Properties

Label 1134.2.e.e.919.1
Level $1134$
Weight $2$
Character 1134.919
Analytic conductor $9.055$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1134,2,Mod(865,1134)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1134, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1134.865");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1134.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.05503558921\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 919.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1134.919
Dual form 1134.2.e.e.865.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +(0.500000 + 0.866025i) q^{5} +(-2.50000 + 0.866025i) q^{7} -1.00000 q^{8} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{4} +(0.500000 + 0.866025i) q^{5} +(-2.50000 + 0.866025i) q^{7} -1.00000 q^{8} +(-0.500000 - 0.866025i) q^{10} +(2.50000 - 4.33013i) q^{11} +(2.50000 - 0.866025i) q^{14} +1.00000 q^{16} +(-2.00000 - 3.46410i) q^{17} +(-4.00000 + 6.92820i) q^{19} +(0.500000 + 0.866025i) q^{20} +(-2.50000 + 4.33013i) q^{22} +(-2.00000 - 3.46410i) q^{23} +(2.00000 - 3.46410i) q^{25} +(-2.50000 + 0.866025i) q^{28} +(-2.50000 - 4.33013i) q^{29} +3.00000 q^{31} -1.00000 q^{32} +(2.00000 + 3.46410i) q^{34} +(-2.00000 - 1.73205i) q^{35} +(2.00000 - 3.46410i) q^{37} +(4.00000 - 6.92820i) q^{38} +(-0.500000 - 0.866025i) q^{40} +(-1.00000 - 1.73205i) q^{43} +(2.50000 - 4.33013i) q^{44} +(2.00000 + 3.46410i) q^{46} +6.00000 q^{47} +(5.50000 - 4.33013i) q^{49} +(-2.00000 + 3.46410i) q^{50} +(-4.50000 - 7.79423i) q^{53} +5.00000 q^{55} +(2.50000 - 0.866025i) q^{56} +(2.50000 + 4.33013i) q^{58} +11.0000 q^{59} -6.00000 q^{61} -3.00000 q^{62} +1.00000 q^{64} -2.00000 q^{67} +(-2.00000 - 3.46410i) q^{68} +(2.00000 + 1.73205i) q^{70} -2.00000 q^{71} +(-5.00000 - 8.66025i) q^{73} +(-2.00000 + 3.46410i) q^{74} +(-4.00000 + 6.92820i) q^{76} +(-2.50000 + 12.9904i) q^{77} +3.00000 q^{79} +(0.500000 + 0.866025i) q^{80} +(-3.50000 - 6.06218i) q^{83} +(2.00000 - 3.46410i) q^{85} +(1.00000 + 1.73205i) q^{86} +(-2.50000 + 4.33013i) q^{88} +(-3.00000 + 5.19615i) q^{89} +(-2.00000 - 3.46410i) q^{92} -6.00000 q^{94} -8.00000 q^{95} +(-3.50000 - 6.06218i) q^{97} +(-5.50000 + 4.33013i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} + q^{5} - 5 q^{7} - 2 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} + 2 q^{4} + q^{5} - 5 q^{7} - 2 q^{8} - q^{10} + 5 q^{11} + 5 q^{14} + 2 q^{16} - 4 q^{17} - 8 q^{19} + q^{20} - 5 q^{22} - 4 q^{23} + 4 q^{25} - 5 q^{28} - 5 q^{29} + 6 q^{31} - 2 q^{32} + 4 q^{34} - 4 q^{35} + 4 q^{37} + 8 q^{38} - q^{40} - 2 q^{43} + 5 q^{44} + 4 q^{46} + 12 q^{47} + 11 q^{49} - 4 q^{50} - 9 q^{53} + 10 q^{55} + 5 q^{56} + 5 q^{58} + 22 q^{59} - 12 q^{61} - 6 q^{62} + 2 q^{64} - 4 q^{67} - 4 q^{68} + 4 q^{70} - 4 q^{71} - 10 q^{73} - 4 q^{74} - 8 q^{76} - 5 q^{77} + 6 q^{79} + q^{80} - 7 q^{83} + 4 q^{85} + 2 q^{86} - 5 q^{88} - 6 q^{89} - 4 q^{92} - 12 q^{94} - 16 q^{95} - 7 q^{97} - 11 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i 0.955901 0.293691i \(-0.0948835\pi\)
−0.732294 + 0.680989i \(0.761550\pi\)
\(6\) 0 0
\(7\) −2.50000 + 0.866025i −0.944911 + 0.327327i
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −0.500000 0.866025i −0.158114 0.273861i
\(11\) 2.50000 4.33013i 0.753778 1.30558i −0.192201 0.981356i \(-0.561563\pi\)
0.945979 0.324227i \(-0.105104\pi\)
\(12\) 0 0
\(13\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(14\) 2.50000 0.866025i 0.668153 0.231455i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −2.00000 3.46410i −0.485071 0.840168i 0.514782 0.857321i \(-0.327873\pi\)
−0.999853 + 0.0171533i \(0.994540\pi\)
\(18\) 0 0
\(19\) −4.00000 + 6.92820i −0.917663 + 1.58944i −0.114708 + 0.993399i \(0.536593\pi\)
−0.802955 + 0.596040i \(0.796740\pi\)
\(20\) 0.500000 + 0.866025i 0.111803 + 0.193649i
\(21\) 0 0
\(22\) −2.50000 + 4.33013i −0.533002 + 0.923186i
\(23\) −2.00000 3.46410i −0.417029 0.722315i 0.578610 0.815604i \(-0.303595\pi\)
−0.995639 + 0.0932891i \(0.970262\pi\)
\(24\) 0 0
\(25\) 2.00000 3.46410i 0.400000 0.692820i
\(26\) 0 0
\(27\) 0 0
\(28\) −2.50000 + 0.866025i −0.472456 + 0.163663i
\(29\) −2.50000 4.33013i −0.464238 0.804084i 0.534928 0.844897i \(-0.320339\pi\)
−0.999167 + 0.0408130i \(0.987005\pi\)
\(30\) 0 0
\(31\) 3.00000 0.538816 0.269408 0.963026i \(-0.413172\pi\)
0.269408 + 0.963026i \(0.413172\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 2.00000 + 3.46410i 0.342997 + 0.594089i
\(35\) −2.00000 1.73205i −0.338062 0.292770i
\(36\) 0 0
\(37\) 2.00000 3.46410i 0.328798 0.569495i −0.653476 0.756948i \(-0.726690\pi\)
0.982274 + 0.187453i \(0.0600231\pi\)
\(38\) 4.00000 6.92820i 0.648886 1.12390i
\(39\) 0 0
\(40\) −0.500000 0.866025i −0.0790569 0.136931i
\(41\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(42\) 0 0
\(43\) −1.00000 1.73205i −0.152499 0.264135i 0.779647 0.626219i \(-0.215399\pi\)
−0.932145 + 0.362084i \(0.882065\pi\)
\(44\) 2.50000 4.33013i 0.376889 0.652791i
\(45\) 0 0
\(46\) 2.00000 + 3.46410i 0.294884 + 0.510754i
\(47\) 6.00000 0.875190 0.437595 0.899172i \(-0.355830\pi\)
0.437595 + 0.899172i \(0.355830\pi\)
\(48\) 0 0
\(49\) 5.50000 4.33013i 0.785714 0.618590i
\(50\) −2.00000 + 3.46410i −0.282843 + 0.489898i
\(51\) 0 0
\(52\) 0 0
\(53\) −4.50000 7.79423i −0.618123 1.07062i −0.989828 0.142269i \(-0.954560\pi\)
0.371706 0.928351i \(-0.378773\pi\)
\(54\) 0 0
\(55\) 5.00000 0.674200
\(56\) 2.50000 0.866025i 0.334077 0.115728i
\(57\) 0 0
\(58\) 2.50000 + 4.33013i 0.328266 + 0.568574i
\(59\) 11.0000 1.43208 0.716039 0.698060i \(-0.245953\pi\)
0.716039 + 0.698060i \(0.245953\pi\)
\(60\) 0 0
\(61\) −6.00000 −0.768221 −0.384111 0.923287i \(-0.625492\pi\)
−0.384111 + 0.923287i \(0.625492\pi\)
\(62\) −3.00000 −0.381000
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −2.00000 −0.244339 −0.122169 0.992509i \(-0.538985\pi\)
−0.122169 + 0.992509i \(0.538985\pi\)
\(68\) −2.00000 3.46410i −0.242536 0.420084i
\(69\) 0 0
\(70\) 2.00000 + 1.73205i 0.239046 + 0.207020i
