Properties

Label 1127.1.x.a.373.1
Level $1127$
Weight $1$
Character 1127.373
Analytic conductor $0.562$
Analytic rank $0$
Dimension $20$
Projective image $D_{22}$
CM discriminant -7
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1127,1,Mod(30,1127)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1127, base_ring=CyclotomicField(66))
 
chi = DirichletCharacter(H, H._module([22, 57]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1127.30");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1127 = 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1127.x (of order \(66\), degree \(20\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.562446269237\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\Q(\zeta_{33})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{19} + x^{17} - x^{16} + x^{14} - x^{13} + x^{11} - x^{10} + x^{9} - x^{7} + x^{6} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{22}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{22} - \cdots)\)

Embedding invariants

Embedding label 373.1
Root \(0.0475819 - 0.998867i\) of defining polynomial
Character \(\chi\) \(=\) 1127.373
Dual form 1127.1.x.a.704.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.21769 + 1.16106i) q^{2} +(0.0871144 - 1.82876i) q^{4} +(0.915415 + 1.05645i) q^{8} +(-0.928368 - 0.371662i) q^{9} +(-1.04305 + 1.09392i) q^{11} +(-0.518749 - 0.0495345i) q^{16} +(1.56199 - 0.625325i) q^{18} -2.54311i q^{22} +(-0.786053 - 0.618159i) q^{23} +(0.235759 + 0.971812i) q^{25} +(-1.61435 + 1.03748i) q^{29} +(-0.409619 + 0.322128i) q^{32} +(-0.760554 + 1.66538i) q^{36} +(-0.676152 + 1.68895i) q^{37} +(-1.49611 - 1.29639i) q^{43} +(1.90965 + 2.00279i) q^{44} +(1.67489 - 0.159932i) q^{46} +(-1.41542 - 0.909632i) q^{50} +(-0.458985 - 0.326842i) q^{53} +(0.761197 - 3.13770i) q^{58} +(0.198939 - 1.38365i) q^{64} +(-1.05080 + 0.254922i) q^{67} +(1.25667 + 0.368991i) q^{71} +(-0.457201 - 1.32100i) q^{72} +(-1.13763 - 2.84166i) q^{74} +(0.458985 - 0.326842i) q^{79} +(0.723734 + 0.690079i) q^{81} +(3.32699 - 0.158484i) q^{86} +(-2.11050 - 0.100535i) q^{88} +(-1.19894 + 1.38365i) q^{92} +(1.37491 - 0.627899i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 2 q^{2} + 3 q^{4} + 8 q^{8} - q^{9} - 6 q^{16} + 2 q^{18} + q^{23} + q^{25} - 4 q^{29} + 5 q^{32} - 16 q^{36} + 11 q^{44} - 2 q^{46} - 18 q^{50} + 7 q^{58} - 14 q^{64} - 4 q^{71} + 4 q^{72} - 11 q^{74}+ \cdots - 6 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1127\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{22}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.21769 + 1.16106i −1.21769 + 1.16106i −0.235759 + 0.971812i \(0.575758\pi\)
−0.981929 + 0.189251i \(0.939394\pi\)
\(3\) 0 0 0.189251 0.981929i \(-0.439394\pi\)
−0.189251 + 0.981929i \(0.560606\pi\)
\(4\) 0.0871144 1.82876i 0.0871144 1.82876i
\(5\) 0 0 −0.786053 0.618159i \(-0.787879\pi\)
0.786053 + 0.618159i \(0.212121\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0.915415 + 1.05645i 0.915415 + 1.05645i
\(9\) −0.928368 0.371662i −0.928368 0.371662i
\(10\) 0 0
\(11\) −1.04305 + 1.09392i −1.04305 + 1.09392i −0.0475819 + 0.998867i \(0.515152\pi\)
−0.995472 + 0.0950560i \(0.969697\pi\)
\(12\) 0 0
\(13\) 0 0 −0.909632 0.415415i \(-0.863636\pi\)
0.909632 + 0.415415i \(0.136364\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.518749 0.0495345i −0.518749 0.0495345i
\(17\) 0 0 −0.888835 0.458227i \(-0.848485\pi\)
0.888835 + 0.458227i \(0.151515\pi\)
\(18\) 1.56199 0.625325i 1.56199 0.625325i
\(19\) 0 0 0.888835 0.458227i \(-0.151515\pi\)
−0.888835 + 0.458227i \(0.848485\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 2.54311i 2.54311i
\(23\) −0.786053 0.618159i −0.786053 0.618159i
\(24\) 0 0
\(25\) 0.235759 + 0.971812i 0.235759 + 0.971812i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.61435 + 1.03748i −1.61435 + 1.03748i −0.654861 + 0.755750i \(0.727273\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(30\) 0 0
\(31\) 0 0 −0.945001 0.327068i \(-0.893939\pi\)
0.945001 + 0.327068i \(0.106061\pi\)
\(32\) −0.409619 + 0.322128i −0.409619 + 0.322128i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −0.760554 + 1.66538i −0.760554 + 1.66538i
\(37\) −0.676152 + 1.68895i −0.676152 + 1.68895i 0.0475819 + 0.998867i \(0.484848\pi\)
