Properties

Label 1134.2.f.k
Level 11341134
Weight 22
Character orbit 1134.f
Analytic conductor 9.0559.055
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1134,2,Mod(379,1134)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1134, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1134.379");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1134=2347 1134 = 2 \cdot 3^{4} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1134.f (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 9.055035589219.05503558921
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 378)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ6+1)q2ζ6q4+(ζ61)q7q85ζ6q13+ζ6q14+(ζ61)q163q17+2q199ζ6q23+(5ζ6+5)q25+q98+O(q100) q + ( - \zeta_{6} + 1) q^{2} - \zeta_{6} q^{4} + (\zeta_{6} - 1) q^{7} - q^{8} - 5 \zeta_{6} q^{13} + \zeta_{6} q^{14} + (\zeta_{6} - 1) q^{16} - 3 q^{17} + 2 q^{19} - 9 \zeta_{6} q^{23} + ( - 5 \zeta_{6} + 5) q^{25} + \cdots - q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+q2q4q72q85q13+q14q166q17+4q199q23+5q2510q26+2q283q295q31+q323q34+4q37+2q38+2q98+O(q100) 2 q + q^{2} - q^{4} - q^{7} - 2 q^{8} - 5 q^{13} + q^{14} - q^{16} - 6 q^{17} + 4 q^{19} - 9 q^{23} + 5 q^{25} - 10 q^{26} + 2 q^{28} - 3 q^{29} - 5 q^{31} + q^{32} - 3 q^{34} + 4 q^{37} + 2 q^{38}+ \cdots - 2 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1134Z)×\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times.

nn 325325 407407
χ(n)\chi(n) 11 ζ6-\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
379.1
0.500000 + 0.866025i
0.500000 0.866025i
0.500000 0.866025i 0 −0.500000 0.866025i 0 0 −0.500000 + 0.866025i −1.00000 0 0
757.1 0.500000 + 0.866025i 0 −0.500000 + 0.866025i 0 0 −0.500000 0.866025i −1.00000 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1134.2.f.k 2
3.b odd 2 1 1134.2.f.e 2
9.c even 3 1 378.2.a.d 1
9.c even 3 1 inner 1134.2.f.k 2
9.d odd 6 1 378.2.a.e yes 1
9.d odd 6 1 1134.2.f.e 2
36.f odd 6 1 3024.2.a.o 1
36.h even 6 1 3024.2.a.p 1
45.h odd 6 1 9450.2.a.l 1
45.j even 6 1 9450.2.a.cl 1
63.l odd 6 1 2646.2.a.f 1
63.o even 6 1 2646.2.a.y 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
378.2.a.d 1 9.c even 3 1
378.2.a.e yes 1 9.d odd 6 1
1134.2.f.e 2 3.b odd 2 1
1134.2.f.e 2 9.d odd 6 1
1134.2.f.k 2 1.a even 1 1 trivial
1134.2.f.k 2 9.c even 3 1 inner
2646.2.a.f 1 63.l odd 6 1
2646.2.a.y 1 63.o even 6 1
3024.2.a.o 1 36.f odd 6 1
3024.2.a.p 1 36.h even 6 1
9450.2.a.l 1 45.h odd 6 1
9450.2.a.cl 1 45.j even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1134,[χ])S_{2}^{\mathrm{new}}(1134, [\chi]):

T5 T_{5} Copy content Toggle raw display
T11 T_{11} Copy content Toggle raw display
T132+5T13+25 T_{13}^{2} + 5T_{13} + 25 Copy content Toggle raw display
T17+3 T_{17} + 3 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2+5T+25 T^{2} + 5T + 25 Copy content Toggle raw display
1717 (T+3)2 (T + 3)^{2} Copy content Toggle raw display
1919 (T2)2 (T - 2)^{2} Copy content Toggle raw display
2323 T2+9T+81 T^{2} + 9T + 81 Copy content Toggle raw display
2929 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
3131 T2+5T+25 T^{2} + 5T + 25 Copy content Toggle raw display
3737 (T2)2 (T - 2)^{2} Copy content Toggle raw display
4141 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
4343 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
4747 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
5353 (T+3)2 (T + 3)^{2} Copy content Toggle raw display
5959 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
6161 T210T+100 T^{2} - 10T + 100 Copy content Toggle raw display
6767 T213T+169 T^{2} - 13T + 169 Copy content Toggle raw display
7171 (T+9)2 (T + 9)^{2} Copy content Toggle raw display
7373 (T2)2 (T - 2)^{2} Copy content Toggle raw display
7979 T210T+100 T^{2} - 10T + 100 Copy content Toggle raw display
8383 T2+12T+144 T^{2} + 12T + 144 Copy content Toggle raw display
8989 (T+15)2 (T + 15)^{2} Copy content Toggle raw display
9797 T2+8T+64 T^{2} + 8T + 64 Copy content Toggle raw display
show more
show less