\(71\) −2.00000 −0.237356 −0.118678 0.992933i \(-0.537866\pi\)
−0.118678 + 0.992933i \(0.537866\pi\)
\(72\) 0 0
\(73\) −5.00000 8.66025i −0.585206 1.01361i −0.994850 0.101361i \(-0.967680\pi\)
0.409644 0.912245i \(-0.365653\pi\)
\(74\) −2.00000 + 3.46410i −0.232495 + 0.402694i
\(75\) 0 0
\(76\) −4.00000 + 6.92820i −0.458831 + 0.794719i
\(77\) −2.50000 + 12.9904i −0.284901 + 1.48039i
\(78\) 0 0
\(79\) 3.00000 0.337526 0.168763 0.985657i \(-0.446023\pi\)
0.168763 + 0.985657i \(0.446023\pi\)
\(80\) 0.500000 + 0.866025i 0.0559017 + 0.0968246i
\(81\) 0 0
\(82\) 0 0
\(83\) −3.50000 6.06218i −0.384175 0.665410i 0.607479 0.794335i \(-0.292181\pi\)
−0.991654 + 0.128925i \(0.958847\pi\)
\(84\) 0 0
\(85\) 2.00000 3.46410i 0.216930 0.375735i
\(86\) 1.00000 + 1.73205i 0.107833 + 0.186772i
\(87\) 0 0
\(88\) −2.50000 + 4.33013i −0.266501 + 0.461593i
\(89\) −3.00000 + 5.19615i −0.317999 + 0.550791i −0.980071 0.198650i \(-0.936344\pi\)
0.662071 + 0.749441i \(0.269678\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −2.00000 3.46410i −0.208514 0.361158i
\(93\) 0 0
\(94\) −6.00000 −0.618853
\(95\) −8.00000 −0.820783
\(96\) 0 0
\(97\) −3.50000 6.06218i −0.355371 0.615521i 0.631810 0.775123i \(-0.282312\pi\)
−0.987181 + 0.159602i \(0.948979\pi\)
\(98\) −5.50000 + 4.33013i −0.555584 + 0.437409i
\(99\) 0 0
\(100\) 2.00000 3.46410i 0.200000 0.346410i
\(101\) 5.00000 8.66025i 0.497519 0.861727i −0.502477 0.864590i \(-0.667578\pi\)
0.999996 + 0.00286291i \(0.000911295\pi\)
\(102\) 0 0
\(103\) −4.00000 6.92820i −0.394132 0.682656i 0.598858 0.800855i \(-0.295621\pi\)
−0.992990 + 0.118199i \(0.962288\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 4.50000 + 7.79423i 0.437079 + 0.757042i
\(107\) 1.50000 2.59808i 0.145010 0.251166i −0.784366 0.620298i \(-0.787012\pi\)
0.929377 + 0.369132i \(0.120345\pi\)
\(108\) 0 0
\(109\) 1.00000 + 1.73205i 0.0957826 + 0.165900i 0.909935 0.414751i \(-0.136131\pi\)
−0.814152 + 0.580651i \(0.802798\pi\)
\(110\) −5.00000 −0.476731
\(111\) 0 0
\(112\) −2.50000 + 0.866025i −0.236228 + 0.0818317i
\(113\) 8.00000 13.8564i 0.752577 1.30350i −0.193993 0.981003i \(-0.562144\pi\)
0.946570 0.322498i \(-0.104523\pi\)
\(114\) 0 0
\(115\) 2.00000 3.46410i 0.186501 0.323029i
\(116\) −2.50000 4.33013i −0.232119 0.402042i
\(117\) 0 0
\(118\) −11.0000 −1.01263
\(119\) 8.00000 + 6.92820i 0.733359 + 0.635107i
\(120\) 0 0
\(121\) −7.00000 12.1244i −0.636364 1.10221i
\(122\) 6.00000 0.543214
\(123\) 0 0
\(124\) 3.00000 0.269408
\(125\) 9.00000 0.804984
\(126\) 0 0
\(127\) 9.00000 0.798621 0.399310 0.916816i \(-0.369250\pi\)
0.399310 + 0.916816i \(0.369250\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) 0.500000 + 0.866025i 0.0436852 + 0.0756650i 0.887041 0.461690i \(-0.152757\pi\)
−0.843356 + 0.537355i \(0.819423\pi\)
\(132\) 0 0
\(133\) 4.00000 20.7846i 0.346844 1.80225i
\(134\) 2.00000 0.172774
\(135\) 0 0
\(136\) 2.00000 + 3.46410i 0.171499 + 0.297044i
\(137\) −1.00000 + 1.73205i −0.0854358 + 0.147979i −0.905577 0.424182i \(-0.860562\pi\)
0.820141 + 0.572161i \(0.193895\pi\)
\(138\) 0 0
\(139\) 7.00000 12.1244i 0.593732 1.02837i −0.399992 0.916519i \(-0.630987\pi\)
0.993724 0.111856i \(-0.0356795\pi\)
\(140\) −2.00000 1.73205i −0.169031 0.146385i
\(141\) 0 0
\(142\) 2.00000 0.167836
\(143\) 0 0
\(144\) 0 0
\(145\) 2.50000 4.33013i 0.207614 0.359597i
\(146\) 5.00000 + 8.66025i 0.413803 + 0.716728i
\(147\) 0 0
\(148\) 2.00000 3.46410i 0.164399 0.284747i
\(149\) −9.00000 15.5885i −0.737309 1.27706i −0.953703 0.300750i \(-0.902763\pi\)
0.216394 0.976306i \(-0.430570\pi\)
\(150\) 0 0
\(151\) −9.50000 + 16.4545i −0.773099 + 1.33905i 0.162758 + 0.986666i \(0.447961\pi\)
−0.935857 + 0.352381i \(0.885372\pi\)
\(152\) 4.00000 6.92820i 0.324443 0.561951i
\(153\) 0 0
\(154\) 2.50000 12.9904i 0.201456 1.04679i
\(155\) 1.50000 + 2.59808i 0.120483 + 0.208683i
\(156\) 0 0
\(157\) −4.00000 −0.319235 −0.159617 0.987179i \(-0.551026\pi\)
−0.159617 + 0.987179i \(0.551026\pi\)
\(158\) −3.00000 −0.238667
\(159\) 0 0
\(160\) −0.500000 0.866025i −0.0395285 0.0684653i
\(161\) 8.00000 + 6.92820i 0.630488 + 0.546019i
\(162\) 0 0
\(163\) 2.00000 3.46410i 0.156652 0.271329i −0.777007 0.629492i \(-0.783263\pi\)
0.933659 + 0.358162i \(0.116597\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 3.50000 + 6.06218i 0.271653 + 0.470516i
\(167\) −7.00000 + 12.1244i −0.541676 + 0.938211i 0.457132 + 0.889399i \(0.348877\pi\)
−0.998808 + 0.0488118i \(0.984457\pi\)
\(168\) 0 0
\(169\) 6.50000 + 11.2583i 0.500000 + 0.866025i
\(170\) −2.00000 + 3.46410i −0.153393 + 0.265684i
\(171\) 0 0
\(172\) −1.00000 1.73205i −0.0762493 0.132068i
\(173\) −22.0000 −1.67263 −0.836315 0.548250i \(-0.815294\pi\)
−0.836315 + 0.548250i \(0.815294\pi\)
\(174\) 0 0
\(175\) −2.00000 + 10.3923i −0.151186 + 0.785584i
\(176\) 2.50000 4.33013i 0.188445 0.326396i
\(177\) 0 0
\(178\) 3.00000 5.19615i 0.224860 0.389468i
\(179\) 6.00000 + 10.3923i 0.448461 + 0.776757i 0.998286 0.0585225i \(-0.0186389\pi\)
−0.549825 + 0.835280i \(0.685306\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 2.00000 + 3.46410i 0.147442 + 0.255377i
\(185\) 4.00000 0.294086
\(186\) 0 0
\(187\) −20.0000 −1.46254
\(188\) 6.00000 0.437595
\(189\) 0 0
\(190\) 8.00000 0.580381
\(191\) −24.0000 −1.73658 −0.868290 0.496058i \(-0.834780\pi\)
−0.868290 + 0.496058i \(0.834780\pi\)
\(192\) 0 0
\(193\) 5.00000 0.359908 0.179954 0.983675i \(-0.442405\pi\)
0.179954 + 0.983675i \(0.442405\pi\)
\(194\) 3.50000 + 6.06218i 0.251285 + 0.435239i
\(195\) 0 0
\(196\) 5.50000 4.33013i 0.392857 0.309295i
\(197\) −2.00000 −0.142494 −0.0712470 0.997459i \(-0.522698\pi\)
−0.0712470 + 0.997459i \(0.522698\pi\)
\(198\) 0 0
\(199\) 2.00000 + 3.46410i 0.141776 + 0.245564i 0.928166 0.372168i \(-0.121385\pi\)
−0.786389 + 0.617731i \(0.788052\pi\)
\(200\) −2.00000 + 3.46410i −0.141421 + 0.244949i
\(201\) 0 0
\(202\) −5.00000 + 8.66025i −0.351799 + 0.609333i
\(203\) 10.0000 + 8.66025i 0.701862 + 0.607831i
\(204\) 0 0