−0.723734 + 0.690079i \(0.757576\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 −0.989821 0.142315i \(-0.954545\pi\)
0.989821 + 0.142315i \(0.0454545\pi\)
\(42\) 0 0
\(43\) −1.49611 1.29639i −1.49611 1.29639i −0.841254 0.540641i \(-0.818182\pi\)
−0.654861 0.755750i \(-0.727273\pi\)
\(44\) 1.90965 + 2.00279i 1.90965 + 2.00279i
\(45\) 0 0
\(46\) 1.67489 0.159932i 1.67489 0.159932i
\(47\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −1.41542 0.909632i −1.41542 0.909632i
\(51\) 0 0
\(52\) 0 0
\(53\) −0.458985 0.326842i −0.458985 0.326842i 0.327068 0.945001i \(-0.393939\pi\)
−0.786053 + 0.618159i \(0.787879\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0.761197 3.13770i 0.761197 3.13770i
\(59\) 0 0 −0.0950560 0.995472i \(-0.530303\pi\)
0.0950560 + 0.995472i \(0.469697\pi\)
\(60\) 0 0
\(61\) 0 0 0.981929 0.189251i \(-0.0606061\pi\)
−0.981929 + 0.189251i \(0.939394\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0.198939 1.38365i 0.198939 1.38365i
\(65\) 0 0
\(66\) 0 0
\(67\) −1.05080 + 0.254922i −1.05080 + 0.254922i −0.723734 0.690079i \(-0.757576\pi\)
−0.327068 + 0.945001i \(0.606061\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.25667 + 0.368991i 1.25667 + 0.368991i 0.841254 0.540641i \(-0.181818\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(72\) −0.457201 1.32100i −0.457201 1.32100i
\(73\) 0 0 −0.998867 0.0475819i \(-0.984848\pi\)
0.998867 + 0.0475819i \(0.0151515\pi\)
\(74\) −1.13763 2.84166i −1.13763 2.84166i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0.458985 0.326842i 0.458985 0.326842i −0.327068 0.945001i \(-0.606061\pi\)
0.786053 + 0.618159i \(0.212121\pi\)
\(80\) 0 0
\(81\) 0.723734 + 0.690079i 0.723734 + 0.690079i
\(82\) 0 0
\(83\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 3.32699 0.158484i 3.32699 0.158484i
\(87\) 0 0
\(88\) −2.11050 0.100535i −2.11050 0.100535i
\(89\) 0 0 −0.327068 0.945001i \(-0.606061\pi\)
0.327068 + 0.945001i \(0.393939\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −1.19894 + 1.38365i −1.19894 + 1.38365i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(98\) 0 0
\(99\) 1.37491 0.627899i 1.37491 0.627899i
\(100\) 1.79774 0.346487i 1.79774 0.346487i
\(101\) 0 0 −0.618159 0.786053i \(-0.712121\pi\)
0.618159 + 0.786053i \(0.287879\pi\)
\(102\) 0 0
\(103\) 0 0 0.235759 0.971812i \(-0.424242\pi\)
−0.235759 + 0.971812i \(0.575758\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0.938384 0.134919i 0.938384 0.134919i
\(107\) −0.344298 1.78639i −0.344298 1.78639i −0.580057 0.814576i \(-0.696970\pi\)
0.235759 0.971812i \(-0.424242\pi\)
\(108\) 0 0
\(109\) 0.495472 0.961081i 0.495472 0.961081i −0.500000 0.866025i \(-0.666667\pi\)
0.995472 0.0950560i \(-0.0303030\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.557730 + 1.89945i −0.557730 + 1.89945i −0.142315 + 0.989821i \(0.545455\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1.75667 + 3.04264i 1.75667 + 3.04264i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −0.0611251 1.28317i −0.0611251 1.28317i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −0.273100 + 0.0801894i −0.273100 + 0.0801894i −0.415415 0.909632i \(-0.636364\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(128\) 1.06199 + 1.49135i 1.06199 + 1.49135i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.0950560 0.995472i \(-0.469697\pi\)
−0.0950560 + 0.995472i \(0.530303\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0.983568 1.53046i 0.983568 1.53046i
\(135\) 0 0
\(136\) 0 0
\(137\) 0.936417 0.540641i 0.936417 0.540641i 0.0475819 0.998867i \(-0.484848\pi\)
0.888835 + 0.458227i \(0.151515\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −1.95865 + 1.00976i −1.95865 + 1.00976i
\(143\) 0 0
\(144\) 0.463180 + 0.238786i 0.463180 + 0.238786i
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 3.02977 + 1.38365i 3.02977 + 1.38365i
\(149\) 1.92384 + 0.466718i 1.92384 + 0.466718i 0.995472 + 0.0950560i \(0.0303030\pi\)
0.928368 + 0.371662i \(0.121212\pi\)
\(150\) 0 0
\(151\) −1.91030 + 0.182411i −1.91030 + 0.182411i −0.981929 0.189251i \(-0.939394\pi\)
−0.928368 + 0.371662i \(0.878788\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.0475819 0.998867i \(-0.484848\pi\)
−0.0475819 + 0.998867i \(0.515152\pi\)
\(158\) −0.179417 + 0.930902i −0.179417 + 0.930902i
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −1.68251 −1.68251
