11$ \( T^{8} \) Copy content Toggle raw display
$13$ \( (T^{4} - 4 T^{2} + 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{8} \) Copy content Toggle raw display
$19$ \( T^{8} \) Copy content Toggle raw display
$23$ \( (T^{2} - T + 1)^{4} \) Copy content Toggle raw display
$29$ \( (T + 1)^{8} \) Copy content Toggle raw display
$31$ \( T^{8} + 4 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$37$ \( T^{8} \) Copy content Toggle raw display
$41$ \( (T^{4} - 4 T^{2} + 1)^{2} \) Copy content Toggle raw display
$43$ \( T^{8} \) Copy content Toggle raw display
$47$ \( T^{8} + 4 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$53$ \( T^{8} \) Copy content Toggle raw display
$59$ \( (T^{4} + 2 T^{2} + 4)^{2} \) Copy content Toggle raw display
$61$ \( T^{8} \) Copy content Toggle raw display
$67$ \( T^{8} \) Copy content Toggle raw display
$71$ \( (T - 1)^{8} \) Copy content Toggle raw display
$73$ \( T^{8} + 4 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$79$ \( T^{8} \) Copy content Toggle raw display
$83$ \( T^{8} \) Copy content Toggle raw display
$89$ \( T^{8} \) Copy content Toggle raw display
$97$ \( T^{8} \) Copy content Toggle raw display
show more
show less