\(205\) 0 0
\(206\) 4.00000 + 6.92820i 0.278693 + 0.482711i
\(207\) 0 0
\(208\) 0 0
\(209\) 20.0000 + 34.6410i 1.38343 + 2.39617i
\(210\) 0 0
\(211\) −1.00000 + 1.73205i −0.0688428 + 0.119239i −0.898392 0.439194i \(-0.855264\pi\)
0.829549 + 0.558433i \(0.188597\pi\)
\(212\) −4.50000 7.79423i −0.309061 0.535310i
\(213\) 0 0
\(214\) −1.50000 + 2.59808i −0.102538 + 0.177601i
\(215\) 1.00000 1.73205i 0.0681994 0.118125i
\(216\) 0 0
\(217\) −7.50000 + 2.59808i −0.509133 + 0.176369i
\(218\) −1.00000 1.73205i −0.0677285 0.117309i
\(219\) 0 0
\(220\) 5.00000 0.337100
\(221\) 0 0
\(222\) 0 0
\(223\) 3.50000 + 6.06218i 0.234377 + 0.405953i 0.959092 0.283096i \(-0.0913615\pi\)
−0.724714 + 0.689050i \(0.758028\pi\)
\(224\) 2.50000 0.866025i 0.167038 0.0578638i
\(225\) 0 0
\(226\) −8.00000 + 13.8564i −0.532152 + 0.921714i
\(227\) 1.50000 2.59808i 0.0995585 0.172440i −0.811943 0.583736i \(-0.801590\pi\)
0.911502 + 0.411296i \(0.134924\pi\)
\(228\) 0 0
\(229\) 10.0000 + 17.3205i 0.660819 + 1.14457i 0.980401 + 0.197013i \(0.0631241\pi\)
−0.319582 + 0.947559i \(0.603543\pi\)
\(230\) −2.00000 + 3.46410i −0.131876 + 0.228416i
\(231\) 0 0
\(232\) 2.50000 + 4.33013i 0.164133 + 0.284287i
\(233\) −2.00000 + 3.46410i −0.131024 + 0.226941i −0.924072 0.382219i \(-0.875160\pi\)
0.793047 + 0.609160i \(0.208493\pi\)
\(234\) 0 0
\(235\) 3.00000 + 5.19615i 0.195698 + 0.338960i
\(236\) 11.0000 0.716039
\(237\) 0 0
\(238\) −8.00000 6.92820i −0.518563 0.449089i
\(239\) −6.00000 + 10.3923i −0.388108 + 0.672222i −0.992195 0.124696i \(-0.960204\pi\)
0.604087 + 0.796918i \(0.293538\pi\)
\(240\) 0 0
\(241\) 12.5000 21.6506i 0.805196 1.39464i −0.110963 0.993825i \(-0.535394\pi\)
0.916159 0.400815i \(-0.131273\pi\)
\(242\) 7.00000 + 12.1244i 0.449977 + 0.779383i
\(243\) 0 0
\(244\) −6.00000 −0.384111
\(245\) 6.50000 + 2.59808i 0.415270 + 0.165985i
\(246\) 0 0
\(247\) 0 0
\(248\) −3.00000 −0.190500
\(249\) 0 0
\(250\) −9.00000 −0.569210
\(251\) −21.0000 −1.32551 −0.662754 0.748837i \(-0.730613\pi\)
−0.662754 + 0.748837i \(0.730613\pi\)
\(252\) 0 0
\(253\) −20.0000 −1.25739
\(254\) −9.00000 −0.564710
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −3.00000 5.19615i −0.187135 0.324127i 0.757159 0.653231i \(-0.226587\pi\)
−0.944294 + 0.329104i \(0.893253\pi\)
\(258\) 0 0
\(259\) −2.00000 + 10.3923i −0.124274 + 0.645746i
\(260\) 0 0
\(261\) 0 0
\(262\) −0.500000 0.866025i −0.0308901 0.0535032i
\(263\) −15.0000 + 25.9808i −0.924940 + 1.60204i −0.133281 + 0.991078i \(0.542551\pi\)
−0.791658 + 0.610964i \(0.790782\pi\)
\(264\) 0 0
\(265\) 4.50000 7.79423i 0.276433 0.478796i
\(266\) −4.00000 + 20.7846i −0.245256 + 1.27439i
\(267\) 0 0
\(268\) −2.00000 −0.122169
\(269\) 15.5000 + 26.8468i 0.945052 + 1.63688i 0.755648 + 0.654978i \(0.227322\pi\)
0.189404 + 0.981899i \(0.439344\pi\)
\(270\) 0 0
\(271\) −7.50000 + 12.9904i −0.455593 + 0.789109i −0.998722 0.0505395i \(-0.983906\pi\)
0.543130 + 0.839649i \(0.317239\pi\)
\(272\) −2.00000 3.46410i −0.121268 0.210042i
\(273\) 0 0
\(274\) 1.00000 1.73205i 0.0604122 0.104637i
\(275\) −10.0000 17.3205i −0.603023 1.04447i
\(276\) 0 0
\(277\) 8.00000 13.8564i 0.480673 0.832551i −0.519081 0.854725i \(-0.673726\pi\)
0.999754 + 0.0221745i \(0.00705893\pi\)
\(278\) −7.00000 + 12.1244i −0.419832 + 0.727171i
\(279\) 0 0
\(280\) 2.00000 + 1.73205i 0.119523 + 0.103510i
\(281\) 1.00000 + 1.73205i 0.0596550 + 0.103325i 0.894311 0.447447i \(-0.147667\pi\)
−0.834656 + 0.550772i \(0.814333\pi\)
\(282\) 0 0
\(283\) 10.0000 0.594438 0.297219 0.954809i \(-0.403941\pi\)
0.297219 + 0.954809i \(0.403941\pi\)
\(284\) −2.00000 −0.118678
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 0.500000 0.866025i 0.0294118 0.0509427i
\(290\) −2.50000 + 4.33013i −0.146805 + 0.254274i
\(291\) 0 0
\(292\) −5.00000 8.66025i −0.292603 0.506803i
\(293\) −10.5000 + 18.1865i −0.613417 + 1.06247i 0.377244 + 0.926114i \(0.376872\pi\)
−0.990660 + 0.136355i \(0.956461\pi\)
\(294\) 0 0
\(295\) 5.50000 + 9.52628i 0.320222 + 0.554641i
\(296\) −2.00000 + 3.46410i −0.116248 + 0.201347i
\(297\) 0 0
\(298\) 9.00000 + 15.5885i 0.521356 + 0.903015i
\(299\) 0 0
\(300\) 0 0
\(301\) 4.00000 + 3.46410i 0.230556 + 0.199667i
\(302\) 9.50000 16.4545i 0.546664 0.946849i
\(303\) 0 0
\(304\) −4.00000 + 6.92820i −0.229416 + 0.397360i
\(305\) −3.00000 5.19615i −0.171780 0.297531i
\(306\) 0 0
\(307\) 28.0000 1.59804 0.799022 0.601302i \(-0.205351\pi\)
0.799022 + 0.601302i \(0.205351\pi\)
\(308\) −2.50000 + 12.9904i −0.142451 + 0.740196i
\(309\) 0 0
\(310\) −1.50000 2.59808i −0.0851943 0.147561i
\(311\) 32.0000 1.81455 0.907277 0.420534i \(-0.138157\pi\)
0.907277 + 0.420534i \(0.138157\pi\)
\(312\) 0 0
\(313\) 1.00000 0.0565233 0.0282617 0.999601i \(-0.491003\pi\)
0.0282617 + 0.999601i \(0.491003\pi\)
\(314\) 4.00000 0.225733
\(315\) 0 0
\(316\) 3.00000 0.168763
\(317\) −3.00000 −0.168497 −0.0842484 0.996445i \(-0.526849\pi\)
−0.0842484 + 0.996445i \(0.526849\pi\)
\(318\) 0 0
\(319\) −25.0000 −1.39973
\(320\) 0.500000 + 0.866025i 0.0279508 + 0.0484123i
\(321\) 0 0
\(322\) −8.00000 6.92820i −0.445823 0.386094i
\(323\) 32.0000 1.78053
\(324\) 0 0
\(325\) 0 0
\(326\) −2.00000 + 3.46410i −0.110770 + 0.191859i
\(327\) 0 0
\(328\) 0 0
\(329\) −15.0000 + 5.19615i −0.826977 + 0.286473i
\(330\) 0 0
\(331\) −4.00000 −0.219860 −0.109930 0.993939i \(-0.535063\pi\)
−0.109930 + 0.993939i \(0.535063\pi\)
\(332\) −3.50000 6.06218i −0.192087 0.332705i
\(333\) 0 0
\(334\) 7.00000 12.1244i 0.383023 0.663415i
\(335\) −1.00000 1.73205i −0.0546358 0.0946320i
\(336\) 0 0
\(337\) −4.50000 + 7.79423i −0.245131 + 0.424579i −0.962168 0.272456i \(-0.912164\pi\)
0.717038 + 0.697034i \(0.245498\pi\)
\(338\) −6.50000 11.2583i −0.353553 0.612372i
\(339\) 0 0
\(340\) 2.00000 3.46410i 0.108465 0.187867i
\(341\) 7.50000 12.9904i 0.406148 0.703469i
\(342\) 0 0
\(343\) −10.0000 + 15.5885i −0.539949 + 0.841698i
\(344\) 1.00000 + 1.73205i 0.0539164 + 0.0933859i
\(345\) 0 0
\(346\) 22.0000 1.18273
\(347\) −12.0000 −0.644194 −0.322097 0.946707i \(-0.604388\pi\)