\(163\) −1.38884 + 1.32425i −1.38884 + 1.32425i −0.500000 + 0.866025i \(0.666667\pi\)
−0.888835 + 0.458227i \(0.848485\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.540641 0.841254i \(-0.681818\pi\)
0.540641 + 0.841254i \(0.318182\pi\)
\(168\) 0 0
\(169\) 0.654861 + 0.755750i 0.654861 + 0.755750i
\(170\) 0 0
\(171\) 0 0
\(172\) −2.50112 + 2.62309i −2.50112 + 2.62309i
\(173\) 0 0 −0.971812 0.235759i \(-0.924242\pi\)
0.971812 + 0.235759i \(0.0757576\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0.595270 0.515804i 0.595270 0.515804i
\(177\) 0 0
\(178\) 0 0
\(179\) 0.264241 0.105786i 0.264241 0.105786i −0.235759 0.971812i \(-0.575758\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(180\) 0 0
\(181\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −0.0665137 1.39629i −0.0665137 1.39629i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −0.172932 + 1.81103i −0.172932 + 1.81103i 0.327068 + 0.945001i \(0.393939\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(192\) 0 0
\(193\) 1.02951 0.809616i 1.02951 0.809616i 0.0475819 0.998867i \(-0.484848\pi\)
0.981929 + 0.189251i \(0.0606061\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −0.118239 + 0.258908i −0.118239 + 0.258908i −0.959493 0.281733i \(-0.909091\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(198\) −0.945178 + 2.36094i −0.945178 + 2.36094i
\(199\) 0 0 0.327068 0.945001i \(-0.393939\pi\)
−0.327068 + 0.945001i \(0.606061\pi\)
\(200\) −0.810848 + 1.13868i −0.810848 + 1.13868i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 1.10181 + 0.708089i 1.10181 + 0.708089i 0.959493 0.281733i \(-0.0909091\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(212\) −0.637698 + 0.810899i −0.637698 + 0.810899i
\(213\) 0 0
\(214\) 2.49336 + 1.77551i 2.49336 + 1.77551i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0.512546 + 1.74557i 0.512546 + 1.74557i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.909632 0.415415i \(-0.136364\pi\)
−0.909632 + 0.415415i \(0.863636\pi\)
\(224\) 0 0
\(225\) 0.142315 0.989821i 0.142315 0.989821i
\(226\) −1.52624 2.96050i −1.52624 2.96050i
\(227\) 0 0 −0.981929 0.189251i \(-0.939394\pi\)
0.981929 + 0.189251i \(0.0606061\pi\)
\(228\) 0 0
\(229\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −2.57385 0.755750i −2.57385 0.755750i
\(233\) −0.271738 0.785135i −0.271738 0.785135i −0.995472 0.0950560i \(-0.969697\pi\)
0.723734 0.690079i \(-0.242424\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0.118239 + 0.822373i 0.118239 + 0.822373i 0.959493 + 0.281733i \(0.0909091\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(240\) 0 0
\(241\) 0 0 −0.723734 0.690079i \(-0.757576\pi\)
0.723734 + 0.690079i \(0.242424\pi\)
\(242\) 1.56428 + 1.49154i 1.56428 + 1.49154i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(252\) 0 0
\(253\) 1.49611 0.215109i 1.49611 0.215109i
\(254\) 0.239446 0.414732i 0.239446 0.414732i
\(255\) 0 0
\(256\) −1.65210 0.318417i −1.65210 0.318417i
\(257\) 0 0 −0.458227 0.888835i \(-0.651515\pi\)
0.458227 + 0.888835i \(0.348485\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 1.88431 0.363170i 1.88431 0.363170i
\(262\) 0 0
\(263\) −0.102782 1.07639i −0.102782 1.07639i −0.888835 0.458227i \(-0.848485\pi\)
0.786053 0.618159i \(-0.212121\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0.374650 + 1.94387i 0.374650 + 1.94387i
\(269\) 0 0 −0.814576 0.580057i \(-0.803030\pi\)
0.814576 + 0.580057i \(0.196970\pi\)
\(270\) 0 0
\(271\) 0 0 0.618159 0.786053i \(-0.287879\pi\)
−0.618159 + 0.786053i \(0.712121\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −0.512546 + 1.74557i −0.512546 + 1.74557i
\(275\) −1.30900 0.755750i −1.30900 0.755750i
\(276\) 0 0
\(277\) 0.415415 + 0.719520i 0.415415 + 0.719520i 0.995472 0.0950560i \(-0.0303030\pi\)
−0.580057 + 0.814576i \(0.696970\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −0.557730 0.0801894i −0.557730 0.0801894i −0.142315 0.989821i \(-0.545455\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(282\) 0 0
\(283\) 0 0 0.580057 0.814576i \(-0.303030\pi\)
−0.580057 + 0.814576i \(0.696970\pi\)
\(284\) 0.784269 2.26600i 0.784269 2.26600i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0.500000 0.146813i 0.500000 0.146813i
\(289\) 0.580057 + 0.814576i 0.580057 + 0.814576i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −2.40324 + 0.831769i −2.40324 + 0.831769i
