Properties

Label 1134.2.t.e.1025.2
Level $1134$
Weight $2$
Character 1134.1025
Analytic conductor $9.055$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1134,2,Mod(593,1134)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1134, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1134.593");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1134.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.05503558921\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1025.2
Root \(-0.258819 - 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 1134.1025
Dual form 1134.2.t.e.593.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(0.500000 + 0.866025i) q^{4} +0.717439 q^{5} +(-1.00000 - 2.44949i) q^{7} -1.00000i q^{8} +(-0.621320 - 0.358719i) q^{10} +3.00000i q^{11} +(-2.12132 - 1.22474i) q^{13} +(-0.358719 + 2.62132i) q^{14} +(-0.500000 + 0.866025i) q^{16} +(-2.95680 + 5.12132i) q^{17} +(-5.12132 + 2.95680i) q^{19} +(0.358719 + 0.621320i) q^{20} +(1.50000 - 2.59808i) q^{22} +4.24264i q^{23} -4.48528 q^{25} +(1.22474 + 2.12132i) q^{26} +(1.62132 - 2.09077i) q^{28} +(6.27231 - 3.62132i) q^{29} +(7.86396 - 4.54026i) q^{31} +(0.866025 - 0.500000i) q^{32} +(5.12132 - 2.95680i) q^{34} +(-0.717439 - 1.75736i) q^{35} +(0.121320 + 0.210133i) q^{37} +5.91359 q^{38} -0.717439i q^{40} +(-5.91359 + 10.2426i) q^{41} +(0.121320 + 0.210133i) q^{43} +(-2.59808 + 1.50000i) q^{44} +(2.12132 - 3.67423i) q^{46} +(-2.95680 + 5.12132i) q^{47} +(-5.00000 + 4.89898i) q^{49} +(3.88437 + 2.24264i) q^{50} -2.44949i q^{52} +(-6.27231 - 3.62132i) q^{53} +2.15232i q^{55} +(-2.44949 + 1.00000i) q^{56} -7.24264 q^{58} +(4.03295 + 6.98528i) q^{59} +(-0.878680 - 0.507306i) q^{61} -9.08052 q^{62} -1.00000 q^{64} +(-1.52192 - 0.878680i) q^{65} +(5.00000 + 8.66025i) q^{67} -5.91359 q^{68} +(-0.257359 + 1.88064i) q^{70} -1.75736i q^{71} +(-1.24264 - 0.717439i) q^{73} -0.242641i q^{74} +(-5.12132 - 2.95680i) q^{76} +(7.34847 - 3.00000i) q^{77} +(1.37868 - 2.38794i) q^{79} +(-0.358719 + 0.621320i) q^{80} +(10.2426 - 5.91359i) q^{82} +(-3.31552 - 5.74264i) q^{83} +(-2.12132 + 3.67423i) q^{85} -0.242641i q^{86} +3.00000 q^{88} +(5.19615 + 9.00000i) q^{89} +(-0.878680 + 6.42090i) q^{91} +(-3.67423 + 2.12132i) q^{92} +(5.12132 - 2.95680i) q^{94} +(-3.67423 + 2.12132i) q^{95} +(-11.7426 + 6.77962i) q^{97} +(6.77962 - 1.74264i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{4} - 8 q^{7} + 12 q^{10} - 4 q^{16} - 24 q^{19} + 12 q^{22} + 32 q^{25} - 4 q^{28} + 12 q^{31} + 24 q^{34} - 16 q^{37} - 16 q^{43} - 40 q^{49} - 24 q^{58} - 24 q^{61} - 8 q^{64} + 40 q^{67} - 36 q^{70}+ \cdots - 60 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) 0 0
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 0.717439 0.320848 0.160424 0.987048i \(-0.448714\pi\)
0.160424 + 0.987048i \(0.448714\pi\)
\(6\) 0 0
\(7\) −1.00000 2.44949i −0.377964 0.925820i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −0.621320 0.358719i −0.196479 0.113437i
\(11\) 3.00000i 0.904534i 0.891883 + 0.452267i \(0.149385\pi\)
−0.891883 + 0.452267i \(0.850615\pi\)
\(12\) 0 0
\(13\) −2.12132 1.22474i −0.588348 0.339683i 0.176096 0.984373i \(-0.443653\pi\)
−0.764444 + 0.644690i \(0.776986\pi\)
\(14\) −0.358719 + 2.62132i −0.0958718 + 0.700577i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −2.95680 + 5.12132i −0.717128 + 1.24210i 0.245005 + 0.969522i \(0.421211\pi\)
−0.962133 + 0.272581i \(0.912123\pi\)
\(18\) 0 0
\(19\) −5.12132 + 2.95680i −1.17491 + 0.678335i −0.954832 0.297146i \(-0.903965\pi\)
−0.220080 + 0.975482i \(0.570632\pi\)
\(20\) 0.358719 + 0.621320i 0.0802121 + 0.138931i
\(21\) 0 0
\(22\) 1.50000 2.59808i 0.319801 0.553912i
\(23\) 4.24264i 0.884652i 0.896854 + 0.442326i \(0.145847\pi\)
−0.896854 + 0.442326i \(0.854153\pi\)
\(24\) 0 0
\(25\) −4.48528 −0.897056
\(26\) 1.22474 + 2.12132i 0.240192 + 0.416025i
\(27\) 0 0
\(28\) 1.62132 2.09077i 0.306401 0.395118i
\(29\) 6.27231 3.62132i 1.16474 0.672462i 0.212304 0.977204i \(-0.431903\pi\)
0.952435 + 0.304741i \(0.0985700\pi\)
\(30\) 0 0
\(31\) 7.86396 4.54026i 1.41241 0.815455i 0.416794 0.909001i \(-0.363154\pi\)
0.995615 + 0.0935461i \(0.0298203\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) 0 0
\(34\) 5.12132 2.95680i 0.878299 0.507086i
\(35\) −0.717439 1.75736i −0.121269 0.297048i
\(36\) 0 0
\(37\) 0.121320 + 0.210133i 0.0199449 + 0.0345457i 0.875826 0.482628i \(-0.160318\pi\)
−0.855881 + 0.517173i \(0.826984\pi\)
\(38\) 5.91359 0.959311
\(39\) 0 0
\(40\) 0.717439i 0.113437i
\(41\) −5.91359 + 10.2426i −0.923548 + 1.59963i −0.129668 + 0.991558i \(0.541391\pi\)
−0.793880 + 0.608074i \(0.791942\pi\)
\(42\) 0 0
\(43\) 0.121320 + 0.210133i 0.0185012 + 0.0320450i 0.875128 0.483892i \(-0.160777\pi\)
−0.856627 + 0.515937i \(0.827444\pi\)
\(44\) −2.59808 + 1.50000i −0.391675 + 0.226134i
\(45\) 0 0
\(46\) 2.12132 3.67423i 0.312772 0.541736i
\(47\) −2.95680 + 5.12132i −0.431293 + 0.747021i −0.996985 0.0775953i \(-0.975276\pi\)
0.565692 + 0.824617i \(0.308609\pi\)
\(48\) 0 0
\(49\) −5.00000 + 4.89898i −0.714286 + 0.699854i
\(50\) 3.88437 + 2.24264i 0.549333 + 0.317157i
\(51\) 0 0
\(52\) 2.44949i 0.339683i
\(53\) −6.27231 3.62132i −0.861568 0.497427i 0.00296896 0.999996i \(-0.499055\pi\)
−0.864537 + 0.502569i \(0.832388\pi\)
\(54\) 0 0
\(55\) 2.15232i 0.290218i
\(56\) −2.44949 + 1.00000i −0.327327 + 0.133631i
\(57\) 0 0
\(58\) −7.24264 −0.951005
\(59\) 4.03295 + 6.98528i 0.525046 + 0.909406i 0.999575 + 0.0291661i \(0.00928518\pi\)
−0.474529 + 0.880240i \(0.657381\pi\)
\(60\) 0 0
\(61\) −0.878680 0.507306i −0.112503 0.0649539i 0.442692 0.896674i \(-0.354023\pi\)
−0.555196 + 0.831720i \(0.687357\pi\)
\(62\) −9.08052 −1.15323
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −1.52192 0.878680i −0.188771 0.108987i
\(66\) 0 0
\(67\) 5.00000 + 8.66025i 0.610847 + 1.05802i 0.991098 + 0.133135i \(0.0425044\pi\)
−0.380251 + 0.924883i \(0.624162\pi\)