−0.322097 + 0.946707i \(0.604388\pi\)
\(348\) 0 0
\(349\) 7.00000 + 12.1244i 0.374701 + 0.649002i 0.990282 0.139072i \(-0.0444119\pi\)
−0.615581 + 0.788074i \(0.711079\pi\)
\(350\) 2.00000 10.3923i 0.106904 0.555492i
\(351\) 0 0
\(352\) −2.50000 + 4.33013i −0.133250 + 0.230797i
\(353\) 12.0000 20.7846i 0.638696 1.10625i −0.347024 0.937856i \(-0.612808\pi\)
0.985719 0.168397i \(-0.0538590\pi\)
\(354\) 0 0
\(355\) −1.00000 1.73205i −0.0530745 0.0919277i
\(356\) −3.00000 + 5.19615i −0.159000 + 0.275396i
\(357\) 0 0
\(358\) −6.00000 10.3923i −0.317110 0.549250i
\(359\) 5.00000 8.66025i 0.263890 0.457071i −0.703382 0.710812i \(-0.748328\pi\)
0.967272 + 0.253741i \(0.0816611\pi\)
\(360\) 0 0
\(361\) −22.5000 38.9711i −1.18421 2.05111i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 5.00000 8.66025i 0.261712 0.453298i
\(366\) 0 0
\(367\) −8.50000 + 14.7224i −0.443696 + 0.768505i −0.997960 0.0638362i \(-0.979666\pi\)
0.554264 + 0.832341i \(0.313000\pi\)
\(368\) −2.00000 3.46410i −0.104257 0.180579i
\(369\) 0 0
\(370\) −4.00000 −0.207950
\(371\) 18.0000 + 15.5885i 0.934513 + 0.809312i
\(372\) 0 0
\(373\) 16.0000 + 27.7128i 0.828449 + 1.43492i 0.899255 + 0.437425i \(0.144109\pi\)
−0.0708063 + 0.997490i \(0.522557\pi\)
\(374\) 20.0000 1.03418
\(375\) 0 0
\(376\) −6.00000 −0.309426
\(377\) 0 0
\(378\) 0 0
\(379\) 16.0000 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) −8.00000 −0.410391
\(381\) 0 0
\(382\) 24.0000 1.22795
\(383\) −17.0000 29.4449i −0.868659 1.50456i −0.863367 0.504576i \(-0.831649\pi\)
−0.00529229 0.999986i \(-0.501685\pi\)
\(384\) 0 0
\(385\) −12.5000 + 4.33013i −0.637059 + 0.220684i
\(386\) −5.00000 −0.254493
\(387\) 0 0
\(388\) −3.50000 6.06218i −0.177686 0.307760i
\(389\) −1.00000 + 1.73205i −0.0507020 + 0.0878185i −0.890263 0.455448i \(-0.849479\pi\)
0.839561 + 0.543266i \(0.182813\pi\)
\(390\) 0 0
\(391\) −8.00000 + 13.8564i −0.404577 + 0.700749i
\(392\) −5.50000 + 4.33013i −0.277792 + 0.218704i
\(393\) 0 0
\(394\) 2.00000 0.100759
\(395\) 1.50000 + 2.59808i 0.0754732 + 0.130723i
\(396\) 0 0
\(397\) −18.0000 + 31.1769i −0.903394 + 1.56472i −0.0803356 + 0.996768i \(0.525599\pi\)
−0.823058 + 0.567957i \(0.807734\pi\)
\(398\) −2.00000 3.46410i −0.100251 0.173640i
\(399\) 0 0
\(400\) 2.00000 3.46410i 0.100000 0.173205i
\(401\) 12.0000 + 20.7846i 0.599251 + 1.03793i 0.992932 + 0.118686i \(0.0378683\pi\)
−0.393680 + 0.919247i \(0.628798\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 5.00000 8.66025i 0.248759 0.430864i
\(405\) 0 0
\(406\) −10.0000 8.66025i −0.496292 0.429801i
\(407\) −10.0000 17.3205i −0.495682 0.858546i
\(408\) 0 0
\(409\) −25.0000 −1.23617 −0.618085 0.786111i \(-0.712091\pi\)
−0.618085 + 0.786111i \(0.712091\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −4.00000 6.92820i −0.197066 0.341328i
\(413\) −27.5000 + 9.52628i −1.35319 + 0.468758i
\(414\) 0 0
\(415\) 3.50000 6.06218i 0.171808 0.297581i
\(416\) 0 0
\(417\) 0 0
\(418\) −20.0000 34.6410i −0.978232 1.69435i
\(419\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(420\) 0 0
\(421\) −15.0000 25.9808i −0.731055 1.26622i −0.956433 0.291953i \(-0.905695\pi\)
0.225377 0.974272i \(-0.427639\pi\)
\(422\) 1.00000 1.73205i 0.0486792 0.0843149i
\(423\) 0 0
\(424\) 4.50000 + 7.79423i 0.218539 + 0.378521i
\(425\) −16.0000 −0.776114
\(426\) 0 0
\(427\) 15.0000 5.19615i 0.725901 0.251459i
\(428\) 1.50000 2.59808i 0.0725052 0.125583i
\(429\) 0 0
\(430\) −1.00000 + 1.73205i −0.0482243 + 0.0835269i
\(431\) 6.00000 + 10.3923i 0.289010 + 0.500580i 0.973574 0.228373i \(-0.0733406\pi\)
−0.684564 + 0.728953i \(0.740007\pi\)
\(432\) 0 0
\(433\) 14.0000 0.672797 0.336399 0.941720i \(-0.390791\pi\)
0.336399 + 0.941720i \(0.390791\pi\)
\(434\) 7.50000 2.59808i 0.360012 0.124712i
\(435\) 0 0
\(436\) 1.00000 + 1.73205i 0.0478913 + 0.0829502i
\(437\) 32.0000 1.53077
\(438\) 0 0
\(439\) 15.0000 0.715911 0.357955 0.933739i \(-0.383474\pi\)
0.357955 + 0.933739i \(0.383474\pi\)
\(440\) −5.00000 −0.238366
\(441\) 0 0
\(442\) 0 0
\(443\) −17.0000 −0.807694 −0.403847 0.914826i \(-0.632327\pi\)
−0.403847 + 0.914826i \(0.632327\pi\)
\(444\) 0 0
\(445\) −6.00000 −0.284427
\(446\) −3.50000 6.06218i −0.165730 0.287052i
\(447\) 0 0
\(448\) −2.50000 + 0.866025i −0.118114 + 0.0409159i
\(449\) −16.0000 −0.755087 −0.377543 0.925992i \(-0.623231\pi\)
−0.377543 + 0.925992i \(0.623231\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 8.00000 13.8564i 0.376288 0.651751i
\(453\) 0 0
\(454\) −1.50000 + 2.59808i −0.0703985 + 0.121934i
\(455\) 0 0
\(456\) 0 0
\(457\) 31.0000 1.45012 0.725059 0.688686i \(-0.241812\pi\)
0.725059 + 0.688686i \(0.241812\pi\)
\(458\) −10.0000 17.3205i −0.467269 0.809334i
\(459\) 0 0
\(460\) 2.00000 3.46410i 0.0932505 0.161515i
\(461\) −7.00000 12.1244i −0.326023 0.564688i 0.655696 0.755025i \(-0.272375\pi\)
−0.981719 + 0.190337i \(0.939042\pi\)
\(462\) 0 0
\(463\) −8.00000 + 13.8564i −0.371792 + 0.643962i −0.989841 0.142177i \(-0.954590\pi\)
0.618050 + 0.786139i \(0.287923\pi\)
\(464\) −2.50000 4.33013i −0.116060 0.201021i
\(465\) 0 0
\(466\) 2.00000 3.46410i 0.0926482 0.160471i
\(467\) −10.0000 + 17.3205i −0.462745 + 0.801498i −0.999097 0.0424970i \(-0.986469\pi\)
0.536352 + 0.843995i \(0.319802\pi\)
\(468\) 0 0
\(469\) 5.00000 1.73205i 0.230879 0.0799787i
\(470\) −3.00000 5.19615i −0.138380 0.239681i
\(471\) 0 0
\(472\) −11.0000 −0.506316
\(473\) −10.0000 −0.459800
\(474\) 0 0
\(475\) 16.0000 + 27.7128i 0.734130 + 1.27155i
\(476\) 8.00000 + 6.92820i 0.366679 + 0.317554i
\(477\) 0 0
\(478\) 6.00000 10.3923i 0.274434 0.475333i
\(479\) 19.0000 32.9090i 0.868132 1.50365i 0.00422900 0.999991i \(-0.498654\pi\)
0.863903 0.503658i \(-0.168013\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −12.5000 + 21.6506i −0.569359 + 0.986159i
\(483\) 0 0
\(484\) −7.00000 12.1244i −0.318182 0.551107i
\(485\) 3.50000 6.06218i 0.158927 0.275269i
\(486\) 0 0
\(487\) −2.50000 4.33013i −0.113286 0.196217i 0.803807 0.594890i \(-0.202804\pi\)