\(297\) 0 0
\(298\) −2.88453 + 1.66538i −2.88453 + 1.66538i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 2.11435 2.44009i 2.11435 2.44009i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 0.755750 0.654861i \(-0.227273\pi\)
−0.755750 + 0.654861i \(0.772727\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.690079 0.723734i \(-0.257576\pi\)
−0.690079 + 0.723734i \(0.742424\pi\)
\(312\) 0 0
\(313\) 0 0 −0.928368 0.371662i \(-0.878788\pi\)
0.928368 + 0.371662i \(0.121212\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −0.557730 0.867845i −0.557730 0.867845i
\(317\) 0.653077 + 0.513585i 0.653077 + 0.513585i 0.888835 0.458227i \(-0.151515\pi\)
−0.235759 + 0.971812i \(0.575758\pi\)
\(318\) 0 0
\(319\) 0.548932 2.84813i 0.548932 2.84813i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 1.32503 1.26342i 1.32503 1.26342i
\(325\) 0 0
\(326\) 0.153628 3.22505i 0.153628 3.22505i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0.264241 + 0.105786i 0.264241 + 0.105786i 0.500000 0.866025i \(-0.333333\pi\)
−0.235759 + 0.971812i \(0.575758\pi\)
\(332\) 0 0
\(333\) 1.25544 1.31666i 1.25544 1.31666i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −1.14231 + 0.989821i −1.14231 + 0.989821i −0.142315 + 0.989821i \(0.545455\pi\)
−1.00000 \(\pi\)
\(338\) −1.67489 0.159932i −1.67489 0.159932i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 2.76730i 2.76730i
\(345\) 0 0
\(346\) 0 0
\(347\) −0.195876 0.807410i −0.195876 0.807410i −0.981929 0.189251i \(-0.939394\pi\)
0.786053 0.618159i \(-0.212121\pi\)
\(348\) 0 0
\(349\) 0 0 0.540641 0.841254i \(-0.318182\pi\)
−0.540641 + 0.841254i \(0.681818\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0.0748714 0.784089i 0.0748714 0.784089i
\(353\) 0 0 −0.945001 0.327068i \(-0.893939\pi\)
0.945001 + 0.327068i \(0.106061\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −0.198939 + 0.435615i −0.198939 + 0.435615i
\(359\) 0.735759 1.83784i 0.735759 1.83784i 0.235759 0.971812i \(-0.424242\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(360\) 0 0
\(361\) 0.580057 0.814576i 0.580057 0.814576i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(368\) 0.377144 + 0.359606i 0.377144 + 0.359606i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −0.934347 + 1.18812i −0.934347 + 1.18812i 0.0475819 + 0.998867i \(0.484848\pi\)
−0.981929 + 0.189251i \(0.939394\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −0.158746 0.540641i −0.158746 0.540641i 0.841254 0.540641i \(-0.181818\pi\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −1.89214 2.40605i −1.89214 2.40605i
\(383\) 0 0 0.981929 0.189251i \(-0.0606061\pi\)
−0.981929 + 0.189251i \(0.939394\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −0.313607 + 2.18119i −0.313607 + 2.18119i
\(387\) 0.907125 + 1.75958i 0.907125 + 1.75958i
\(388\) 0 0
\(389\) −1.46889 + 0.356349i −1.46889 + 0.356349i −0.888835 0.458227i \(-0.848485\pi\)
−0.580057 + 0.814576i \(0.696970\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) −0.156630 0.452553i −0.156630 0.452553i
\(395\) 0 0
\(396\) −1.02850 2.56907i −1.02850 2.56907i
\(397\) 0 0 0.998867 0.0475819i \(-0.0151515\pi\)
−0.998867 + 0.0475819i \(0.984848\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −0.0741615 0.515804i −0.0741615 0.515804i
\(401\) 1.48193 1.05528i 1.48193 1.05528i 0.500000 0.866025i \(-0.333333\pi\)
0.981929 0.189251i \(-0.0606061\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.14231 2.50132i −1.14231 2.50132i
\(408\) 0 0
\(409\) 0 0 −0.371662 0.928368i \(-0.621212\pi\)
0.371662 + 0.928368i \(0.378788\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) −1.61435 0.474017i −1.61435 0.474017i
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(420\) 0 0
\(421\) −1.80075 + 0.822373i −1.80075 + 0.822373i −0.841254 + 0.540641i \(0.818182\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(422\) −2.16379 + 0.417037i −2.16379 + 0.417037i
\(423\) 0 0
\(424\) −0.0748714 0.784089i −0.0748714 0.784089i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −3.29686 + 0.474017i −3.29686 + 0.474017i
\(429\) 0 0
\(430\) 0 0
\(431\) −0.907125 + 1.75958i −0.907125 + 1.75958i −0.327068 + 0.945001i \(0.606061\pi\)
−0.580057 + 0.814576i \(0.696970\pi\)
\(432\) 0 0