\(68\) −5.91359 −0.717128
\(69\) 0 0
\(70\) −0.257359 + 1.88064i −0.0307603 + 0.224779i
\(71\) 1.75736i 0.208560i −0.994548 0.104280i \(-0.966746\pi\)
0.994548 0.104280i \(-0.0332538\pi\)
\(72\) 0 0
\(73\) −1.24264 0.717439i −0.145440 0.0839699i 0.425514 0.904952i \(-0.360093\pi\)
−0.570954 + 0.820982i \(0.693427\pi\)
\(74\) 0.242641i 0.0282064i
\(75\) 0 0
\(76\) −5.12132 2.95680i −0.587456 0.339168i
\(77\) 7.34847 3.00000i 0.837436 0.341882i
\(78\) 0 0
\(79\) 1.37868 2.38794i 0.155114 0.268665i −0.777987 0.628281i \(-0.783759\pi\)
0.933100 + 0.359616i \(0.117092\pi\)
\(80\) −0.358719 + 0.621320i −0.0401061 + 0.0694657i
\(81\) 0 0
\(82\) 10.2426 5.91359i 1.13111 0.653047i
\(83\) −3.31552 5.74264i −0.363925 0.630337i 0.624678 0.780882i \(-0.285230\pi\)
−0.988603 + 0.150546i \(0.951897\pi\)
\(84\) 0 0
\(85\) −2.12132 + 3.67423i −0.230089 + 0.398527i
\(86\) 0.242641i 0.0261646i
\(87\) 0 0
\(88\) 3.00000 0.319801
\(89\) 5.19615 + 9.00000i 0.550791 + 0.953998i 0.998218 + 0.0596775i \(0.0190072\pi\)
−0.447427 + 0.894321i \(0.647659\pi\)
\(90\) 0 0
\(91\) −0.878680 + 6.42090i −0.0921107 + 0.673093i
\(92\) −3.67423 + 2.12132i −0.383065 + 0.221163i
\(93\) 0 0
\(94\) 5.12132 2.95680i 0.528224 0.304970i
\(95\) −3.67423 + 2.12132i −0.376969 + 0.217643i
\(96\) 0 0
\(97\) −11.7426 + 6.77962i −1.19228 + 0.688366i −0.958824 0.284001i \(-0.908338\pi\)
−0.233460 + 0.972366i \(0.575005\pi\)
\(98\) 6.77962 1.74264i 0.684845 0.176033i
\(99\) 0 0
\(100\) −2.24264 3.88437i −0.224264 0.388437i
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 5.49333i 0.541273i −0.962682 0.270637i \(-0.912766\pi\)
0.962682 0.270637i \(-0.0872342\pi\)
\(104\) −1.22474 + 2.12132i −0.120096 + 0.208013i
\(105\) 0 0
\(106\) 3.62132 + 6.27231i 0.351734 + 0.609221i
\(107\) −9.94655 + 5.74264i −0.961569 + 0.555162i −0.896656 0.442729i \(-0.854010\pi\)
−0.0649133 + 0.997891i \(0.520677\pi\)
\(108\) 0 0
\(109\) −9.24264 + 16.0087i −0.885284 + 1.53336i −0.0398971 + 0.999204i \(0.512703\pi\)
−0.845387 + 0.534154i \(0.820630\pi\)
\(110\) 1.07616 1.86396i 0.102608 0.177722i
\(111\) 0 0
\(112\) 2.62132 + 0.358719i 0.247691 + 0.0338958i
\(113\) −7.34847 4.24264i −0.691286 0.399114i 0.112808 0.993617i \(-0.464016\pi\)
−0.804094 + 0.594503i \(0.797349\pi\)
\(114\) 0 0
\(115\) 3.04384i 0.283839i
\(116\) 6.27231 + 3.62132i 0.582369 + 0.336231i
\(117\) 0 0
\(118\) 8.06591i 0.742527i
\(119\) 15.5014 + 2.12132i 1.42101 + 0.194461i
\(120\) 0 0
\(121\) 2.00000 0.181818
\(122\) 0.507306 + 0.878680i 0.0459293 + 0.0795519i
\(123\) 0 0
\(124\) 7.86396 + 4.54026i 0.706205 + 0.407727i
\(125\) −6.80511 −0.608668
\(126\) 0 0
\(127\) 3.24264 0.287738 0.143869 0.989597i \(-0.454046\pi\)
0.143869 + 0.989597i \(0.454046\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) 0.878680 + 1.52192i 0.0770653 + 0.133481i
\(131\) 5.19615 0.453990 0.226995 0.973896i \(-0.427110\pi\)
0.226995 + 0.973896i \(0.427110\pi\)
\(132\) 0 0
\(133\) 12.3640 + 9.58783i 1.07209 + 0.831370i
\(134\) 10.0000i 0.863868i
\(135\) 0 0
\(136\) 5.12132 + 2.95680i 0.439150 + 0.253543i
\(137\) 2.48528i 0.212332i 0.994348 + 0.106166i \(0.0338575\pi\)
−0.994348 + 0.106166i \(0.966143\pi\)
\(138\) 0 0
\(139\) −0.514719 0.297173i −0.0436579 0.0252059i 0.478012 0.878353i \(-0.341357\pi\)
−0.521670 + 0.853147i \(0.674691\pi\)
\(140\) 1.16320 1.50000i 0.0983082 0.126773i
\(141\) 0 0
\(142\) −0.878680 + 1.52192i −0.0737372 + 0.127717i
\(143\) 3.67423 6.36396i 0.307255 0.532181i
\(144\) 0 0
\(145\) 4.50000 2.59808i 0.373705 0.215758i
\(146\) 0.717439 + 1.24264i 0.0593757 + 0.102842i
\(147\) 0 0
\(148\) −0.121320 + 0.210133i −0.00997247 + 0.0172728i
\(149\) 3.51472i 0.287937i −0.989582 0.143968i \(-0.954014\pi\)
0.989582 0.143968i \(-0.0459864\pi\)
\(150\) 0 0
\(151\) 5.24264 0.426640 0.213320 0.976982i \(-0.431572\pi\)
0.213320 + 0.976982i \(0.431572\pi\)
\(152\) 2.95680 + 5.12132i 0.239828 + 0.415394i
\(153\) 0 0
\(154\) −7.86396 1.07616i −0.633696 0.0867193i
\(155\) 5.64191 3.25736i 0.453169 0.261637i
\(156\) 0 0
\(157\) −12.7279 + 7.34847i −1.01580 + 0.586472i −0.912884 0.408219i \(-0.866150\pi\)
−0.102915 + 0.994690i \(0.532817\pi\)
\(158\) −2.38794 + 1.37868i −0.189975 + 0.109682i
\(159\) 0 0
\(160\) 0.621320 0.358719i 0.0491197 0.0283593i
\(161\) 10.3923 4.24264i 0.819028 0.334367i
\(162\) 0 0
\(163\) 1.12132 + 1.94218i 0.0878286 + 0.152124i 0.906593 0.422006i \(-0.138674\pi\)
−0.818764 + 0.574130i \(0.805341\pi\)
\(164\) −11.8272 −0.923548
\(165\) 0 0
\(166\) 6.63103i 0.514668i
\(167\) 8.06591 13.9706i 0.624159 1.08107i −0.364544 0.931186i \(-0.618775\pi\)
0.988703 0.149889i \(-0.0478915\pi\)
\(168\) 0 0
\(169\) −3.50000 6.06218i −0.269231 0.466321i
\(170\) 3.67423 2.12132i 0.281801 0.162698i
\(171\) 0 0
\(172\) −0.121320 + 0.210133i −0.00925059 + 0.0160225i
\(173\) −10.3923 + 18.0000i −0.790112 + 1.36851i 0.135785 + 0.990738i \(0.456644\pi\)
−0.925897 + 0.377776i \(0.876689\pi\)
\(174\) 0 0
\(175\) 4.48528 + 10.9867i 0.339055 + 0.830513i
\(176\) −2.59808 1.50000i −0.195837 0.113067i
\(177\) 0 0
\(178\) 10.3923i 0.778936i
\(179\) 22.9369 + 13.2426i 1.71439 + 0.989801i 0.928420 + 0.371532i \(0.121167\pi\)
0.785966 + 0.618269i \(0.212166\pi\)
\(180\) 0 0
\(181\) 11.8272i 0.879108i −0.898216 0.439554i \(-0.855137\pi\)
0.898216 0.439554i \(-0.144863\pi\)
\(182\) 3.97141 5.12132i 0.294380 0.379618i
\(183\) 0 0
\(184\) 4.24264 0.312772
\(185\) 0.0870399 + 0.150758i 0.00639930 + 0.0110839i
\(186\) 0 0
\(187\) −15.3640 8.87039i −1.12352 0.648667i
\(188\) −5.91359 −0.431293
\(189\) 0 0
\(190\) 4.24264 0.307794
\(191\) −7.34847 4.24264i −0.531717 0.306987i 0.209999 0.977702i \(-0.432654\pi\)
−0.741715 + 0.670715i \(0.765987\pi\)
\(192\) 0 0
\(193\) −4.74264 8.21449i −0.341383 0.591292i 0.643307 0.765608i \(-0.277562\pi\)
−0.984690 + 0.174316i \(0.944229\pi\)
\(194\) 13.5592 0.973496
\(195\) 0 0
\(196\) −6.74264 1.88064i −0.481617 0.134331i