−0.917093 + 0.398673i \(0.869471\pi\)
\(488\) 6.00000 0.271607
\(489\) 0 0
\(490\) −6.50000 2.59808i −0.293640 0.117369i
\(491\) 4.50000 7.79423i 0.203082 0.351749i −0.746438 0.665455i \(-0.768237\pi\)
0.949520 + 0.313707i \(0.101571\pi\)
\(492\) 0 0
\(493\) −10.0000 + 17.3205i −0.450377 + 0.780076i
\(494\) 0 0
\(495\) 0 0
\(496\) 3.00000 0.134704
\(497\) 5.00000 1.73205i 0.224281 0.0776931i
\(498\) 0 0
\(499\) −5.00000 8.66025i −0.223831 0.387686i 0.732137 0.681157i \(-0.238523\pi\)
−0.955968 + 0.293471i \(0.905190\pi\)
\(500\) 9.00000 0.402492
\(501\) 0 0
\(502\) 21.0000 0.937276
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 10.0000 0.444994
\(506\) 20.0000 0.889108
\(507\) 0 0
\(508\) 9.00000 0.399310
\(509\) 7.50000 + 12.9904i 0.332432 + 0.575789i 0.982988 0.183669i \(-0.0587976\pi\)
−0.650556 + 0.759458i \(0.725464\pi\)
\(510\) 0 0
\(511\) 20.0000 + 17.3205i 0.884748 + 0.766214i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 3.00000 + 5.19615i 0.132324 + 0.229192i
\(515\) 4.00000 6.92820i 0.176261 0.305293i
\(516\) 0 0
\(517\) 15.0000 25.9808i 0.659699 1.14263i
\(518\) 2.00000 10.3923i 0.0878750 0.456612i
\(519\) 0 0
\(520\) 0 0
\(521\) −9.00000 15.5885i −0.394297 0.682943i 0.598714 0.800963i \(-0.295679\pi\)
−0.993011 + 0.118020i \(0.962345\pi\)
\(522\) 0 0
\(523\) −4.00000 + 6.92820i −0.174908 + 0.302949i −0.940129 0.340818i \(-0.889296\pi\)
0.765222 + 0.643767i \(0.222629\pi\)
\(524\) 0.500000 + 0.866025i 0.0218426 + 0.0378325i
\(525\) 0 0
\(526\) 15.0000 25.9808i 0.654031 1.13282i
\(527\) −6.00000 10.3923i −0.261364 0.452696i
\(528\) 0 0
\(529\) 3.50000 6.06218i 0.152174 0.263573i
\(530\) −4.50000 + 7.79423i −0.195468 + 0.338560i
\(531\) 0 0
\(532\) 4.00000 20.7846i 0.173422 0.901127i
\(533\) 0 0
\(534\) 0 0
\(535\) 3.00000 0.129701
\(536\) 2.00000 0.0863868
\(537\) 0 0
\(538\) −15.5000 26.8468i −0.668252 1.15745i
\(539\) −5.00000 34.6410i −0.215365 1.49209i
\(540\) 0 0
\(541\) 9.00000 15.5885i 0.386940 0.670200i −0.605096 0.796152i \(-0.706865\pi\)
0.992036 + 0.125952i \(0.0401986\pi\)
\(542\) 7.50000 12.9904i 0.322153 0.557985i
\(543\) 0 0
\(544\) 2.00000 + 3.46410i 0.0857493 + 0.148522i
\(545\) −1.00000 + 1.73205i −0.0428353 + 0.0741929i
\(546\) 0 0
\(547\) 6.00000 + 10.3923i 0.256541 + 0.444343i 0.965313 0.261095i \(-0.0840836\pi\)
−0.708772 + 0.705438i \(0.750750\pi\)
\(548\) −1.00000 + 1.73205i −0.0427179 + 0.0739895i
\(549\) 0 0
\(550\) 10.0000 + 17.3205i 0.426401 + 0.738549i
\(551\) 40.0000 1.70406
\(552\) 0 0
\(553\) −7.50000 + 2.59808i −0.318932 + 0.110481i
\(554\) −8.00000 + 13.8564i −0.339887 + 0.588702i
\(555\) 0 0
\(556\) 7.00000 12.1244i 0.296866 0.514187i
\(557\) −11.5000 19.9186i −0.487271 0.843978i 0.512622 0.858614i \(-0.328674\pi\)
−0.999893 + 0.0146368i \(0.995341\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −2.00000 1.73205i −0.0845154 0.0731925i
\(561\) 0 0
\(562\) −1.00000 1.73205i −0.0421825 0.0730622i
\(563\) −17.0000 −0.716465 −0.358232 0.933632i \(-0.616620\pi\)
−0.358232 + 0.933632i \(0.616620\pi\)
\(564\) 0 0
\(565\) 16.0000 0.673125
\(566\) −10.0000 −0.420331
\(567\) 0 0
\(568\) 2.00000 0.0839181
\(569\) −24.0000 −1.00613 −0.503066 0.864248i \(-0.667795\pi\)
−0.503066 + 0.864248i \(0.667795\pi\)
\(570\) 0 0
\(571\) −30.0000 −1.25546 −0.627730 0.778431i \(-0.716016\pi\)
−0.627730 + 0.778431i \(0.716016\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −16.0000 −0.667246
\(576\) 0 0
\(577\) −15.5000 26.8468i −0.645273 1.11765i −0.984238 0.176847i \(-0.943410\pi\)
0.338965 0.940799i \(-0.389923\pi\)
\(578\) −0.500000 + 0.866025i −0.0207973 + 0.0360219i
\(579\) 0 0
\(580\) 2.50000 4.33013i 0.103807 0.179799i
\(581\) 14.0000 + 12.1244i 0.580818 + 0.503003i
\(582\) 0 0
\(583\) −45.0000 −1.86371
\(584\) 5.00000 + 8.66025i 0.206901 + 0.358364i
\(585\) 0 0
\(586\) 10.5000 18.1865i 0.433751 0.751279i
\(587\) 17.5000 + 30.3109i 0.722302 + 1.25106i 0.960075 + 0.279743i \(0.0902494\pi\)
−0.237773 + 0.971321i \(0.576417\pi\)
\(588\) 0 0
\(589\) −12.0000 + 20.7846i −0.494451 + 0.856415i
\(590\) −5.50000 9.52628i −0.226431 0.392191i
\(591\) 0 0
\(592\) 2.00000 3.46410i 0.0821995 0.142374i
\(593\) 18.0000 31.1769i 0.739171 1.28028i −0.213697 0.976900i \(-0.568551\pi\)
0.952869 0.303383i \(-0.0981160\pi\)
\(594\) 0 0
\(595\) −2.00000 + 10.3923i −0.0819920 + 0.426043i
\(596\) −9.00000 15.5885i −0.368654 0.638528i
\(597\) 0 0
\(598\) 0 0
\(599\) 30.0000 1.22577 0.612883 0.790173i \(-0.290010\pi\)
0.612883 + 0.790173i \(0.290010\pi\)
\(600\) 0 0
\(601\) −17.5000 30.3109i −0.713840 1.23641i −0.963405 0.268049i \(-0.913621\pi\)
0.249565 0.968358i \(-0.419712\pi\)
\(602\) −4.00000 3.46410i −0.163028 0.141186i
\(603\) 0 0
\(604\) −9.50000 + 16.4545i −0.386550 + 0.669523i
\(605\) 7.00000 12.1244i 0.284590 0.492925i
\(606\) 0 0
\(607\) 13.5000 + 23.3827i 0.547948 + 0.949074i 0.998415 + 0.0562808i \(0.0179242\pi\)
−0.450467 + 0.892793i \(0.648742\pi\)
\(608\) 4.00000 6.92820i 0.162221 0.280976i
\(609\) 0 0
\(610\) 3.00000 + 5.19615i 0.121466 + 0.210386i
\(611\) 0 0
\(612\) 0 0
\(613\) −6.00000 10.3923i −0.242338 0.419741i 0.719042 0.694967i \(-0.244581\pi\)
−0.961380 + 0.275225i \(0.911248\pi\)
\(614\) −28.0000 −1.12999
\(615\) 0 0
\(616\) 2.50000 12.9904i 0.100728 0.523397i
\(617\) 1.00000 1.73205i 0.0402585 0.0697297i −0.845194 0.534460i \(-0.820515\pi\)
0.885453 + 0.464730i \(0.153849\pi\)
\(618\) 0 0
\(619\) −5.00000 + 8.66025i −0.200967 + 0.348085i −0.948840 0.315757i \(-0.897742\pi\)
0.747873 + 0.663842i \(0.231075\pi\)
\(620\) 1.50000 + 2.59808i 0.0602414 + 0.104341i
\(621\) 0 0
\(622\) −32.0000 −1.28308
\(623\) 3.00000 15.5885i 0.120192 0.624538i
\(624\) 0 0
\(625\) −5.50000 9.52628i −0.220000 0.381051i
\(626\) −1.00000 −0.0399680
\(627\) 0 0
\(628\) −4.00000 −0.159617
\(629\) −16.0000 −0.637962
\(630\) 0 0
\(631\) −19.0000 −0.756378 −0.378189 0.925728i \(-0.623453\pi\)
−0.378189 + 0.925728i \(0.623453\pi\)
\(632\) −3.00000 −0.119334
\(633\) 0 0
\(634\) 3.00000 0.119145