\(433\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −1.71442 0.989821i −1.71442 0.989821i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.690079 0.723734i \(-0.742424\pi\)
0.690079 + 0.723734i \(0.257576\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −0.0623191 1.30824i −0.0623191 1.30824i −0.786053 0.618159i \(-0.787879\pi\)
0.723734 0.690079i \(-0.242424\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0.797176 0.234072i 0.797176 0.234072i 0.142315 0.989821i \(-0.454545\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(450\) 0.975950 + 1.37053i 0.975950 + 1.37053i
\(451\) 0 0
\(452\) 3.42505 + 1.18542i 3.42505 + 1.18542i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0.532475 0.184291i 0.532475 0.184291i −0.0475819 0.998867i \(-0.515152\pi\)
0.580057 + 0.814576i \(0.303030\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 1.10181 1.27155i 1.10181 1.27155i 0.142315 0.989821i \(-0.454545\pi\)
0.959493 0.281733i \(-0.0909091\pi\)
\(464\) 0.888835 0.458227i 0.888835 0.458227i
\(465\) 0 0
\(466\) 1.24248 + 0.640544i 1.24248 + 0.640544i
\(467\) 0 0 −0.995472 0.0950560i \(-0.969697\pi\)
0.995472 + 0.0950560i \(0.0303030\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.97868 0.284429i 2.97868 0.284429i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0.304632 + 0.474017i 0.304632 + 0.474017i
\(478\) −1.09881 0.864110i −1.09881 0.864110i
\(479\) 0 0 0.0475819 0.998867i \(-0.484848\pi\)
−0.0475819 + 0.998867i \(0.515152\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −2.35194 −2.35194
\(485\) 0 0
\(486\) 0 0
\(487\) −0.0135432 + 0.284307i −0.0135432 + 0.284307i 0.981929 + 0.189251i \(0.0606061\pi\)
−0.995472 + 0.0950560i \(0.969697\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −1.10181 1.27155i −1.10181 1.27155i −0.959493 0.281733i \(-0.909091\pi\)
−0.142315 0.989821i \(-0.545455\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 1.67489 + 0.159932i 1.67489 + 0.159932i 0.888835 0.458227i \(-0.151515\pi\)
0.786053 + 0.618159i \(0.212121\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −1.57205 + 1.99902i −1.57205 + 1.99902i
\(507\) 0 0
\(508\) 0.122856 + 0.506419i 0.122856 + 0.506419i
\(509\) 0 0 0.945001 0.327068i \(-0.106061\pi\)
−0.945001 + 0.327068i \(0.893939\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.841254 0.540641i 0.841254 0.540641i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 0.327068 0.945001i \(-0.393939\pi\)
−0.327068 + 0.945001i \(0.606061\pi\)
\(522\) −1.87283 + 2.63003i −1.87283 + 2.63003i
\(523\) 0 0 −0.0475819 0.998867i \(-0.515152\pi\)
0.0475819 + 0.998867i \(0.484848\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 1.37491 + 1.19136i 1.37491 + 1.19136i
\(527\) 0 0
\(528\) 0 0
\(529\) 0.235759 + 0.971812i 0.235759 + 0.971812i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) −1.23123 0.876756i −1.23123 0.876756i
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −0.396666 + 1.63508i −0.396666 + 1.63508i 0.327068 + 0.945001i \(0.393939\pi\)
−0.723734 + 0.690079i \(0.757576\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −0.186393 + 1.29639i −0.186393 + 1.29639i 0.654861 + 0.755750i \(0.272727\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(548\) −0.907125 1.75958i −0.907125 1.75958i
\(549\) 0 0
\(550\) 2.47142 0.599560i 2.47142 0.599560i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −1.34125 0.393828i −1.34125 0.393828i
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 0.928368 0.371662i \(-0.121212\pi\)
−0.928368 + 0.371662i \(0.878788\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0.772246 0.549914i 0.772246 0.549914i
\(563\) 0 0 −0.723734 0.690079i \(-0.757576\pi\)
0.723734 + 0.690079i \(0.242424\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0.760554 + 1.66538i 0.760554 + 1.66538i
\(569\) −1.81720 + 0.0865641i −1.81720 + 0.0865641i −0.928368 0.371662i \(-0.878788\pi\)
−0.888835 + 0.458227i \(0.848485\pi\)
\(570\) 0 0
\(571\) −1.81720 0.0865641i −1.81720 0.0865641i −0.888835 0.458227i \(-0.848485\pi\)
−0.928368 + 0.371662i \(0.878788\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.415415 0.909632i 0.415415 0.909632i
\(576\) −0.698939 + 1.21060i −0.698939 + 1.21060i
\(577\) 0 0 0.971812 0.235759i \(-0.0757576\pi\)
−0.971812 + 0.235759i \(0.924242\pi\)