\(197\) 26.4853i 1.88700i −0.331375 0.943499i \(-0.607513\pi\)
0.331375 0.943499i \(-0.392487\pi\)
\(198\) 0 0
\(199\) 19.9706 + 11.5300i 1.41568 + 0.817341i 0.995915 0.0902942i \(-0.0287807\pi\)
0.419761 + 0.907635i \(0.362114\pi\)
\(200\) 4.48528i 0.317157i
\(201\) 0 0
\(202\) 0 0
\(203\) −15.1427 11.7426i −1.06281 0.824172i
\(204\) 0 0
\(205\) −4.24264 + 7.34847i −0.296319 + 0.513239i
\(206\) −2.74666 + 4.75736i −0.191369 + 0.331461i
\(207\) 0 0
\(208\) 2.12132 1.22474i 0.147087 0.0849208i
\(209\) −8.87039 15.3640i −0.613578 1.06275i
\(210\) 0 0
\(211\) 0.121320 0.210133i 0.00835204 0.0144662i −0.861819 0.507216i \(-0.830675\pi\)
0.870171 + 0.492749i \(0.164008\pi\)
\(212\) 7.24264i 0.497427i
\(213\) 0 0
\(214\) 11.4853 0.785118
\(215\) 0.0870399 + 0.150758i 0.00593607 + 0.0102816i
\(216\) 0 0
\(217\) −18.9853 14.7224i −1.28880 0.999424i
\(218\) 16.0087 9.24264i 1.08425 0.625991i
\(219\) 0 0
\(220\) −1.86396 + 1.07616i −0.125668 + 0.0725546i
\(221\) 12.5446 7.24264i 0.843843 0.487193i
\(222\) 0 0
\(223\) −1.86396 + 1.07616i −0.124820 + 0.0720649i −0.561110 0.827741i \(-0.689626\pi\)
0.436290 + 0.899806i \(0.356292\pi\)
\(224\) −2.09077 1.62132i −0.139695 0.108329i
\(225\) 0 0
\(226\) 4.24264 + 7.34847i 0.282216 + 0.488813i
\(227\) −15.5885 −1.03464 −0.517321 0.855791i \(-0.673071\pi\)
−0.517321 + 0.855791i \(0.673071\pi\)
\(228\) 0 0
\(229\) 13.8564i 0.915657i −0.889041 0.457829i \(-0.848627\pi\)
0.889041 0.457829i \(-0.151373\pi\)
\(230\) 1.52192 2.63604i 0.100352 0.173815i
\(231\) 0 0
\(232\) −3.62132 6.27231i −0.237751 0.411797i
\(233\) 16.2189 9.36396i 1.06253 0.613453i 0.136401 0.990654i \(-0.456446\pi\)
0.926132 + 0.377200i \(0.123113\pi\)
\(234\) 0 0
\(235\) −2.12132 + 3.67423i −0.138380 + 0.239681i
\(236\) −4.03295 + 6.98528i −0.262523 + 0.454703i
\(237\) 0 0
\(238\) −12.3640 9.58783i −0.801437 0.621486i
\(239\) −11.0227 6.36396i −0.712999 0.411650i 0.0991712 0.995070i \(-0.468381\pi\)
−0.812171 + 0.583420i \(0.801714\pi\)
\(240\) 0 0
\(241\) 7.22538i 0.465427i −0.972545 0.232714i \(-0.925239\pi\)
0.972545 0.232714i \(-0.0747605\pi\)
\(242\) −1.73205 1.00000i −0.111340 0.0642824i
\(243\) 0 0
\(244\) 1.01461i 0.0649539i
\(245\) −3.58719 + 3.51472i −0.229177 + 0.224547i
\(246\) 0 0
\(247\) 14.4853 0.921676
\(248\) −4.54026 7.86396i −0.288307 0.499362i
\(249\) 0 0
\(250\) 5.89340 + 3.40256i 0.372731 + 0.215196i
\(251\) −27.4156 −1.73046 −0.865230 0.501375i \(-0.832828\pi\)
−0.865230 + 0.501375i \(0.832828\pi\)
\(252\) 0 0
\(253\) −12.7279 −0.800198
\(254\) −2.80821 1.62132i −0.176203 0.101731i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −4.30463 −0.268516 −0.134258 0.990946i \(-0.542865\pi\)
−0.134258 + 0.990946i \(0.542865\pi\)
\(258\) 0 0
\(259\) 0.393398 0.507306i 0.0244446 0.0315225i
\(260\) 1.75736i 0.108987i
\(261\) 0 0
\(262\) −4.50000 2.59808i −0.278011 0.160510i
\(263\) 15.2132i 0.938086i −0.883175 0.469043i \(-0.844599\pi\)
0.883175 0.469043i \(-0.155401\pi\)
\(264\) 0 0
\(265\) −4.50000 2.59808i −0.276433 0.159599i
\(266\) −5.91359 14.4853i −0.362586 0.888150i
\(267\) 0 0
\(268\) −5.00000 + 8.66025i −0.305424 + 0.529009i
\(269\) −6.98975 + 12.1066i −0.426173 + 0.738153i −0.996529 0.0832447i \(-0.973472\pi\)
0.570357 + 0.821397i \(0.306805\pi\)
\(270\) 0 0
\(271\) −5.37868 + 3.10538i −0.326732 + 0.188639i −0.654389 0.756158i \(-0.727074\pi\)
0.327658 + 0.944797i \(0.393741\pi\)
\(272\) −2.95680 5.12132i −0.179282 0.310526i
\(273\) 0 0
\(274\) 1.24264 2.15232i 0.0750707 0.130026i
\(275\) 13.4558i 0.811418i
\(276\) 0 0
\(277\) 12.9706 0.779326 0.389663 0.920958i \(-0.372592\pi\)
0.389663 + 0.920958i \(0.372592\pi\)
\(278\) 0.297173 + 0.514719i 0.0178232 + 0.0308708i
\(279\) 0 0
\(280\) −1.75736 + 0.717439i −0.105022 + 0.0428752i
\(281\) 5.19615 3.00000i 0.309976 0.178965i −0.336939 0.941526i \(-0.609392\pi\)
0.646916 + 0.762561i \(0.276058\pi\)
\(282\) 0 0
\(283\) 18.3640 10.6024i 1.09162 0.630250i 0.157616 0.987501i \(-0.449619\pi\)
0.934008 + 0.357251i \(0.116286\pi\)
\(284\) 1.52192 0.878680i 0.0903092 0.0521400i
\(285\) 0 0
\(286\) −6.36396 + 3.67423i −0.376309 + 0.217262i
\(287\) 31.0028 + 4.24264i 1.83004 + 0.250435i
\(288\) 0 0
\(289\) −8.98528 15.5630i −0.528546 0.915468i
\(290\) −5.19615 −0.305129
\(291\) 0 0
\(292\) 1.43488i 0.0839699i
\(293\) 0.358719 0.621320i 0.0209566 0.0362979i −0.855357 0.518039i \(-0.826662\pi\)
0.876314 + 0.481741i \(0.159995\pi\)
\(294\) 0 0
\(295\) 2.89340 + 5.01151i 0.168460 + 0.291782i
\(296\) 0.210133 0.121320i 0.0122137 0.00705160i
\(297\) 0 0
\(298\) −1.75736 + 3.04384i −0.101801 + 0.176325i
\(299\) 5.19615 9.00000i 0.300501 0.520483i
\(300\) 0 0
\(301\) 0.393398 0.507306i 0.0226751 0.0292406i
\(302\) −4.54026 2.62132i −0.261263 0.150840i
\(303\) 0 0
\(304\) 5.91359i 0.339168i
\(305\) −0.630399 0.363961i −0.0360965 0.0208403i
\(306\) 0 0
\(307\) 9.97204i 0.569134i 0.958656 + 0.284567i \(0.0918499\pi\)
−0.958656 + 0.284567i \(0.908150\pi\)
\(308\) 6.27231 + 4.86396i 0.357398 + 0.277150i
\(309\) 0 0
\(310\) −6.51472 −0.370011
\(311\) −4.47871 7.75736i −0.253965 0.439879i 0.710649 0.703547i \(-0.248401\pi\)
−0.964614 + 0.263667i \(0.915068\pi\)
\(312\) 0 0
\(313\) −15.9853 9.22911i −0.903542 0.521660i −0.0251940 0.999683i \(-0.508020\pi\)
−0.878348 + 0.478023i \(0.841354\pi\)
\(314\) 14.6969 0.829396
\(315\) 0 0
\(316\) 2.75736 0.155114
\(317\) −1.07616 0.621320i −0.0604431 0.0348968i 0.469474 0.882946i \(-0.344444\pi\)
−0.529917 + 0.848050i \(0.677777\pi\)
\(318\) 0 0
\(319\) 10.8640 + 18.8169i 0.608265 + 1.05355i
\(320\) −0.717439 −0.0401061
\(321\) 0 0
\(322\) −11.1213 1.52192i −0.619767 0.0848132i
\(323\) 34.9706i 1.94581i
\(324\) 0 0
\(325\) 9.51472 + 5.49333i 0.527782 + 0.304715i
\(326\) 2.24264i 0.124208i
\(327\) 0 0
\(328\) 10.2426 + 5.91359i 0.565555 + 0.326523i
\(329\) 15.5014 + 2.12132i 0.854621 + 0.116952i
\(330\) 0 0
\(331\) 16.7279 28.9736i 0.919450 1.59253i 0.119197 0.992871i \(-0.461968\pi\)