\(635\) 4.50000 + 7.79423i 0.178577 + 0.309305i
\(636\) 0 0
\(637\) 0 0
\(638\) 25.0000 0.989759
\(639\) 0 0
\(640\) −0.500000 0.866025i −0.0197642 0.0342327i
\(641\) 13.0000 22.5167i 0.513469 0.889355i −0.486409 0.873731i \(-0.661693\pi\)
0.999878 0.0156233i \(-0.00497325\pi\)
\(642\) 0 0
\(643\) −7.00000 + 12.1244i −0.276053 + 0.478138i −0.970400 0.241502i \(-0.922360\pi\)
0.694347 + 0.719640i \(0.255693\pi\)
\(644\) 8.00000 + 6.92820i 0.315244 + 0.273009i
\(645\) 0 0
\(646\) −32.0000 −1.25902
\(647\) −9.00000 15.5885i −0.353827 0.612845i 0.633090 0.774078i \(-0.281786\pi\)
−0.986916 + 0.161233i \(0.948453\pi\)
\(648\) 0 0
\(649\) 27.5000 47.6314i 1.07947 1.86970i
\(650\) 0 0
\(651\) 0 0
\(652\) 2.00000 3.46410i 0.0783260 0.135665i
\(653\) −19.5000 33.7750i −0.763094 1.32172i −0.941248 0.337715i \(-0.890346\pi\)
0.178154 0.984003i \(-0.442987\pi\)
\(654\) 0 0
\(655\) −0.500000 + 0.866025i −0.0195366 + 0.0338384i
\(656\) 0 0
\(657\) 0 0
\(658\) 15.0000 5.19615i 0.584761 0.202567i
\(659\) −20.0000 34.6410i −0.779089 1.34942i −0.932467 0.361255i \(-0.882348\pi\)
0.153378 0.988168i \(-0.450985\pi\)
\(660\) 0 0
\(661\) 10.0000 0.388955 0.194477 0.980907i \(-0.437699\pi\)
0.194477 + 0.980907i \(0.437699\pi\)
\(662\) 4.00000 0.155464
\(663\) 0 0
\(664\) 3.50000 + 6.06218i 0.135826 + 0.235258i
\(665\) 20.0000 6.92820i 0.775567 0.268664i
\(666\) 0 0
\(667\) −10.0000 + 17.3205i −0.387202 + 0.670653i
\(668\) −7.00000 + 12.1244i −0.270838 + 0.469105i
\(669\) 0 0
\(670\) 1.00000 + 1.73205i 0.0386334 + 0.0669150i
\(671\) −15.0000 + 25.9808i −0.579069 + 1.00298i
\(672\) 0 0
\(673\) 9.50000 + 16.4545i 0.366198 + 0.634274i 0.988968 0.148132i \(-0.0473259\pi\)
−0.622770 + 0.782405i \(0.713993\pi\)
\(674\) 4.50000 7.79423i 0.173334 0.300222i
\(675\) 0 0
\(676\) 6.50000 + 11.2583i 0.250000 + 0.433013i
\(677\) 27.0000 1.03769 0.518847 0.854867i \(-0.326361\pi\)
0.518847 + 0.854867i \(0.326361\pi\)
\(678\) 0 0
\(679\) 14.0000 + 12.1244i 0.537271 + 0.465290i
\(680\) −2.00000 + 3.46410i −0.0766965 + 0.132842i
\(681\) 0 0
\(682\) −7.50000 + 12.9904i −0.287190 + 0.497427i
\(683\) −4.50000 7.79423i −0.172188 0.298238i 0.766997 0.641651i \(-0.221750\pi\)
−0.939184 + 0.343413i \(0.888417\pi\)
\(684\) 0 0
\(685\) −2.00000 −0.0764161
\(686\) 10.0000 15.5885i 0.381802 0.595170i
\(687\) 0 0
\(688\) −1.00000 1.73205i −0.0381246 0.0660338i
\(689\) 0 0
\(690\) 0 0
\(691\) 8.00000 0.304334 0.152167 0.988355i \(-0.451375\pi\)
0.152167 + 0.988355i \(0.451375\pi\)
\(692\) −22.0000 −0.836315
\(693\) 0 0
\(694\) 12.0000 0.455514
\(695\) 14.0000 0.531050
\(696\) 0 0
\(697\) 0 0
\(698\) −7.00000 12.1244i −0.264954 0.458914i
\(699\) 0 0
\(700\) −2.00000 + 10.3923i −0.0755929 + 0.392792i
\(701\) 5.00000 0.188847 0.0944237 0.995532i \(-0.469899\pi\)
0.0944237 + 0.995532i \(0.469899\pi\)
\(702\) 0 0
\(703\) 16.0000 + 27.7128i 0.603451 + 1.04521i
\(704\) 2.50000 4.33013i 0.0942223 0.163198i
\(705\) 0 0
\(706\) −12.0000 + 20.7846i −0.451626 + 0.782239i
\(707\) −5.00000 + 25.9808i −0.188044 + 0.977107i
\(708\) 0 0
\(709\) 38.0000 1.42712 0.713560 0.700594i \(-0.247082\pi\)
0.713560 + 0.700594i \(0.247082\pi\)
\(710\) 1.00000 + 1.73205i 0.0375293 + 0.0650027i
\(711\) 0 0
\(712\) 3.00000 5.19615i 0.112430 0.194734i
\(713\) −6.00000 10.3923i −0.224702 0.389195i
\(714\) 0 0
\(715\) 0 0
\(716\) 6.00000 + 10.3923i 0.224231 + 0.388379i
\(717\) 0 0
\(718\) −5.00000 + 8.66025i −0.186598 + 0.323198i
\(719\) −3.00000 + 5.19615i −0.111881 + 0.193784i −0.916529 0.399969i \(-0.869021\pi\)
0.804648 + 0.593753i \(0.202354\pi\)
\(720\) 0 0
\(721\) 16.0000 + 13.8564i 0.595871 + 0.516040i
\(722\) 22.5000 + 38.9711i 0.837363 + 1.45036i
\(723\) 0 0
\(724\) 0 0
\(725\) −20.0000 −0.742781
\(726\) 0 0
\(727\) −3.50000 6.06218i −0.129808 0.224834i 0.793794 0.608186i \(-0.208103\pi\)
−0.923602 + 0.383353i \(0.874769\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −5.00000 + 8.66025i −0.185058 + 0.320530i
\(731\) −4.00000 + 6.92820i −0.147945 + 0.256249i
\(732\) 0 0
\(733\) 3.00000 + 5.19615i 0.110808 + 0.191924i 0.916096 0.400959i \(-0.131323\pi\)
−0.805289 + 0.592883i \(0.797990\pi\)
\(734\) 8.50000 14.7224i 0.313741 0.543415i
\(735\) 0 0
\(736\) 2.00000 + 3.46410i 0.0737210 + 0.127688i
\(737\) −5.00000 + 8.66025i −0.184177 + 0.319005i
\(738\) 0 0
\(739\) 15.0000 + 25.9808i 0.551784 + 0.955718i 0.998146 + 0.0608653i \(0.0193860\pi\)
−0.446362 + 0.894852i \(0.647281\pi\)
\(740\) 4.00000 0.147043
\(741\) 0 0
\(742\) −18.0000 15.5885i −0.660801 0.572270i
\(743\) 15.0000 25.9808i 0.550297 0.953142i −0.447956 0.894055i \(-0.647848\pi\)
0.998253 0.0590862i \(-0.0188187\pi\)
\(744\) 0 0
\(745\) 9.00000 15.5885i 0.329734 0.571117i
\(746\) −16.0000 27.7128i −0.585802 1.01464i
\(747\) 0 0
\(748\) −20.0000 −0.731272
\(749\) −1.50000 + 7.79423i −0.0548088 + 0.284795i
\(750\) 0 0
\(751\) −22.5000 38.9711i −0.821037 1.42208i −0.904911 0.425601i \(-0.860063\pi\)
0.0838743 0.996476i \(-0.473271\pi\)
\(752\) 6.00000 0.218797
\(753\) 0 0
\(754\) 0 0
\(755\) −19.0000 −0.691481
\(756\) 0 0
\(757\) −54.0000 −1.96266 −0.981332 0.192323i \(-0.938398\pi\)
−0.981332 + 0.192323i \(0.938398\pi\)
\(758\) −16.0000 −0.581146
\(759\) 0 0
\(760\) 8.00000 0.290191
\(761\) 4.00000 + 6.92820i 0.145000 + 0.251147i 0.929373 0.369142i \(-0.120348\pi\)
−0.784373 + 0.620289i \(0.787015\pi\)
\(762\) 0 0
\(763\) −4.00000 3.46410i −0.144810 0.125409i
\(764\) −24.0000 −0.868290
\(765\) 0 0
\(766\) 17.0000 + 29.4449i 0.614235 + 1.06389i
\(767\) 0 0
\(768\) 0 0
\(769\) 17.5000 30.3109i 0.631066 1.09304i −0.356268 0.934384i \(-0.615951\pi\)
0.987334 0.158655i \(-0.0507157\pi\)
\(770\) 12.5000 4.33013i 0.450469 0.156047i
\(771\) 0 0
\(772\) 5.00000 0.179954
\(773\) 5.00000 + 8.66025i 0.179838 + 0.311488i 0.941825 0.336104i \(-0.109109\pi\)
−0.761987 + 0.647592i \(0.775776\pi\)
\(774\) 0 0
\(775\) 6.00000 10.3923i 0.215526 0.373303i
\(776\) 3.50000 + 6.06218i 0.125643 + 0.217620i
\(777\) 0 0
\(778\) 1.00000 1.73205i 0.0358517 0.0620970i