\(578\) −1.65210 0.318417i −1.65210 0.318417i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0.836286 0.161181i 0.836286 0.161181i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 −0.281733 0.959493i \(-0.590909\pi\)
0.281733 + 0.959493i \(0.409091\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0.434414 0.842646i 0.434414 0.842646i
\(593\) 0 0 0.618159 0.786053i \(-0.287879\pi\)
−0.618159 + 0.786053i \(0.712121\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 1.02111 3.47758i 1.02111 3.47758i
\(597\) 0 0
\(598\) 0 0
\(599\) 0.841254 + 1.45709i 0.841254 + 1.45709i 0.888835 + 0.458227i \(0.151515\pi\)
−0.0475819 + 0.998867i \(0.515152\pi\)
\(600\) 0 0
\(601\) 0 0 −0.755750 0.654861i \(-0.772727\pi\)
0.755750 + 0.654861i \(0.227273\pi\)
\(602\) 0 0
\(603\) 1.07028 + 0.153882i 1.07028 + 0.153882i
\(604\) 0.167171 + 3.50936i 0.167171 + 3.50936i
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.371662 0.928368i \(-0.378788\pi\)
−0.371662 + 0.928368i \(0.621212\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −1.02181 0.353653i −1.02181 0.353653i −0.235759 0.971812i \(-0.575758\pi\)
−0.786053 + 0.618159i \(0.787879\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0.584585 0.909632i 0.584585 0.909632i −0.415415 0.909632i \(-0.636364\pi\)
1.00000 \(0\)
\(618\) 0 0
\(619\) 0 0 −0.235759 0.971812i \(-0.575758\pi\)
0.235759 + 0.971812i \(0.424242\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.888835 + 0.458227i −0.888835 + 0.458227i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −1.80075 0.822373i −1.80075 0.822373i −0.959493 0.281733i \(-0.909091\pi\)
−0.841254 0.540641i \(-0.818182\pi\)
\(632\) 0.765452 + 0.185697i 0.765452 + 0.185697i
\(633\) 0 0
\(634\) −1.39155 + 0.132877i −1.39155 + 0.132877i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 2.63843 + 4.10548i 2.63843 + 4.10548i
\(639\) −1.02951 0.809616i −1.02951 0.809616i
\(640\) 0 0
\(641\) 0 0 −0.981929 0.189251i \(-0.939394\pi\)
0.981929 + 0.189251i \(0.0606061\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.189251 0.981929i \(-0.439394\pi\)
−0.189251 + 0.981929i \(0.560606\pi\)
\(648\) −0.0665137 + 1.39629i −0.0665137 + 1.39629i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 2.30075 + 2.65520i 2.30075 + 2.65520i
\(653\) −1.56199 0.625325i −1.56199 0.625325i −0.580057 0.814576i \(-0.696970\pi\)
−0.981929 + 0.189251i \(0.939394\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0.425839 0.368991i 0.425839 0.368991i −0.415415 0.909632i \(-0.636364\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(660\) 0 0
\(661\) 0 0 −0.888835 0.458227i \(-0.848485\pi\)
0.888835 + 0.458227i \(0.151515\pi\)
\(662\) −0.444587 + 0.177986i −0.444587 + 0.177986i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 3.06092i 3.06092i
\(667\) 1.91030 + 0.182411i 1.91030 + 0.182411i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 1.41542 0.909632i 1.41542 0.909632i 0.415415 0.909632i \(-0.363636\pi\)
1.00000 \(0\)
\(674\) 0.241738 2.53159i 0.241738 2.53159i
\(675\) 0 0
\(676\) 1.43913 1.13174i 1.43913 1.13174i
\(677\) 0 0 −0.580057 0.814576i \(-0.696970\pi\)
0.580057 + 0.814576i \(0.303030\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0.481929 0.676774i 0.481929 0.676774i −0.500000 0.866025i \(-0.666667\pi\)
0.981929 + 0.189251i \(0.0606061\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0.711892 + 0.746610i 0.711892 + 0.746610i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 1.17597 + 0.755750i 1.17597 + 0.755750i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −0.304632 1.03748i −0.304632 1.03748i −0.959493 0.281733i \(-0.909091\pi\)
0.654861 0.755750i \(-0.272727\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 1.30610 + 1.66084i 1.30610 + 1.66084i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0.692609 + 1.34347i 0.692609 + 1.34347i 0.928368 + 0.371662i \(0.121212\pi\)
−0.235759 + 0.971812i \(0.575758\pi\)
\(710\) 0 0
\(711\) −0.547582 + 0.132842i −0.547582 + 0.132842i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −0.170438 0.492448i −0.170438 0.492448i
\(717\) 0 0
\(718\) 1.23792 + 3.09217i 1.23792 + 3.09217i
\(719\) 0 0 0.998867 0.0475819i \(-0.0151515\pi\)
−0.998867 + 0.0475819i \(0.984848\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0.239446 + 1.66538i 0.239446 + 1.66538i
\(723\) 0 0
\(724\) 0 0