0.800253 0.599663i \(-0.204699\pi\)
\(332\) 3.31552 5.74264i 0.181963 0.315168i
\(333\) 0 0
\(334\) −13.9706 + 8.06591i −0.764435 + 0.441347i
\(335\) 3.58719 + 6.21320i 0.195989 + 0.339464i
\(336\) 0 0
\(337\) 2.50000 4.33013i 0.136184 0.235877i −0.789865 0.613280i \(-0.789850\pi\)
0.926049 + 0.377403i \(0.123183\pi\)
\(338\) 7.00000i 0.380750i
\(339\) 0 0
\(340\) −4.24264 −0.230089
\(341\) 13.6208 + 23.5919i 0.737607 + 1.27757i
\(342\) 0 0
\(343\) 17.0000 + 7.34847i 0.917914 + 0.396780i
\(344\) 0.210133 0.121320i 0.0113296 0.00654115i
\(345\) 0 0
\(346\) 18.0000 10.3923i 0.967686 0.558694i
\(347\) −2.15232 + 1.24264i −0.115542 + 0.0667084i −0.556657 0.830742i \(-0.687916\pi\)
0.441115 + 0.897451i \(0.354583\pi\)
\(348\) 0 0
\(349\) 1.97056 1.13770i 0.105482 0.0608999i −0.446331 0.894868i \(-0.647270\pi\)
0.551813 + 0.833968i \(0.313936\pi\)
\(350\) 1.60896 11.7574i 0.0860024 0.628457i
\(351\) 0 0
\(352\) 1.50000 + 2.59808i 0.0799503 + 0.138478i
\(353\) 8.95743 0.476756 0.238378 0.971172i \(-0.423384\pi\)
0.238378 + 0.971172i \(0.423384\pi\)
\(354\) 0 0
\(355\) 1.26080i 0.0669162i
\(356\) −5.19615 + 9.00000i −0.275396 + 0.476999i
\(357\) 0 0
\(358\) −13.2426 22.9369i −0.699895 1.21225i
\(359\) −15.5885 + 9.00000i −0.822727 + 0.475002i −0.851356 0.524588i \(-0.824219\pi\)
0.0286287 + 0.999590i \(0.490886\pi\)
\(360\) 0 0
\(361\) 7.98528 13.8309i 0.420278 0.727943i
\(362\) −5.91359 + 10.2426i −0.310811 + 0.538341i
\(363\) 0 0
\(364\) −6.00000 + 2.44949i −0.314485 + 0.128388i
\(365\) −0.891519 0.514719i −0.0466642 0.0269416i
\(366\) 0 0
\(367\) 15.4144i 0.804624i 0.915503 + 0.402312i \(0.131793\pi\)
−0.915503 + 0.402312i \(0.868207\pi\)
\(368\) −3.67423 2.12132i −0.191533 0.110581i
\(369\) 0 0
\(370\) 0.174080i 0.00904998i
\(371\) −2.59808 + 18.9853i −0.134885 + 0.985667i
\(372\) 0 0
\(373\) −29.4558 −1.52517 −0.762583 0.646891i \(-0.776069\pi\)
−0.762583 + 0.646891i \(0.776069\pi\)
\(374\) 8.87039 + 15.3640i 0.458677 + 0.794452i
\(375\) 0 0
\(376\) 5.12132 + 2.95680i 0.264112 + 0.152485i
\(377\) −17.7408 −0.913696
\(378\) 0 0
\(379\) 12.4853 0.641326 0.320663 0.947193i \(-0.396094\pi\)
0.320663 + 0.947193i \(0.396094\pi\)
\(380\) −3.67423 2.12132i −0.188484 0.108821i
\(381\) 0 0
\(382\) 4.24264 + 7.34847i 0.217072 + 0.375980i
\(383\) 22.2195 1.13536 0.567681 0.823248i \(-0.307841\pi\)
0.567681 + 0.823248i \(0.307841\pi\)
\(384\) 0 0
\(385\) 5.27208 2.15232i 0.268690 0.109692i
\(386\) 9.48528i 0.482788i
\(387\) 0 0
\(388\) −11.7426 6.77962i −0.596142 0.344183i
\(389\) 31.4558i 1.59487i 0.603402 + 0.797437i \(0.293812\pi\)
−0.603402 + 0.797437i \(0.706188\pi\)
\(390\) 0 0
\(391\) −21.7279 12.5446i −1.09883 0.634409i
\(392\) 4.89898 + 5.00000i 0.247436 + 0.252538i
\(393\) 0 0
\(394\) −13.2426 + 22.9369i −0.667155 + 1.15555i
\(395\) 0.989118 1.71320i 0.0497680 0.0862006i
\(396\) 0 0
\(397\) 12.0000 6.92820i 0.602263 0.347717i −0.167668 0.985843i \(-0.553624\pi\)
0.769931 + 0.638127i \(0.220290\pi\)
\(398\) −11.5300 19.9706i −0.577947 1.00103i
\(399\) 0 0
\(400\) 2.24264 3.88437i 0.112132 0.194218i
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) −22.2426 −1.10798
\(404\) 0 0
\(405\) 0 0
\(406\) 7.24264 + 17.7408i 0.359446 + 0.880460i
\(407\) −0.630399 + 0.363961i −0.0312477 + 0.0180409i
\(408\) 0 0
\(409\) −12.9853 + 7.49706i −0.642081 + 0.370706i −0.785416 0.618969i \(-0.787551\pi\)
0.143335 + 0.989674i \(0.454217\pi\)
\(410\) 7.34847 4.24264i 0.362915 0.209529i
\(411\) 0 0
\(412\) 4.75736 2.74666i 0.234378 0.135318i
\(413\) 13.0774 16.8640i 0.643498 0.829821i
\(414\) 0 0
\(415\) −2.37868 4.11999i −0.116765 0.202243i
\(416\) −2.44949 −0.120096
\(417\) 0 0
\(418\) 17.7408i 0.867730i
\(419\) −11.8272 + 20.4853i −0.577796 + 1.00077i 0.417936 + 0.908476i \(0.362754\pi\)
−0.995732 + 0.0922950i \(0.970580\pi\)
\(420\) 0 0
\(421\) 7.12132 + 12.3345i 0.347072 + 0.601146i 0.985728 0.168346i \(-0.0538426\pi\)
−0.638656 + 0.769492i \(0.720509\pi\)
\(422\) −0.210133 + 0.121320i −0.0102291 + 0.00590578i
\(423\) 0 0
\(424\) −3.62132 + 6.27231i −0.175867 + 0.304610i
\(425\) 13.2621 22.9706i 0.643304 1.11424i
\(426\) 0 0
\(427\) −0.363961 + 2.65962i −0.0176133 + 0.128708i
\(428\) −9.94655 5.74264i −0.480784 0.277581i
\(429\) 0 0
\(430\) 0.174080i 0.00839488i
\(431\) −3.04384 1.75736i −0.146616 0.0846490i 0.424897 0.905242i \(-0.360310\pi\)
−0.571514 + 0.820593i \(0.693644\pi\)
\(432\) 0 0
\(433\) 3.46410i 0.166474i 0.996530 + 0.0832370i \(0.0265259\pi\)
−0.996530 + 0.0832370i \(0.973474\pi\)
\(434\) 9.08052 + 22.2426i 0.435879 + 1.06768i
\(435\) 0 0
\(436\) −18.4853 −0.885284
\(437\) −12.5446 21.7279i −0.600091 1.03939i
\(438\) 0 0
\(439\) 14.5919 + 8.42463i 0.696433 + 0.402086i 0.806017 0.591892i \(-0.201619\pi\)
−0.109585 + 0.993977i \(0.534952\pi\)
\(440\) 2.15232 0.102608
\(441\) 0 0
\(442\) −14.4853 −0.688995
\(443\) 14.2512 + 8.22792i 0.677094 + 0.390920i 0.798759 0.601651i \(-0.205490\pi\)
−0.121665 + 0.992571i \(0.538823\pi\)
\(444\) 0 0
\(445\) 3.72792 + 6.45695i 0.176720 + 0.306089i
\(446\) 2.15232 0.101915
\(447\) 0 0
\(448\) 1.00000 + 2.44949i 0.0472456 + 0.115728i
\(449\) 1.75736i 0.0829349i −0.999140 0.0414675i \(-0.986797\pi\)
0.999140 0.0414675i \(-0.0132033\pi\)
\(450\) 0 0
\(451\) −30.7279 17.7408i −1.44692 0.835380i
\(452\) 8.48528i 0.399114i
\(453\) 0 0
\(454\) 13.5000 + 7.79423i 0.633586 + 0.365801i
\(455\) −0.630399 + 4.60660i −0.0295536 + 0.215961i
\(456\) 0 0
\(457\) 11.5000 19.9186i 0.537947 0.931752i −0.461067 0.887365i \(-0.652533\pi\)
0.999014 0.0443868i \(-0.0141334\pi\)
\(458\) −6.92820 + 12.0000i −0.323734 + 0.560723i
\(459\) 0 0
\(460\) −2.63604 + 1.52192i −0.122906 + 0.0709598i
\(461\) −16.3059 28.2426i −0.759441 1.31539i −0.943136 0.332408i \(-0.892139\pi\)
0.183695 0.982983i \(-0.441194\pi\)
\(462\) 0 0
\(463\) 14.7279 25.5095i 0.684465 1.18553i −0.289140 0.957287i \(-0.593369\pi\)