\(779\) 0 0
\(780\) 0 0
\(781\) −5.00000 + 8.66025i −0.178914 + 0.309888i
\(782\) 8.00000 13.8564i 0.286079 0.495504i
\(783\) 0 0
\(784\) 5.50000 4.33013i 0.196429 0.154647i
\(785\) −2.00000 3.46410i −0.0713831 0.123639i
\(786\) 0 0
\(787\) −18.0000 −0.641631 −0.320815 0.947142i \(-0.603957\pi\)
−0.320815 + 0.947142i \(0.603957\pi\)
\(788\) −2.00000 −0.0712470
\(789\) 0 0
\(790\) −1.50000 2.59808i −0.0533676 0.0924354i
\(791\) −8.00000 + 41.5692i −0.284447 + 1.47803i
\(792\) 0 0
\(793\) 0 0
\(794\) 18.0000 31.1769i 0.638796 1.10643i
\(795\) 0 0
\(796\) 2.00000 + 3.46410i 0.0708881 + 0.122782i
\(797\) 10.5000 18.1865i 0.371929 0.644200i −0.617933 0.786231i \(-0.712030\pi\)
0.989862 + 0.142031i \(0.0453631\pi\)
\(798\) 0 0
\(799\) −12.0000 20.7846i −0.424529 0.735307i
\(800\) −2.00000 + 3.46410i −0.0707107 + 0.122474i
\(801\) 0 0
\(802\) −12.0000 20.7846i −0.423735 0.733930i
\(803\) −50.0000 −1.76446
\(804\) 0 0
\(805\) −2.00000 + 10.3923i −0.0704907 + 0.366281i
\(806\) 0 0
\(807\) 0 0
\(808\) −5.00000 + 8.66025i −0.175899 + 0.304667i
\(809\) 20.0000 + 34.6410i 0.703163 + 1.21791i 0.967351 + 0.253442i \(0.0815627\pi\)
−0.264188 + 0.964471i \(0.585104\pi\)
\(810\) 0 0
\(811\) −14.0000 −0.491606 −0.245803 0.969320i \(-0.579052\pi\)
−0.245803 + 0.969320i \(0.579052\pi\)
\(812\) 10.0000 + 8.66025i 0.350931 + 0.303915i
\(813\) 0 0
\(814\) 10.0000 + 17.3205i 0.350500 + 0.607083i
\(815\) 4.00000 0.140114
\(816\) 0 0
\(817\) 16.0000 0.559769
\(818\) 25.0000 0.874105
\(819\) 0 0
\(820\) 0 0
\(821\) 25.0000 0.872506 0.436253 0.899824i \(-0.356305\pi\)
0.436253 + 0.899824i \(0.356305\pi\)
\(822\) 0 0
\(823\) 40.0000 1.39431 0.697156 0.716919i \(-0.254448\pi\)
0.697156 + 0.716919i \(0.254448\pi\)
\(824\) 4.00000 + 6.92820i 0.139347 + 0.241355i
\(825\) 0 0
\(826\) 27.5000 9.52628i 0.956847 0.331462i
\(827\) −9.00000 −0.312961 −0.156480 0.987681i \(-0.550015\pi\)
−0.156480 + 0.987681i \(0.550015\pi\)
\(828\) 0 0
\(829\) 16.0000 + 27.7128i 0.555703 + 0.962506i 0.997848 + 0.0655624i \(0.0208842\pi\)
−0.442145 + 0.896943i \(0.645783\pi\)
\(830\) −3.50000 + 6.06218i −0.121487 + 0.210421i
\(831\) 0 0
\(832\) 0 0
\(833\) −26.0000 10.3923i −0.900847 0.360072i
\(834\) 0 0
\(835\) −14.0000 −0.484490
\(836\) 20.0000 + 34.6410i 0.691714 + 1.19808i
\(837\) 0 0
\(838\) 0 0
\(839\) −14.0000 24.2487i −0.483334 0.837158i 0.516483 0.856297i \(-0.327241\pi\)
−0.999817 + 0.0191389i \(0.993908\pi\)
\(840\) 0 0
\(841\) 2.00000 3.46410i 0.0689655 0.119452i
\(842\) 15.0000 + 25.9808i 0.516934 + 0.895356i
\(843\) 0 0
\(844\) −1.00000 + 1.73205i −0.0344214 + 0.0596196i
\(845\) −6.50000 + 11.2583i −0.223607 + 0.387298i
\(846\) 0 0
\(847\) 28.0000 + 24.2487i 0.962091 + 0.833196i
\(848\) −4.50000 7.79423i −0.154531 0.267655i
\(849\) 0 0
\(850\) 16.0000 0.548795
\(851\) −16.0000 −0.548473
\(852\) 0 0
\(853\) −7.00000 12.1244i −0.239675 0.415130i 0.720946 0.692992i \(-0.243708\pi\)
−0.960621 + 0.277862i \(0.910374\pi\)
\(854\) −15.0000 + 5.19615i −0.513289 + 0.177809i
\(855\) 0 0
\(856\) −1.50000 + 2.59808i −0.0512689 + 0.0888004i
\(857\) −9.00000 + 15.5885i −0.307434 + 0.532492i −0.977800 0.209539i \(-0.932804\pi\)
0.670366 + 0.742030i \(0.266137\pi\)
\(858\) 0 0
\(859\) 17.0000 + 29.4449i 0.580033 + 1.00465i 0.995475 + 0.0950262i \(0.0302935\pi\)
−0.415442 + 0.909620i \(0.636373\pi\)
\(860\) 1.00000 1.73205i 0.0340997 0.0590624i
\(861\) 0 0
\(862\) −6.00000 10.3923i −0.204361 0.353963i
\(863\) 5.00000 8.66025i 0.170202 0.294798i −0.768288 0.640104i \(-0.778891\pi\)
0.938490 + 0.345305i \(0.112225\pi\)
\(864\) 0 0
\(865\) −11.0000 19.0526i −0.374011 0.647806i
\(866\) −14.0000 −0.475739
\(867\) 0 0
\(868\) −7.50000 + 2.59808i −0.254567 + 0.0881845i
\(869\) 7.50000 12.9904i 0.254420 0.440668i
\(870\) 0 0
\(871\) 0 0
\(872\) −1.00000 1.73205i −0.0338643 0.0586546i
\(873\) 0 0
\(874\) −32.0000 −1.08242
\(875\) −22.5000 + 7.79423i −0.760639 + 0.263493i
\(876\) 0 0
\(877\) 16.0000 + 27.7128i 0.540282 + 0.935795i 0.998888 + 0.0471555i \(0.0150156\pi\)
−0.458606 + 0.888640i \(0.651651\pi\)
\(878\) −15.0000 −0.506225
\(879\) 0 0
\(880\) 5.00000 0.168550
\(881\) 42.0000 1.41502 0.707508 0.706705i \(-0.249819\pi\)
0.707508 + 0.706705i \(0.249819\pi\)
\(882\) 0 0
\(883\) −40.0000 −1.34611 −0.673054 0.739594i \(-0.735018\pi\)
−0.673054 + 0.739594i \(0.735018\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 17.0000 0.571126
\(887\) 18.0000 + 31.1769i 0.604381 + 1.04682i 0.992149 + 0.125061i \(0.0399128\pi\)
−0.387768 + 0.921757i \(0.626754\pi\)
\(888\) 0 0
\(889\) −22.5000 + 7.79423i −0.754626 + 0.261410i
\(890\) 6.00000 0.201120
\(891\) 0 0
\(892\) 3.50000 + 6.06218i 0.117189 + 0.202977i
\(893\) −24.0000 + 41.5692i −0.803129 + 1.39106i
\(894\) 0 0
\(895\) −6.00000 + 10.3923i −0.200558 + 0.347376i
\(896\) 2.50000 0.866025i 0.0835191 0.0289319i
\(897\) 0 0
\(898\) 16.0000 0.533927
\(899\) −7.50000 12.9904i −0.250139 0.433253i
\(900\) 0 0
\(901\) −18.0000 + 31.1769i −0.599667 + 1.03865i
\(902\) 0 0
\(903\) 0 0
\(904\) −8.00000 + 13.8564i −0.266076 + 0.460857i
\(905\) 0 0
\(906\) 0 0
\(907\) −6.00000 + 10.3923i −0.199227 + 0.345071i −0.948278 0.317441i \(-0.897176\pi\)
0.749051 + 0.662512i \(0.230510\pi\)
\(908\) 1.50000 2.59808i 0.0497792 0.0862202i
\(909\) 0 0
\(910\) 0 0
\(911\) 15.0000 + 25.9808i 0.496972 + 0.860781i 0.999994 0.00349271i \(-0.00111177\pi\)
−0.503022 + 0.864274i \(0.667778\pi\)
\(912\) 0 0
\(913\) −35.0000 −1.15833
\(914\) −31.0000 −1.02539
\(915\) 0 0
\(916\) 10.0000 + 17.3205i 0.330409 + 0.572286i
\(917\) −2.00000 1.73205i −0.0660458 0.0571974i
\(918\) 0 0
\(919\) 16.0000 27.7128i 0.527791 0.914161i −0.471684 0.881768i \(-0.656354\pi\)
0.999475 0.0323936i \(-0.0103130\pi\)
\(920\) −2.00000 + 3.46410i −0.0659380 + 0.114208i
\(921\) 0 0
\(922\) 7.00000 + 12.1244i 0.230533 + 0.399294i
\(923\) 0 0
\(924\) 0 0
\(925\) −8.00000 13.8564i −0.263038 0.455596i
\(926\) 8.00000 13.8564i 0.262896 0.455350i
\(927\) 0 0
\(928\) 2.50000 + 4.33013i 0.0820665 + 0.142143i