\(725\) −1.38884 1.32425i −1.38884 1.32425i
\(726\) 0 0
\(727\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(728\) 0 0
\(729\) −0.415415 0.909632i −0.415415 0.909632i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 −0.327068 0.945001i \(-0.606061\pi\)
0.327068 + 0.945001i \(0.393939\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0.521109 0.521109
\(737\) 0.817178 1.41539i 0.817178 1.41539i
\(738\) 0 0
\(739\) 1.65210 + 0.318417i 1.65210 + 0.318417i 0.928368 0.371662i \(-0.121212\pi\)
0.723734 + 0.690079i \(0.242424\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −0.983568 + 0.449181i −0.983568 + 0.449181i −0.841254 0.540641i \(-0.818182\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −0.241738 2.53159i −0.241738 2.53159i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0.106636 + 0.553283i 0.106636 + 0.553283i 0.995472 + 0.0950560i \(0.0303030\pi\)
−0.888835 + 0.458227i \(0.848485\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −0.425839 + 1.45027i −0.425839 + 1.45027i 0.415415 + 0.909632i \(0.363636\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(758\) 0.821022 + 0.474017i 0.821022 + 0.474017i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.690079 0.723734i \(-0.742424\pi\)
0.690079 + 0.723734i \(0.257576\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 3.29686 + 0.474017i 3.29686 + 0.474017i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −1.39091 1.95325i −1.39091 1.95325i
\(773\) 0 0 0.786053 0.618159i \(-0.212121\pi\)
−0.786053 + 0.618159i \(0.787879\pi\)
\(774\) −3.14757 1.08939i −3.14757 1.08939i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 1.37491 2.13940i 1.37491 2.13940i
\(779\) 0 0
\(780\) 0 0
\(781\) −1.71442 + 0.989821i −1.71442 + 0.989821i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 0.928368 0.371662i \(-0.121212\pi\)
−0.928368 + 0.371662i \(0.878788\pi\)
\(788\) 0.463180 + 0.238786i 0.463180 + 0.238786i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 1.92195 + 0.877726i 1.92195 + 0.877726i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −0.409619 0.322128i −0.409619 0.322128i
\(801\) 0 0
\(802\) −0.579284 + 3.00561i −0.579284 + 3.00561i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −0.0913090 + 1.91681i −0.0913090 + 1.91681i 0.235759 + 0.971812i \(0.424242\pi\)
−0.327068 + 0.945001i \(0.606061\pi\)
\(810\) 0 0
\(811\) 0 0 −0.540641 0.841254i \(-0.681818\pi\)
0.540641 + 0.841254i \(0.318182\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 4.29517 + 1.71953i 4.29517 + 1.71953i
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.30379 0.124497i −1.30379 0.124497i −0.580057 0.814576i \(-0.696970\pi\)
−0.723734 + 0.690079i \(0.757576\pi\)
\(822\) 0 0
\(823\) −1.78153 + 0.713215i −1.78153 + 0.713215i −0.786053 + 0.618159i \(0.787879\pi\)
−0.995472 + 0.0950560i \(0.969697\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.81926i 1.81926i 0.415415 + 0.909632i \(0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(828\) 1.62731 0.838935i 1.62731 0.838935i
\(829\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(840\) 0 0
\(841\) 1.11435 2.44009i 1.11435 2.44009i
\(842\) 1.23792 3.09217i 1.23792 3.09217i
\(843\) 0 0
\(844\) 1.39091 1.95325i 1.39091 1.95325i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0.221908 + 0.192284i 0.221908 + 0.192284i
\(849\) 0 0
\(850\) 0 0
\(851\) 1.57553 0.909632i 1.57553 0.909632i
\(852\) 0 0
\(853\) 0 0 0.281733 0.959493i \(-0.409091\pi\)
−0.281733 + 0.959493i \(0.590909\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 1.57205 1.99902i 1.57205 1.99902i
\(857\) 0 0 0.458227 0.888835i \(-0.348485\pi\)
−0.458227 + 0.888835i \(0.651515\pi\)
\(858\) 0 0
\(859\) 0 0 −0.189251 0.981929i \(-0.560606\pi\)
0.189251 + 0.981929i \(0.439394\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −0.938384 3.19584i −0.938384 3.19584i
\(863\) −0.308779 + 1.27280i −0.308779 + 1.27280i 0.580057 + 0.814576i \(0.303030\pi\)
−0.888835 + 0.458227i \(0.848485\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −0.121206 + 0.843008i −0.121206 + 0.843008i
\(870\) 0 0
\(871\) 0 0
\(872\) 1.46889 0.356349i 1.46889 0.356349i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0.428368 + 1.23769i 0.428368 + 1.23769i 0.928368 + 0.371662i \(0.121212\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(882\) 0 0