0.973605 0.228241i \(-0.0732973\pi\)
\(464\) 7.24264i 0.336231i
\(465\) 0 0
\(466\) −18.7279 −0.867554
\(467\) 19.8931 + 34.4558i 0.920542 + 1.59443i 0.798578 + 0.601892i \(0.205586\pi\)
0.121965 + 0.992534i \(0.461080\pi\)
\(468\) 0 0
\(469\) 16.2132 20.9077i 0.748656 0.965428i
\(470\) 3.67423 2.12132i 0.169480 0.0978492i
\(471\) 0 0
\(472\) 6.98528 4.03295i 0.321524 0.185632i
\(473\) −0.630399 + 0.363961i −0.0289858 + 0.0167349i
\(474\) 0 0
\(475\) 22.9706 13.2621i 1.05396 0.608505i
\(476\) 5.91359 + 14.4853i 0.271049 + 0.663932i
\(477\) 0 0
\(478\) 6.36396 + 11.0227i 0.291081 + 0.504167i
\(479\) −12.0013 −0.548352 −0.274176 0.961680i \(-0.588405\pi\)
−0.274176 + 0.961680i \(0.588405\pi\)
\(480\) 0 0
\(481\) 0.594346i 0.0270998i
\(482\) −3.61269 + 6.25736i −0.164553 + 0.285015i
\(483\) 0 0
\(484\) 1.00000 + 1.73205i 0.0454545 + 0.0787296i
\(485\) −8.42463 + 4.86396i −0.382543 + 0.220861i
\(486\) 0 0
\(487\) 7.10660 12.3090i 0.322031 0.557774i −0.658876 0.752251i \(-0.728968\pi\)
0.980907 + 0.194478i \(0.0623012\pi\)
\(488\) −0.507306 + 0.878680i −0.0229647 + 0.0397760i
\(489\) 0 0
\(490\) 4.86396 1.25024i 0.219731 0.0564800i
\(491\) 12.0989 + 6.98528i 0.546014 + 0.315241i 0.747513 0.664247i \(-0.231248\pi\)
−0.201499 + 0.979489i \(0.564581\pi\)
\(492\) 0 0
\(493\) 42.8300i 1.92897i
\(494\) −12.5446 7.24264i −0.564409 0.325862i
\(495\) 0 0
\(496\) 9.08052i 0.407727i
\(497\) −4.30463 + 1.75736i −0.193089 + 0.0788283i
\(498\) 0 0
\(499\) 31.9411 1.42988 0.714941 0.699185i \(-0.246454\pi\)
0.714941 + 0.699185i \(0.246454\pi\)
\(500\) −3.40256 5.89340i −0.152167 0.263561i
\(501\) 0 0
\(502\) 23.7426 + 13.7078i 1.05969 + 0.611810i
\(503\) −31.0028 −1.38235 −0.691174 0.722688i \(-0.742906\pi\)
−0.691174 + 0.722688i \(0.742906\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 11.0227 + 6.36396i 0.490019 + 0.282913i
\(507\) 0 0
\(508\) 1.62132 + 2.80821i 0.0719345 + 0.124594i
\(509\) −17.1974 −0.762262 −0.381131 0.924521i \(-0.624465\pi\)
−0.381131 + 0.924521i \(0.624465\pi\)
\(510\) 0 0
\(511\) −0.514719 + 3.76127i −0.0227698 + 0.166389i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 3.72792 + 2.15232i 0.164432 + 0.0949346i
\(515\) 3.94113i 0.173667i
\(516\) 0 0
\(517\) −15.3640 8.87039i −0.675706 0.390119i
\(518\) −0.594346 + 0.242641i −0.0261141 + 0.0106610i
\(519\) 0 0
\(520\) −0.878680 + 1.52192i −0.0385327 + 0.0667405i
\(521\) −16.9363 + 29.3345i −0.741993 + 1.28517i 0.209594 + 0.977788i \(0.432786\pi\)
−0.951587 + 0.307380i \(0.900548\pi\)
\(522\) 0 0
\(523\) 5.84924 3.37706i 0.255770 0.147669i −0.366634 0.930365i \(-0.619490\pi\)
0.622403 + 0.782697i \(0.286156\pi\)
\(524\) 2.59808 + 4.50000i 0.113497 + 0.196583i
\(525\) 0 0
\(526\) −7.60660 + 13.1750i −0.331664 + 0.574458i
\(527\) 53.6985i 2.33914i
\(528\) 0 0
\(529\) 5.00000 0.217391
\(530\) 2.59808 + 4.50000i 0.112853 + 0.195468i
\(531\) 0 0
\(532\) −2.12132 + 15.5014i −0.0919709 + 0.672072i
\(533\) 25.0892 14.4853i 1.08674 0.627427i
\(534\) 0 0
\(535\) −7.13604 + 4.11999i −0.308518 + 0.178123i
\(536\) 8.66025 5.00000i 0.374066 0.215967i
\(537\) 0 0
\(538\) 12.1066 6.98975i 0.521953 0.301350i
\(539\) −14.6969 15.0000i −0.633042 0.646096i
\(540\) 0 0
\(541\) −7.36396 12.7548i −0.316601 0.548370i 0.663175 0.748464i \(-0.269208\pi\)
−0.979777 + 0.200094i \(0.935875\pi\)
\(542\) 6.21076 0.266775
\(543\) 0 0
\(544\) 5.91359i 0.253543i
\(545\) −6.63103 + 11.4853i −0.284042 + 0.491975i
\(546\) 0 0
\(547\) 19.8492 + 34.3799i 0.848692 + 1.46998i 0.882376 + 0.470546i \(0.155943\pi\)
−0.0336833 + 0.999433i \(0.510724\pi\)
\(548\) −2.15232 + 1.24264i −0.0919424 + 0.0530830i
\(549\) 0 0
\(550\) −6.72792 + 11.6531i −0.286880 + 0.496890i
\(551\) −21.4150 + 37.0919i −0.912310 + 1.58017i
\(552\) 0 0
\(553\) −7.22792 0.989118i −0.307363 0.0420616i
\(554\) −11.2328 6.48528i −0.477238 0.275533i
\(555\) 0 0
\(556\) 0.594346i 0.0252059i
\(557\) 8.42463 + 4.86396i 0.356963 + 0.206093i 0.667748 0.744388i \(-0.267259\pi\)
−0.310785 + 0.950480i \(0.600592\pi\)
\(558\) 0 0
\(559\) 0.594346i 0.0251382i
\(560\) 1.88064 + 0.257359i 0.0794714 + 0.0108754i
\(561\) 0 0
\(562\) −6.00000 −0.253095
\(563\) 17.2950 + 29.9558i 0.728898 + 1.26249i 0.957349 + 0.288933i \(0.0933005\pi\)
−0.228451 + 0.973555i \(0.573366\pi\)
\(564\) 0 0
\(565\) −5.27208 3.04384i −0.221798 0.128055i
\(566\) −21.2049 −0.891307
\(567\) 0 0
\(568\) −1.75736 −0.0737372
\(569\) 8.87039 + 5.12132i 0.371866 + 0.214697i 0.674273 0.738482i \(-0.264457\pi\)
−0.302407 + 0.953179i \(0.597790\pi\)
\(570\) 0 0
\(571\) −4.36396 7.55860i −0.182626 0.316318i 0.760148 0.649750i \(-0.225126\pi\)
−0.942774 + 0.333432i \(0.891793\pi\)
\(572\) 7.34847 0.307255
\(573\) 0 0
\(574\) −24.7279 19.1757i −1.03212 0.800376i
\(575\) 19.0294i 0.793582i
\(576\) 0 0
\(577\) 9.25736 + 5.34474i 0.385389 + 0.222504i 0.680160 0.733063i \(-0.261910\pi\)
−0.294771 + 0.955568i \(0.595243\pi\)
\(578\) 17.9706i 0.747477i
\(579\) 0 0
\(580\) 4.50000 + 2.59808i 0.186852 + 0.107879i
\(581\) −10.7510 + 13.8640i −0.446028 + 0.575174i
\(582\) 0 0
\(583\) 10.8640 18.8169i 0.449939 0.779318i
\(584\) −0.717439 + 1.24264i −0.0296878 + 0.0514208i
\(585\) 0 0
\(586\) −0.621320 + 0.358719i −0.0256665 + 0.0148186i
\(587\) −2.59808 4.50000i −0.107234 0.185735i 0.807415 0.589984i \(-0.200866\pi\)
−0.914649 + 0.404249i \(0.867533\pi\)
\(588\) 0 0
\(589\) −26.8492 + 46.5043i −1.10630 + 1.91617i
\(590\) 5.78680i 0.238239i
\(591\) 0 0
\(592\) −0.242641 −0.00997247
\(593\) −11.7401 20.3345i −0.482110 0.835039i 0.517679 0.855575i \(-0.326796\pi\)
−0.999789 + 0.0205360i \(0.993463\pi\)
\(594\) 0 0
\(595\) 11.1213 + 1.52192i 0.455930 + 0.0623925i
\(596\) 3.04384 1.75736i 0.124680 0.0719842i
\(597\) 0 0
\(598\) −9.00000 + 5.19615i −0.368037 + 0.212486i
\(599\) 6.45695 3.72792i 0.263824 0.152319i −0.362254 0.932079i \(-0.617993\pi\)
0.626078 + 0.779761i \(0.284659\pi\)
\(600\) 0 0