\(929\) 6.00000 0.196854 0.0984268 0.995144i \(-0.468619\pi\)
0.0984268 + 0.995144i \(0.468619\pi\)
\(930\) 0 0
\(931\) 8.00000 + 55.4256i 0.262189 + 1.81650i
\(932\) −2.00000 + 3.46410i −0.0655122 + 0.113470i
\(933\) 0 0
\(934\) 10.0000 17.3205i 0.327210 0.566744i
\(935\) −10.0000 17.3205i −0.327035 0.566441i
\(936\) 0 0
\(937\) 35.0000 1.14340 0.571700 0.820463i \(-0.306284\pi\)
0.571700 + 0.820463i \(0.306284\pi\)
\(938\) −5.00000 + 1.73205i −0.163256 + 0.0565535i
\(939\) 0 0
\(940\) 3.00000 + 5.19615i 0.0978492 + 0.169480i
\(941\) 11.0000 0.358590 0.179295 0.983795i \(-0.442618\pi\)
0.179295 + 0.983795i \(0.442618\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 11.0000 0.358020
\(945\) 0 0
\(946\) 10.0000 0.325128
\(947\) 32.0000 1.03986 0.519930 0.854209i \(-0.325958\pi\)
0.519930 + 0.854209i \(0.325958\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −16.0000 27.7128i −0.519109 0.899122i
\(951\) 0 0
\(952\) −8.00000 6.92820i −0.259281 0.224544i
\(953\) −2.00000 −0.0647864 −0.0323932 0.999475i \(-0.510313\pi\)
−0.0323932 + 0.999475i \(0.510313\pi\)
\(954\) 0 0
\(955\) −12.0000 20.7846i −0.388311 0.672574i
\(956\) −6.00000 + 10.3923i −0.194054 + 0.336111i
\(957\) 0 0
\(958\) −19.0000 + 32.9090i −0.613862 + 1.06324i
\(959\) 1.00000 5.19615i 0.0322917 0.167793i
\(960\) 0 0
\(961\) −22.0000 −0.709677
\(962\) 0 0
\(963\) 0 0
\(964\) 12.5000 21.6506i 0.402598 0.697320i
\(965\) 2.50000 + 4.33013i 0.0804778 + 0.139392i
\(966\) 0 0
\(967\) 30.5000 52.8275i 0.980814 1.69882i 0.321578 0.946883i \(-0.395787\pi\)
0.659236 0.751936i \(-0.270880\pi\)
\(968\) 7.00000 + 12.1244i 0.224989 + 0.389692i
\(969\) 0 0
\(970\) −3.50000 + 6.06218i −0.112378 + 0.194645i
\(971\) 7.50000 12.9904i 0.240686 0.416881i −0.720224 0.693742i \(-0.755961\pi\)
0.960910 + 0.276861i \(0.0892941\pi\)
\(972\) 0 0
\(973\) −7.00000 + 36.3731i −0.224410 + 1.16607i
\(974\) 2.50000 + 4.33013i 0.0801052 + 0.138746i
\(975\) 0 0
\(976\) −6.00000 −0.192055
\(977\) 30.0000 0.959785 0.479893 0.877327i \(-0.340676\pi\)
0.479893 + 0.877327i \(0.340676\pi\)
\(978\) 0 0
\(979\) 15.0000 + 25.9808i 0.479402 + 0.830349i
\(980\) 6.50000 + 2.59808i 0.207635 + 0.0829925i
\(981\) 0 0
\(982\) −4.50000 + 7.79423i −0.143601 + 0.248724i
\(983\) −30.0000 + 51.9615i −0.956851 + 1.65732i −0.226778 + 0.973946i \(0.572819\pi\)
−0.730073 + 0.683369i \(0.760514\pi\)
\(984\) 0 0
\(985\) −1.00000 1.73205i −0.0318626 0.0551877i
\(986\) 10.0000 17.3205i 0.318465 0.551597i
\(987\) 0 0
\(988\) 0 0
\(989\) −4.00000 + 6.92820i −0.127193 + 0.220304i
\(990\) 0 0
\(991\) −23.5000 40.7032i −0.746502 1.29298i −0.949490 0.313798i \(-0.898398\pi\)
0.202988 0.979181i \(-0.434935\pi\)
\(992\) −3.00000 −0.0952501
\(993\) 0 0
\(994\) −5.00000 + 1.73205i −0.158590 + 0.0549373i
\(995\) −2.00000 + 3.46410i −0.0634043 + 0.109819i
\(996\) 0 0
\(997\) −19.0000 + 32.9090i −0.601736 + 1.04224i 0.390822 + 0.920466i \(0.372191\pi\)
−0.992558 + 0.121771i \(0.961143\pi\)
\(998\) 5.00000 + 8.66025i 0.158272 + 0.274136i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1134.2.e.e.919.1 2
3.2 odd 2 1134.2.e.l.919.1 2
7.4 even 3 1134.2.h.l.109.1 2
9.2 odd 6 1134.2.h.e.541.1 2
9.4 even 3 126.2.g.c.37.1 2
9.5 odd 6 42.2.e.a.37.1 yes 2
9.7 even 3 1134.2.h.l.541.1 2
21.11 odd 6 1134.2.h.e.109.1 2
36.23 even 6 336.2.q.b.289.1 2
36.31 odd 6 1008.2.s.k.289.1 2
45.14 odd 6 1050.2.i.l.751.1 2
45.23 even 12 1050.2.o.a.499.2 4
45.32 even 12 1050.2.o.a.499.1 4
63.4 even 3 126.2.g.c.109.1 2
63.5 even 6 294.2.a.f.1.1 1
63.11 odd 6 1134.2.e.l.865.1 2
63.13 odd 6 882.2.g.i.667.1 2
63.23 odd 6 294.2.a.e.1.1 1
63.25 even 3 inner 1134.2.e.e.865.1 2
63.31 odd 6 882.2.g.i.361.1 2
63.32 odd 6 42.2.e.a.25.1 2
63.40 odd 6 882.2.a.d.1.1 1
63.41 even 6 294.2.e.b.79.1 2
63.58 even 3 882.2.a.c.1.1 1
63.59 even 6 294.2.e.b.67.1 2
72.5 odd 6 1344.2.q.g.961.1 2
72.59 even 6 1344.2.q.s.961.1 2
252.23 even 6 2352.2.a.t.1.1 1
252.59 odd 6 2352.2.q.u.1537.1 2
252.67 odd 6 1008.2.s.k.865.1 2
252.95 even 6 336.2.q.b.193.1 2
252.103 even 6 7056.2.a.bl.1.1 1
252.131 odd 6 2352.2.a.f.1.1 1
252.167 odd 6 2352.2.q.u.961.1 2
252.247 odd 6 7056.2.a.w.1.1 1
315.32 even 12 1050.2.o.a.949.2 4
315.149 odd 6 7350.2.a.bl.1.1 1
315.158 even 12 1050.2.o.a.949.1 4
315.194 even 6 7350.2.a.q.1.1 1
315.284 odd 6 1050.2.i.l.151.1 2
504.5 even 6 9408.2.a.z.1.1 1
504.131 odd 6 9408.2.a.cr.1.1 1
504.149 odd 6 9408.2.a.ce.1.1 1
504.221 odd 6 1344.2.q.g.193.1 2
504.275 even 6 9408.2.a.q.1.1 1
504.347 even 6 1344.2.q.s.193.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.2.e.a.25.1 2 63.32 odd 6
42.2.e.a.37.1 yes 2 9.5 odd 6
126.2.g.c.37.1 2 9.4 even 3
126.2.g.c.109.1 2 63.4 even 3
294.2.a.e.1.1 1 63.23 odd 6
294.2.a.f.1.1 1 63.5 even 6
294.2.e.b.67.1 2 63.59 even 6
294.2.e.b.79.1 2 63.41 even 6
336.2.q.b.193.1 2 252.95 even 6
336.2.q.b.289.1 2 36.23 even 6
882.2.a.c.1.1 1 63.58 even 3
882.2.a.d.1.1 1 63.40 odd 6
882.2.g.i.361.1 2 63.31 odd 6
882.2.g.i.667.1 2 63.13 odd 6
1008.2.s.k.289.1 2 36.31 odd 6
1008.2.s.k.865.1 2 252.67 odd 6
1050.2.i.l.151.1 2 315.284 odd 6
1050.2.i.l.751.1 2 45.14 odd 6
1050.2.o.a.499.1 4 45.32 even 12
1050.2.o.a.499.2 4 45.23 even 12
1050.2.o.a.949.1 4 315.158 even 12
1050.2.o.a.949.2 4 315.32 even 12
1134.2.e.e.865.1 2 63.25 even 3 inner
1134.2.e.e.919.1 2 1.1 even 1 trivial
1134.2.e.l.865.1 2 63.11 odd 6
1134.2.e.l.919.1 2 3.2 odd 2
1134.2.h.e.109.1 2 21.11 odd 6
1134.2.h.e.541.1 2 9.2 odd 6
1134.2.h.l.109.1 2 7.4 even 3
1134.2.h.l.541.1 2 9.7 even 3
1344.2.q.g.193.1 2 504.221 odd 6
1344.2.q.g.961.1 2 72.5 odd 6
1344.2.q.s.193.1 2 504.347 even 6
1344.2.q.s.961.1 2 72.59 even 6
2352.2.a.f.1.1 1 252.131 odd 6
2352.2.a.t.1.1 1 252.23 even 6
2352.2.q.u.961.1 2 252.167 odd 6
2352.2.q.u.1537.1 2 252.59 odd 6
7056.2.a.w.1.1 1 252.247 odd 6
7056.2.a.bl.1.1 1 252.103 even 6
7350.2.a.q.1.1 1 315.194 even 6
7350.2.a.bl.1.1 1 315.149 odd 6
9408.2.a.q.1.1 1 504.275 even 6
9408.2.a.z.1.1 1 504.5 even 6
9408.2.a.ce.1.1 1 504.149 odd 6
9408.2.a.cr.1.1 1 504.131 odd 6