Properties

Label 1127.2.a.k
Level $1127$
Weight $2$
Character orbit 1127.a
Self dual yes
Analytic conductor $8.999$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1127,2,Mod(1,1127)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1127, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1127.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1127 = 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1127.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.99914030780\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 10x^{5} - x^{4} + 29x^{3} + 9x^{2} - 24x - 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 161)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + ( - \beta_{4} - 1) q^{3} + (\beta_{2} + 1) q^{4} + ( - \beta_{3} - 1) q^{5} + (\beta_{5} + \beta_{3} - \beta_{2} + \cdots - 1) q^{6} + (\beta_{6} - \beta_{5} + \beta_{2}) q^{8} + ( - \beta_{6} + \beta_{4} - \beta_1 + 1) q^{9}+ \cdots + ( - 7 \beta_{6} + \beta_{5} + \beta_{4} + \cdots + 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 5 q^{3} + 6 q^{4} - 4 q^{5} - 6 q^{6} - 3 q^{8} + 4 q^{9} + 2 q^{10} + 4 q^{11} - 9 q^{12} - 14 q^{13} - 3 q^{15} - 8 q^{16} - 4 q^{17} + 19 q^{18} - 9 q^{19} - 12 q^{20} - 10 q^{22} + 7 q^{23} + 4 q^{24}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - 10x^{5} - x^{4} + 29x^{3} + 9x^{2} - 24x - 11 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{5} - 7\nu^{3} + \nu^{2} + 9\nu - 1 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{6} - \nu^{5} - 8\nu^{4} + 8\nu^{3} + 15\nu^{2} - 11\nu - 8 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -\nu^{6} + \nu^{5} + 9\nu^{4} - 7\nu^{3} - 20\nu^{2} + 7\nu + 10 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( -\nu^{6} + \nu^{5} + 9\nu^{4} - 8\nu^{3} - 21\nu^{2} + 11\nu + 13 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{6} + \beta_{5} - \beta_{2} + 4\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{6} + \beta_{4} + 6\beta_{2} + 13 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -7\beta_{6} + 7\beta_{5} + \beta_{3} - 8\beta_{2} + 19\beta _1 - 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 9\beta_{6} - \beta_{5} + 9\beta_{4} + \beta_{3} + 33\beta_{2} - 2\beta _1 + 65 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.23428
2.04500
1.20307
−0.509818
−1.17057
−1.39057
−2.41138
−2.23428 −1.89313 2.99199 −2.70420 4.22978 0 −2.21639 0.583942 6.04193
1.2 −2.04500 0.886215 2.18203 1.51297 −1.81231 0 −0.372248 −2.21462 −3.09402
1.3 −1.20307 0.840182 −0.552632 −2.60628 −1.01079 0 3.07098 −2.29409 3.13552
1.4 0.509818 −0.958194 −1.74009 3.43532 −0.488505 0 −1.90676 −2.08186 1.75139
1.5 1.17057 −3.34828 −0.629767 0.135011 −3.91940 0 −3.07833 8.21099 0.158040
1.6 1.39057 1.69325 −0.0663018 −3.04157 2.35459 0 −2.87335 −0.132917 −4.22953
1.7 2.41138 −2.22004 3.81476 −0.731257 −5.35336 0 4.37609 1.92856 −1.76334
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \( -1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1127.2.a.k 7
7.b odd 2 1 1127.2.a.n 7
7.d odd 6 2 161.2.e.a 14
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
161.2.e.a 14 7.d odd 6 2
1127.2.a.k 7 1.a even 1 1 trivial
1127.2.a.n 7 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1127))\):

\( T_{2}^{7} - 10T_{2}^{5} + T_{2}^{4} + 29T_{2}^{3} - 9T_{2}^{2} - 24T_{2} + 11 \) Copy content Toggle raw display
\( T_{3}^{7} + 5T_{3}^{6} - 25T_{3}^{4} - 12T_{3}^{3} + 37T_{3}^{2} + 10T_{3} - 17 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{7} - 10 T^{5} + \cdots + 11 \) Copy content Toggle raw display
$3$ \( T^{7} + 5 T^{6} + \cdots - 17 \) Copy content Toggle raw display
$5$ \( T^{7} + 4 T^{6} + \cdots - 11 \) Copy content Toggle raw display
$7$ \( T^{7} \) Copy content Toggle raw display
$11$ \( T^{7} - 4 T^{6} + \cdots - 1487 \) Copy content Toggle raw display
$13$ \( T^{7} + 14 T^{6} + \cdots - 1521 \) Copy content Toggle raw display
$17$ \( T^{7} + 4 T^{6} + \cdots - 323 \) Copy content Toggle raw display
$19$ \( T^{7} + 9 T^{6} + \cdots - 2149 \) Copy content Toggle raw display
$23$ \( (T - 1)^{7} \) Copy content Toggle raw display
$29$ \( T^{7} + 5 T^{6} + \cdots + 3717 \) Copy content Toggle raw display
$31$ \( T^{7} + 10 T^{6} + \cdots - 9 \) Copy content Toggle raw display
$37$ \( T^{7} + 5 T^{6} + \cdots - 39481 \) Copy content Toggle raw display
$41$ \( T^{7} + 23 T^{6} + \cdots + 11957 \) Copy content Toggle raw display
$43$ \( T^{7} + 11 T^{6} + \cdots - 531 \) Copy content Toggle raw display
$47$ \( T^{7} + 4 T^{6} + \cdots - 29813 \) Copy content Toggle raw display
$53$ \( T^{7} - 2 T^{6} + \cdots - 4573 \) Copy content Toggle raw display
$59$ \( T^{7} + 7 T^{6} + \cdots + 2551 \) Copy content Toggle raw display
$61$ \( T^{7} + 12 T^{6} + \cdots - 77969 \) Copy content Toggle raw display
$67$ \( T^{7} - 2 T^{6} + \cdots - 1950239 \) Copy content Toggle raw display
$71$ \( T^{7} + 28 T^{6} + \cdots - 1877 \) Copy content Toggle raw display
$73$ \( T^{7} + 59 T^{6} + \cdots - 19683 \) Copy content Toggle raw display
$79$ \( T^{7} + 4 T^{6} + \cdots - 211 \) Copy content Toggle raw display
$83$ \( T^{7} - 9 T^{6} + \cdots - 598427 \) Copy content Toggle raw display
$89$ \( T^{7} + T^{6} + \cdots - 36871 \) Copy content Toggle raw display
$97$ \( T^{7} + 35 T^{6} + \cdots + 12863891 \) Copy content Toggle raw display
show more
show less