\(601\) −20.2279 + 11.6786i −0.825114 + 0.476380i −0.852177 0.523254i \(-0.824718\pi\)
0.0270627 + 0.999634i \(0.491385\pi\)
\(602\) −0.594346 + 0.242641i −0.0242237 + 0.00988930i
\(603\) 0 0
\(604\) 2.62132 + 4.54026i 0.106660 + 0.184741i
\(605\) 1.43488 0.0583361
\(606\) 0 0
\(607\) 20.0672i 0.814501i −0.913316 0.407251i \(-0.866488\pi\)
0.913316 0.407251i \(-0.133512\pi\)
\(608\) −2.95680 + 5.12132i −0.119914 + 0.207697i
\(609\) 0 0
\(610\) 0.363961 + 0.630399i 0.0147364 + 0.0255241i
\(611\) 12.5446 7.24264i 0.507501 0.293006i
\(612\) 0 0
\(613\) 18.6066 32.2276i 0.751514 1.30166i −0.195575 0.980689i \(-0.562657\pi\)
0.947089 0.320971i \(-0.104009\pi\)
\(614\) 4.98602 8.63604i 0.201219 0.348522i
\(615\) 0 0
\(616\) −3.00000 7.34847i −0.120873 0.296078i
\(617\) 15.3273 + 8.84924i 0.617055 + 0.356257i 0.775722 0.631075i \(-0.217386\pi\)
−0.158666 + 0.987332i \(0.550719\pi\)
\(618\) 0 0
\(619\) 6.15978i 0.247582i −0.992308 0.123791i \(-0.960495\pi\)
0.992308 0.123791i \(-0.0395053\pi\)
\(620\) 5.64191 + 3.25736i 0.226585 + 0.130819i
\(621\) 0 0
\(622\) 8.95743i 0.359160i
\(623\) 16.8493 21.7279i 0.675051 0.870511i
\(624\) 0 0
\(625\) 17.5442 0.701766
\(626\) 9.22911 + 15.9853i 0.368869 + 0.638900i
\(627\) 0 0
\(628\) −12.7279 7.34847i −0.507899 0.293236i
\(629\) −1.43488 −0.0572123
\(630\) 0 0
\(631\) 24.7574 0.985575 0.492787 0.870150i \(-0.335978\pi\)
0.492787 + 0.870150i \(0.335978\pi\)
\(632\) −2.38794 1.37868i −0.0949873 0.0548409i
\(633\) 0 0
\(634\) 0.621320 + 1.07616i 0.0246758 + 0.0427397i
\(635\) 2.32640 0.0923202
\(636\) 0 0
\(637\) 16.6066 4.26858i 0.657978 0.169127i
\(638\) 21.7279i 0.860217i
\(639\) 0 0
\(640\) 0.621320 + 0.358719i 0.0245598 + 0.0141796i
\(641\) 17.6985i 0.699048i 0.936927 + 0.349524i \(0.113657\pi\)
−0.936927 + 0.349524i \(0.886343\pi\)
\(642\) 0 0
\(643\) 27.7279 + 16.0087i 1.09348 + 0.631322i 0.934501 0.355959i \(-0.115846\pi\)
0.158981 + 0.987282i \(0.449179\pi\)
\(644\) 8.87039 + 6.87868i 0.349542 + 0.271058i
\(645\) 0 0
\(646\) −17.4853 + 30.2854i −0.687949 + 1.19156i
\(647\) −16.2189 + 28.0919i −0.637629 + 1.10441i 0.348323 + 0.937375i \(0.386751\pi\)
−0.985952 + 0.167031i \(0.946582\pi\)
\(648\) 0 0
\(649\) −20.9558 + 12.0989i −0.822589 + 0.474922i
\(650\) −5.49333 9.51472i −0.215466 0.373198i
\(651\) 0 0
\(652\) −1.12132 + 1.94218i −0.0439143 + 0.0760618i
\(653\) 19.2426i 0.753023i 0.926412 + 0.376511i \(0.122876\pi\)
−0.926412 + 0.376511i \(0.877124\pi\)
\(654\) 0 0
\(655\) 3.72792 0.145662
\(656\) −5.91359 10.2426i −0.230887 0.399908i
\(657\) 0 0
\(658\) −12.3640 9.58783i −0.481997 0.373772i
\(659\) 5.19615 3.00000i 0.202413 0.116863i −0.395367 0.918523i \(-0.629383\pi\)
0.597781 + 0.801660i \(0.296049\pi\)
\(660\) 0 0
\(661\) −30.8787 + 17.8278i −1.20104 + 0.693422i −0.960787 0.277288i \(-0.910564\pi\)
−0.240255 + 0.970710i \(0.577231\pi\)
\(662\) −28.9736 + 16.7279i −1.12609 + 0.650149i
\(663\) 0 0
\(664\) −5.74264 + 3.31552i −0.222858 + 0.128667i
\(665\) 8.87039 + 6.87868i 0.343979 + 0.266744i
\(666\) 0 0
\(667\) 15.3640 + 26.6112i 0.594895 + 1.03039i
\(668\) 16.1318 0.624159
\(669\) 0 0
\(670\) 7.17439i 0.277171i
\(671\) 1.52192 2.63604i 0.0587530 0.101763i
\(672\) 0 0
\(673\) −8.98528 15.5630i −0.346357 0.599908i 0.639242 0.769005i \(-0.279248\pi\)
−0.985599 + 0.169097i \(0.945915\pi\)
\(674\) −4.33013 + 2.50000i −0.166790 + 0.0962964i
\(675\) 0 0
\(676\) 3.50000 6.06218i 0.134615 0.233161i
\(677\) 1.07616 1.86396i 0.0413601 0.0716378i −0.844604 0.535391i \(-0.820164\pi\)
0.885964 + 0.463753i \(0.153498\pi\)
\(678\) 0 0
\(679\) 28.3492 + 21.9839i 1.08794 + 0.843663i
\(680\) 3.67423 + 2.12132i 0.140900 + 0.0813489i
\(681\) 0 0
\(682\) 27.2416i 1.04313i
\(683\) −6.90271 3.98528i −0.264125 0.152493i 0.362090 0.932143i \(-0.382063\pi\)
−0.626215 + 0.779651i \(0.715397\pi\)
\(684\) 0 0
\(685\) 1.78304i 0.0681264i
\(686\) −11.0482 14.8640i −0.421822 0.567509i
\(687\) 0 0
\(688\) −0.242641 −0.00925059
\(689\) 8.87039 + 15.3640i 0.337935 + 0.585320i
\(690\) 0 0
\(691\) −24.7279 14.2767i −0.940694 0.543110i −0.0505165 0.998723i \(-0.516087\pi\)
−0.890178 + 0.455613i \(0.849420\pi\)
\(692\) −20.7846 −0.790112
\(693\) 0 0
\(694\) 2.48528 0.0943400
\(695\) −0.369279 0.213203i −0.0140076 0.00808727i
\(696\) 0 0
\(697\) −34.9706 60.5708i −1.32460 2.29428i
\(698\) −2.27541 −0.0861255
\(699\) 0 0
\(700\) −7.27208 + 9.37769i −0.274859 + 0.354443i
\(701\) 20.6985i 0.781771i 0.920439 + 0.390885i \(0.127831\pi\)
−0.920439 + 0.390885i \(0.872169\pi\)
\(702\) 0 0
\(703\) −1.24264 0.717439i −0.0468671 0.0270587i
\(704\) 3.00000i 0.113067i
\(705\) 0 0
\(706\) −7.75736 4.47871i −0.291952 0.168559i
\(707\) 0 0
\(708\) 0 0
\(709\) −13.4853 + 23.3572i −0.506450 + 0.877198i 0.493522 + 0.869733i \(0.335709\pi\)
−0.999972 + 0.00746433i \(0.997624\pi\)
\(710\) −0.630399 + 1.09188i −0.0236585 + 0.0409776i
\(711\) 0 0
\(712\) 9.00000 5.19615i 0.337289 0.194734i
\(713\) 19.2627 + 33.3640i 0.721393 + 1.24949i
\(714\) 0 0
\(715\) 2.63604 4.56575i 0.0985823 0.170749i
\(716\) 26.4853i 0.989801i
\(717\) 0 0
\(718\) 18.0000 0.671754
\(719\) −8.06591 13.9706i −0.300808 0.521014i 0.675511 0.737349i \(-0.263923\pi\)
−0.976319 + 0.216335i \(0.930590\pi\)
\(720\) 0 0
\(721\) −13.4558 + 5.49333i −0.501122 + 0.204582i
\(722\) −13.8309 + 7.98528i −0.514733 + 0.297181i
\(723\) 0 0
\(724\) 10.2426 5.91359i 0.380665 0.219777i
\(725\) −28.1331 + 16.2426i −1.04484 + 0.603237i
\(726\) 0 0
\(727\) 10.1360 5.85204i 0.375925 0.217040i −0.300119 0.953902i \(-0.597026\pi\)
0.676044 + 0.736861i \(0.263693\pi\)
\(728\) 6.42090 + 0.878680i 0.237974 + 0.0325660i
\(729\) 0 0
\(730\) 0.514719 + 0.891519i 0.0190506 + 0.0329966i
\(731\) −1.43488 −0.0530709
\(732\) 0 0
\(733\) 4.72490i 0.174518i 0.996186 + 0.0872591i \(0.0278108\pi\)
−0.996186 + 0.0872591i \(0.972189\pi\)
\(734\) 7.70719 13.3492i 0.284478 0.492730i
\(735\) 0 0
\(736\) 2.12132 + 3.67423i 0.0781929 + 0.135434i
