Properties

Label 1134.2.f.k
Level $1134$
Weight $2$
Character orbit 1134.f
Analytic conductor $9.055$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1134,2,Mod(379,1134)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1134, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1134.379");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1134.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.05503558921\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 378)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{6} + 1) q^{2} - \zeta_{6} q^{4} + (\zeta_{6} - 1) q^{7} - q^{8} +O(q^{10}) \) Copy content Toggle raw display \( q + ( - \zeta_{6} + 1) q^{2} - \zeta_{6} q^{4} + (\zeta_{6} - 1) q^{7} - q^{8} - 5 \zeta_{6} q^{13} + \zeta_{6} q^{14} + (\zeta_{6} - 1) q^{16} - 3 q^{17} + 2 q^{19} - 9 \zeta_{6} q^{23} + ( - 5 \zeta_{6} + 5) q^{25} - 5 q^{26} + q^{28} + (3 \zeta_{6} - 3) q^{29} - 5 \zeta_{6} q^{31} + \zeta_{6} q^{32} + (3 \zeta_{6} - 3) q^{34} + 2 q^{37} + ( - 2 \zeta_{6} + 2) q^{38} - 6 \zeta_{6} q^{41} + ( - \zeta_{6} + 1) q^{43} - 9 q^{46} + (6 \zeta_{6} - 6) q^{47} - \zeta_{6} q^{49} - 5 \zeta_{6} q^{50} + (5 \zeta_{6} - 5) q^{52} - 3 q^{53} + ( - \zeta_{6} + 1) q^{56} + 3 \zeta_{6} q^{58} - 3 \zeta_{6} q^{59} + ( - 10 \zeta_{6} + 10) q^{61} - 5 q^{62} + q^{64} + 13 \zeta_{6} q^{67} + 3 \zeta_{6} q^{68} - 9 q^{71} + 2 q^{73} + ( - 2 \zeta_{6} + 2) q^{74} - 2 \zeta_{6} q^{76} + ( - 10 \zeta_{6} + 10) q^{79} - 6 q^{82} + (12 \zeta_{6} - 12) q^{83} - \zeta_{6} q^{86} - 15 q^{89} + 5 q^{91} + (9 \zeta_{6} - 9) q^{92} + 6 \zeta_{6} q^{94} + (8 \zeta_{6} - 8) q^{97} - q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{4} - q^{7} - 2 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{2} - q^{4} - q^{7} - 2 q^{8} - 5 q^{13} + q^{14} - q^{16} - 6 q^{17} + 4 q^{19} - 9 q^{23} + 5 q^{25} - 10 q^{26} + 2 q^{28} - 3 q^{29} - 5 q^{31} + q^{32} - 3 q^{34} + 4 q^{37} + 2 q^{38} - 6 q^{41} + q^{43} - 18 q^{46} - 6 q^{47} - q^{49} - 5 q^{50} - 5 q^{52} - 6 q^{53} + q^{56} + 3 q^{58} - 3 q^{59} + 10 q^{61} - 10 q^{62} + 2 q^{64} + 13 q^{67} + 3 q^{68} - 18 q^{71} + 4 q^{73} + 2 q^{74} - 2 q^{76} + 10 q^{79} - 12 q^{82} - 12 q^{83} - q^{86} - 30 q^{89} + 10 q^{91} - 9 q^{92} + 6 q^{94} - 8 q^{97} - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
379.1
0.500000 + 0.866025i
0.500000 0.866025i
0.500000 0.866025i 0 −0.500000 0.866025i 0 0 −0.500000 + 0.866025i −1.00000 0 0
757.1 0.500000 + 0.866025i 0 −0.500000 + 0.866025i 0 0 −0.500000 0.866025i −1.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1134.2.f.k 2
3.b odd 2 1 1134.2.f.e 2
9.c even 3 1 378.2.a.d 1
9.c even 3 1 inner 1134.2.f.k 2
9.d odd 6 1 378.2.a.e yes 1
9.d odd 6 1 1134.2.f.e 2
36.f odd 6 1 3024.2.a.o 1
36.h even 6 1 3024.2.a.p 1
45.h odd 6 1 9450.2.a.l 1
45.j even 6 1 9450.2.a.cl 1
63.l odd 6 1 2646.2.a.f 1
63.o even 6 1 2646.2.a.y 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
378.2.a.d 1 9.c even 3 1
378.2.a.e yes 1 9.d odd 6 1
1134.2.f.e 2 3.b odd 2 1
1134.2.f.e 2 9.d odd 6 1
1134.2.f.k 2 1.a even 1 1 trivial
1134.2.f.k 2 9.c even 3 1 inner
2646.2.a.f 1 63.l odd 6 1
2646.2.a.y 1 63.o even 6 1
3024.2.a.o 1 36.f odd 6 1
3024.2.a.p 1 36.h even 6 1
9450.2.a.l 1 45.h odd 6 1
9450.2.a.cl 1 45.j even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1134, [\chi])\):

\( T_{5} \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display
\( T_{13}^{2} + 5T_{13} + 25 \) Copy content Toggle raw display
\( T_{17} + 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 5T + 25 \) Copy content Toggle raw display
$17$ \( (T + 3)^{2} \) Copy content Toggle raw display
$19$ \( (T - 2)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 9T + 81 \) Copy content Toggle raw display
$29$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$31$ \( T^{2} + 5T + 25 \) Copy content Toggle raw display
$37$ \( (T - 2)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$43$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$47$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$53$ \( (T + 3)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$61$ \( T^{2} - 10T + 100 \) Copy content Toggle raw display
$67$ \( T^{2} - 13T + 169 \) Copy content Toggle raw display
$71$ \( (T + 9)^{2} \) Copy content Toggle raw display
$73$ \( (T - 2)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} - 10T + 100 \) Copy content Toggle raw display
$83$ \( T^{2} + 12T + 144 \) Copy content Toggle raw display
$89$ \( (T + 15)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 8T + 64 \) Copy content Toggle raw display
show more
show less