\(883\) −0.273100 1.89945i −0.273100 1.89945i −0.415415 0.909632i \(-0.636364\pi\)
0.142315 0.989821i \(-0.454545\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 1.59483 + 1.52067i 1.59483 + 1.52067i
\(887\) 0 0 0.814576 0.580057i \(-0.196970\pi\)
−0.814576 + 0.580057i \(0.803030\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −1.50979 + 0.0719200i −1.50979 + 0.0719200i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −0.698939 + 1.21060i −0.698939 + 1.21060i
\(899\) 0 0
\(900\) −1.79774 0.346487i −1.79774 0.346487i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −2.51722 + 1.14958i −2.51722 + 1.14958i
\(905\) 0 0
\(906\) 0 0
\(907\) 0.102782 + 1.07639i 0.102782 + 1.07639i 0.888835 + 0.458227i \(0.151515\pi\)
−0.786053 + 0.618159i \(0.787879\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1.07028 0.153882i 1.07028 0.153882i 0.415415 0.909632i \(-0.363636\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −0.434414 + 0.842646i −0.434414 + 0.842646i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −1.57553 0.909632i −1.57553 0.909632i −0.995472 0.0950560i \(-0.969697\pi\)
−0.580057 0.814576i \(-0.696970\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −1.80075 0.258908i −1.80075 0.258908i
\(926\) 0.134696 + 2.82762i 0.134696 + 2.82762i
\(927\) 0 0
\(928\) 0.327068 0.945001i 0.327068 0.945001i
\(929\) 0 0 0.371662 0.928368i \(-0.378788\pi\)
−0.371662 + 0.928368i \(0.621212\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −1.45949 + 0.428546i −1.45949 + 0.428546i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 −0.235759 0.971812i \(-0.575758\pi\)
0.235759 + 0.971812i \(0.424242\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) −3.29686 + 3.80478i −3.29686 + 3.80478i
\(947\) 0.738471 0.380708i 0.738471 0.380708i −0.0475819 0.998867i \(-0.515152\pi\)
0.786053 + 0.618159i \(0.212121\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1.65486 0.755750i −1.65486 0.755750i −0.654861 0.755750i \(-0.727273\pi\)
−1.00000 \(\pi\)
\(954\) −0.921310 0.223507i −0.921310 0.223507i
\(955\) 0 0
\(956\) 1.51422 0.144591i 1.51422 0.144591i
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 0.786053 + 0.618159i 0.786053 + 0.618159i
\(962\) 0 0
\(963\) −0.344298 + 1.78639i −0.344298 + 1.78639i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(968\) 1.29965 1.23921i 1.29965 1.23921i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.786053 0.618159i \(-0.787879\pi\)
0.786053 + 0.618159i \(0.212121\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −0.313607 0.361922i −0.313607 0.361922i
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 −0.723734 0.690079i \(-0.757576\pi\)
0.723734 + 0.690079i \(0.242424\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −0.817178 + 0.708089i −0.817178 + 0.708089i
\(982\) 2.81801 + 0.269088i 2.81801 + 0.269088i
\(983\) 0 0 −0.888835 0.458227i \(-0.848485\pi\)
0.888835 + 0.458227i \(0.151515\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0.374650 + 1.94387i 0.374650 + 1.94387i
\(990\) 0 0
\(991\) 0.396666 + 1.63508i 0.396666 + 1.63508i 0.723734 + 0.690079i \(0.242424\pi\)
−0.327068 + 0.945001i \(0.606061\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 −0.945001 0.327068i \(-0.893939\pi\)
0.945001 + 0.327068i \(0.106061\pi\)
\(998\) −2.22518 + 1.74990i −2.22518 + 1.74990i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1127.1.x.a.373.1 20
7.2 even 3 1127.1.o.a.442.1 10
7.3 odd 6 inner 1127.1.x.a.557.1 20
7.4 even 3 inner 1127.1.x.a.557.1 20
7.5 odd 6 1127.1.o.a.442.1 10
7.6 odd 2 CM 1127.1.x.a.373.1 20
23.14 odd 22 inner 1127.1.x.a.520.1 20
161.37 odd 66 1127.1.o.a.589.1 yes 10
161.60 odd 66 inner 1127.1.x.a.704.1 20
161.83 even 22 inner 1127.1.x.a.520.1 20
161.129 even 66 inner 1127.1.x.a.704.1 20
161.152 even 66 1127.1.o.a.589.1 yes 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1127.1.o.a.442.1 10 7.2 even 3
1127.1.o.a.442.1 10 7.5 odd 6
1127.1.o.a.589.1 yes 10 161.37 odd 66
1127.1.o.a.589.1 yes 10 161.152 even 66
1127.1.x.a.373.1 20 1.1 even 1 trivial
1127.1.x.a.373.1 20 7.6 odd 2 CM
1127.1.x.a.520.1 20 23.14 odd 22 inner
1127.1.x.a.520.1 20 161.83 even 22 inner
1127.1.x.a.557.1 20 7.3 odd 6 inner
1127.1.x.a.557.1 20 7.4 even 3 inner
1127.1.x.a.704.1 20 161.60 odd 66 inner
1127.1.x.a.704.1 20 161.129 even 66 inner