\(737\) −25.9808 + 15.0000i −0.957014 + 0.552532i
\(738\) 0 0
\(739\) −7.72792 + 13.3852i −0.284276 + 0.492381i −0.972433 0.233181i \(-0.925087\pi\)
0.688157 + 0.725562i \(0.258420\pi\)
\(740\) −0.0870399 + 0.150758i −0.00319965 + 0.00554196i
\(741\) 0 0
\(742\) 11.7426 15.1427i 0.431086 0.555906i
\(743\) −33.3292 19.2426i −1.22273 0.705944i −0.257232 0.966350i \(-0.582810\pi\)
−0.965499 + 0.260406i \(0.916144\pi\)
\(744\) 0 0
\(745\) 2.52160i 0.0923841i
\(746\) 25.5095 + 14.7279i 0.933969 + 0.539228i
\(747\) 0 0
\(748\) 17.7408i 0.648667i
\(749\) 24.0131 + 18.6213i 0.877419 + 0.680408i
\(750\) 0 0
\(751\) 35.2426 1.28602 0.643011 0.765857i \(-0.277685\pi\)
0.643011 + 0.765857i \(0.277685\pi\)
\(752\) −2.95680 5.12132i −0.107823 0.186755i
\(753\) 0 0
\(754\) 15.3640 + 8.87039i 0.559522 + 0.323040i
\(755\) 3.76127 0.136887
\(756\) 0 0
\(757\) −33.7574 −1.22693 −0.613466 0.789721i \(-0.710225\pi\)
−0.613466 + 0.789721i \(0.710225\pi\)
\(758\) −10.8126 6.24264i −0.392730 0.226743i
\(759\) 0 0
\(760\) 2.12132 + 3.67423i 0.0769484 + 0.133278i
\(761\) 29.5680 1.07184 0.535919 0.844270i \(-0.319965\pi\)
0.535919 + 0.844270i \(0.319965\pi\)
\(762\) 0 0
\(763\) 48.4558 + 6.63103i 1.75422 + 0.240059i
\(764\) 8.48528i 0.306987i
\(765\) 0 0
\(766\) −19.2426 11.1097i −0.695265 0.401411i
\(767\) 19.7574i 0.713397i
\(768\) 0 0
\(769\) 8.52944 + 4.92447i 0.307579 + 0.177581i 0.645843 0.763470i \(-0.276506\pi\)
−0.338263 + 0.941051i \(0.609839\pi\)
\(770\) −5.64191 0.772078i −0.203320 0.0278238i
\(771\) 0 0
\(772\) 4.74264 8.21449i 0.170691 0.295646i
\(773\) 8.06591 13.9706i 0.290111 0.502486i −0.683725 0.729740i \(-0.739641\pi\)
0.973836 + 0.227253i \(0.0729746\pi\)
\(774\) 0 0
\(775\) −35.2721 + 20.3643i −1.26701 + 0.731509i
\(776\) 6.77962 + 11.7426i 0.243374 + 0.421536i
\(777\) 0 0
\(778\) 15.7279 27.2416i 0.563873 0.976657i
\(779\) 69.9411i 2.50590i
\(780\) 0 0
\(781\) 5.27208 0.188650
\(782\) 12.5446 + 21.7279i 0.448595 + 0.776989i
\(783\) 0 0
\(784\) −1.74264 6.77962i −0.0622372 0.242129i
\(785\) −9.13151 + 5.27208i −0.325917 + 0.188169i
\(786\) 0 0
\(787\) −27.8787 + 16.0958i −0.993768 + 0.573752i −0.906398 0.422424i \(-0.861179\pi\)
−0.0873693 + 0.996176i \(0.527846\pi\)
\(788\) 22.9369 13.2426i 0.817094 0.471750i
\(789\) 0 0
\(790\) −1.71320 + 0.989118i −0.0609530 + 0.0351913i
\(791\) −3.04384 + 22.2426i −0.108226 + 0.790857i
\(792\) 0 0
\(793\) 1.24264 + 2.15232i 0.0441275 + 0.0764310i
\(794\) −13.8564 −0.491745
\(795\) 0 0
\(796\) 23.0600i 0.817341i
\(797\) −3.22848 + 5.59188i −0.114358 + 0.198075i −0.917523 0.397682i \(-0.869815\pi\)
0.803165 + 0.595757i \(0.203148\pi\)
\(798\) 0 0
\(799\) −17.4853 30.2854i −0.618585 1.07142i
\(800\) −3.88437 + 2.24264i −0.137333 + 0.0792893i
\(801\) 0 0
\(802\) 0 0
\(803\) 2.15232 3.72792i 0.0759536 0.131556i
\(804\) 0 0
\(805\) 7.45584 3.04384i 0.262784 0.107281i
\(806\) 19.2627 + 11.1213i 0.678499 + 0.391732i
\(807\) 0 0
\(808\) 0 0
\(809\) −6.08767 3.51472i −0.214031 0.123571i 0.389152 0.921173i \(-0.372768\pi\)
−0.603183 + 0.797602i \(0.706101\pi\)
\(810\) 0 0
\(811\) 31.1769i 1.09477i −0.836881 0.547385i \(-0.815623\pi\)
0.836881 0.547385i \(-0.184377\pi\)
\(812\) 2.59808 18.9853i 0.0911746 0.666253i
\(813\) 0 0
\(814\) 0.727922 0.0255137
\(815\) 0.804479 + 1.39340i 0.0281797 + 0.0488086i
\(816\) 0 0
\(817\) −1.24264 0.717439i −0.0434745 0.0251000i
\(818\) 14.9941 0.524257
\(819\) 0 0
\(820\) −8.48528 −0.296319
\(821\) −35.2969 20.3787i −1.23187 0.711221i −0.264451 0.964399i \(-0.585191\pi\)
−0.967420 + 0.253178i \(0.918524\pi\)
\(822\) 0 0
\(823\) −14.9706 25.9298i −0.521841 0.903855i −0.999677 0.0254062i \(-0.991912\pi\)
0.477836 0.878449i \(-0.341421\pi\)
\(824\) −5.49333 −0.191369
\(825\) 0 0
\(826\) −19.7574 + 8.06591i −0.687446 + 0.280649i
\(827\) 37.9706i 1.32037i 0.751105 + 0.660183i \(0.229521\pi\)
−0.751105 + 0.660183i \(0.770479\pi\)
\(828\) 0 0
\(829\) 11.3345 + 6.54399i 0.393664 + 0.227282i 0.683747 0.729720i \(-0.260349\pi\)
−0.290082 + 0.957002i \(0.593683\pi\)
\(830\) 4.75736i 0.165130i
\(831\) 0 0
\(832\) 2.12132 + 1.22474i 0.0735436 + 0.0424604i
\(833\) −10.3053 40.0919i −0.357056 1.38910i
\(834\) 0 0
\(835\) 5.78680 10.0230i 0.200260 0.346861i
\(836\) 8.87039 15.3640i 0.306789 0.531374i
\(837\) 0 0
\(838\) 20.4853 11.8272i 0.707652 0.408563i
\(839\) −5.10911 8.84924i −0.176386 0.305510i 0.764254 0.644915i \(-0.223107\pi\)
−0.940640 + 0.339406i \(0.889774\pi\)
\(840\) 0 0
\(841\) 11.7279 20.3134i 0.404411 0.700461i
\(842\) 14.2426i 0.490834i
\(843\) 0 0
\(844\) 0.242641 0.00835204
\(845\) −2.51104 4.34924i −0.0863823 0.149618i
\(846\) 0 0
\(847\) −2.00000 4.89898i −0.0687208 0.168331i
\(848\) 6.27231 3.62132i 0.215392 0.124357i
\(849\) 0 0
\(850\) −22.9706 + 13.2621i −0.787884 + 0.454885i
\(851\) −0.891519 + 0.514719i −0.0305609 + 0.0176443i
\(852\) 0 0
\(853\) −31.9706 + 18.4582i −1.09465 + 0.631997i −0.934811 0.355146i \(-0.884431\pi\)
−0.159840 + 0.987143i \(0.551098\pi\)
\(854\) 1.64501 2.12132i 0.0562911 0.0725901i
\(855\) 0 0
\(856\) 5.74264 + 9.94655i 0.196279 + 0.339966i
\(857\) −33.8726 −1.15707 −0.578533 0.815659i \(-0.696375\pi\)
−0.578533 + 0.815659i \(0.696375\pi\)
\(858\) 0 0
\(859\) 9.37769i 0.319963i 0.987120 + 0.159981i \(0.0511434\pi\)
−0.987120 + 0.159981i \(0.948857\pi\)
\(860\) −0.0870399 + 0.150758i −0.00296804 + 0.00514079i
\(861\) 0 0
\(862\) 1.75736 + 3.04384i 0.0598559 + 0.103673i
\(863\) 29.0246 16.7574i 0.988009 0.570427i 0.0833303 0.996522i \(-0.473444\pi\)
0.904679 + 0.426095i \(0.140111\pi\)
\(864\) 0 0
\(865\) −7.45584 + 12.9139i −0.253506 + 0.439086i
\(866\) 1.73205 3.00000i 0.0588575 0.101944i
\(867\) 0 0
\(868\) 3.25736 23.8030i 0.110562 0.807925i
\(869\) 7.16383 + 4.13604i 0.243016 + 0.140306i
\(870\) 0 0
\(871\) 24.4949i 0.829978i
\(872\) 16.0087 + 9.24264i 0.542124 + 0.312995i
\(873\) 0 0
\(874\) 25.0892i 0.848656i
\(875\) 6.80511 + 16.6690i 0.230055 + 0.563517i
\(876\) 0 0
\(877\) 4.48528 0.151457 0.0757286 0.997128i \(-0.475872\pi\)
0.0757286 + 0.997128i \(0.475872\pi\)
\(878\) −8.42463 14.5919i −0.284317 0.492452i
\(879\) 0 0
\(880\) −1.86396 1.07616i −0.0628341 0.0362773i
\(881\) 19.0016 0.640179 0.320090 0.947387i \(-0.396287\pi\)
0.320090 + 0.947387i \(0.396287\pi\)
\(882\) 0 0
\(883\) 41.4558 1.39510 0.697550 0.716536i \(-0.254273\pi\)
0.697550 + 0.716536i \(0.254273\pi\)
\(884\) 12.5446 + 7.24264i 0.421921 + 0.243596i
\(885\) 0 0
\(886\) −8.22792 14.2512i −0.276422 0.478778i
\(887\) −10.5664 −0.354784 −0.177392 0.984140i \(-0.556766\pi\)
−0.177392 + 0.984140i \(0.556766\pi\)
\(888\) 0 0
\(889\) −3.24264 7.94282i −0.108755 0.266393i
\(890\) 7.45584i 0.249920i
\(891\) 0 0
\(892\) −1.86396 1.07616i −0.0624100 0.0360324i
\(893\) 34.9706i 1.17025i
\(894\) 0 0
\(895\) 16.4558 + 9.50079i 0.550058 + 0.317576i
\(896\) 0.358719 2.62132i 0.0119840 0.0875722i
\(897\) 0 0
\(898\) −0.878680 + 1.52192i −0.0293219 + 0.0507871i
\(899\) 32.8835 56.9558i 1.09673 1.89958i
\(900\) 0 0
\(901\) 37.0919 21.4150i 1.23571 0.713437i
\(902\) 17.7408 + 30.7279i 0.590703 + 1.02313i
\(903\) 0 0
\(904\) −4.24264 + 7.34847i −0.141108 + 0.244406i
\(905\) 8.48528i 0.282060i
\(906\) 0 0
\(907\) −31.6985 −1.05253 −0.526265 0.850320i \(-0.676408\pi\)
−0.526265 + 0.850320i \(0.676408\pi\)
\(908\) −7.79423 13.5000i −0.258661 0.448013i
\(909\) 0 0
\(910\) 2.84924 3.67423i 0.0944515 0.121800i
\(911\) −5.82655 + 3.36396i −0.193042 + 0.111453i −0.593406 0.804903i \(-0.702217\pi\)
0.400364 + 0.916356i \(0.368884\pi\)
\(912\) 0 0
\(913\) 17.2279 9.94655i 0.570161 0.329183i
\(914\) −19.9186 + 11.5000i −0.658848 + 0.380386i
\(915\) 0 0
\(916\) 12.0000 6.92820i 0.396491 0.228914i
\(917\) −5.19615 12.7279i −0.171592 0.420313i
\(918\) 0 0
\(919\) −18.2426 31.5972i −0.601769 1.04229i −0.992553 0.121812i \(-0.961129\pi\)
0.390784 0.920482i \(-0.372204\pi\)
\(920\) 3.04384 0.100352
\(921\) 0 0
\(922\) 32.6118i 1.07401i
\(923\) −2.15232 + 3.72792i −0.0708444 + 0.122706i
\(924\) 0 0
\(925\) −0.544156 0.942506i −0.0178917 0.0309894i
\(926\) −25.5095 + 14.7279i −0.838294 + 0.483990i
\(927\) 0 0
\(928\) 3.62132 6.27231i 0.118876 0.205899i
\(929\) −15.5014 + 26.8492i −0.508585 + 0.880895i 0.491366 + 0.870953i \(0.336498\pi\)
−0.999951 + 0.00994164i \(0.996835\pi\)
\(930\) 0 0
\(931\) 11.1213 39.8732i 0.364487 1.30679i
\(932\) 16.2189 + 9.36396i 0.531266 + 0.306727i
\(933\) 0 0
\(934\) 39.7862i 1.30184i
\(935\) −11.0227 6.36396i −0.360481 0.208124i
\(936\) 0 0
\(937\) 35.1844i 1.14942i 0.818356 + 0.574712i \(0.194886\pi\)
−0.818356 + 0.574712i \(0.805114\pi\)
\(938\) −24.4949 + 10.0000i −0.799787 + 0.326512i
\(939\) 0 0
\(940\) −4.24264 −0.138380
\(941\) 13.7949 + 23.8934i 0.449700 + 0.778903i 0.998366 0.0571387i \(-0.0181977\pi\)
−0.548667 + 0.836041i \(0.684864\pi\)
\(942\) 0 0
\(943\) −43.4558 25.0892i −1.41512 0.817018i
\(944\) −8.06591 −0.262523
\(945\) 0 0
\(946\) 0.727922 0.0236668
\(947\) 9.50079 + 5.48528i 0.308734 + 0.178248i 0.646360 0.763033i \(-0.276291\pi\)
−0.337626 + 0.941280i \(0.609624\pi\)
\(948\) 0 0
\(949\) 1.75736 + 3.04384i 0.0570463 + 0.0988071i
\(950\) −26.5241 −0.860556
\(951\) 0 0
\(952\) 2.12132 15.5014i 0.0687524 0.502404i
\(953\) 17.6985i 0.573310i −0.958034 0.286655i \(-0.907457\pi\)
0.958034 0.286655i \(-0.0925434\pi\)
\(954\) 0 0
\(955\) −5.27208 3.04384i −0.170600 0.0984962i
\(956\) 12.7279i 0.411650i
\(957\) 0 0
\(958\) 10.3934 + 6.00063i 0.335795 + 0.193872i
\(959\) 6.08767 2.48528i 0.196581 0.0802539i
\(960\) 0 0
\(961\) 25.7279 44.5621i 0.829933 1.43749i
\(962\) −0.297173 + 0.514719i −0.00958124 + 0.0165952i
\(963\) 0 0
\(964\) 6.25736 3.61269i 0.201536 0.116357i
\(965\) −3.40256 5.89340i −0.109532 0.189715i
\(966\) 0 0
\(967\) −23.8640 + 41.3336i −0.767413 + 1.32920i 0.171548 + 0.985176i \(0.445123\pi\)
−0.938961 + 0.344023i \(0.888210\pi\)
\(968\) 2.00000i 0.0642824i
\(969\) 0 0
\(970\) 9.72792 0.312345
\(971\) 13.5337 + 23.4411i 0.434318 + 0.752262i 0.997240 0.0742490i \(-0.0236559\pi\)
−0.562921 + 0.826510i \(0.690323\pi\)
\(972\) 0 0
\(973\) −0.213203 + 1.55797i −0.00683499 + 0.0499463i
\(974\) −12.3090 + 7.10660i −0.394406 + 0.227710i
\(975\) 0 0
\(976\) 0.878680 0.507306i 0.0281259 0.0162385i
\(977\) 34.8511 20.1213i 1.11499 0.643738i 0.174871 0.984591i \(-0.444049\pi\)
0.940116 + 0.340853i \(0.110716\pi\)
\(978\) 0 0
\(979\) −27.0000 + 15.5885i −0.862924 + 0.498209i
\(980\) −4.83743 1.34924i −0.154526 0.0431000i
\(981\) 0 0
\(982\) −6.98528 12.0989i −0.222909 0.386090i
\(983\) 47.3087 1.50891 0.754457 0.656349i \(-0.227900\pi\)
0.754457 + 0.656349i \(0.227900\pi\)
\(984\) 0 0
\(985\) 19.0016i 0.605440i
\(986\) 21.4150 37.0919i 0.681993 1.18125i
\(987\) 0 0
\(988\) 7.24264 + 12.5446i 0.230419 + 0.399098i
\(989\) −0.891519 + 0.514719i −0.0283486 + 0.0163671i
\(990\) 0 0
\(991\) −26.1066 + 45.2180i −0.829304 + 1.43640i 0.0692818 + 0.997597i \(0.477929\pi\)
−0.898585 + 0.438799i \(0.855404\pi\)
\(992\) 4.54026 7.86396i 0.144153 0.249681i
\(993\) 0 0
\(994\) 4.60660 + 0.630399i 0.146113 + 0.0199950i
\(995\) 14.3277 + 8.27208i 0.454217 + 0.262243i
\(996\) 0 0
\(997\) 38.9456i 1.23342i 0.787190 + 0.616711i \(0.211535\pi\)
−0.787190 + 0.616711i \(0.788465\pi\)
\(998\) −27.6618 15.9706i −0.875620 0.505539i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1134.2.t.e.1025.2 8
3.2 odd 2 inner 1134.2.t.e.1025.3 8
7.5 odd 6 1134.2.l.f.215.4 8
9.2 odd 6 1134.2.l.f.269.2 8
9.4 even 3 126.2.k.a.17.3 yes 8
9.5 odd 6 126.2.k.a.17.2 8
9.7 even 3 1134.2.l.f.269.3 8
21.5 even 6 1134.2.l.f.215.1 8
36.23 even 6 1008.2.bt.c.17.3 8
36.31 odd 6 1008.2.bt.c.17.2 8
45.4 even 6 3150.2.bf.a.1151.1 8
45.13 odd 12 3150.2.bp.b.899.3 8
45.14 odd 6 3150.2.bf.a.1151.3 8
45.22 odd 12 3150.2.bp.e.899.2 8
45.23 even 12 3150.2.bp.e.899.3 8
45.32 even 12 3150.2.bp.b.899.2 8
63.4 even 3 882.2.d.a.881.7 8
63.5 even 6 126.2.k.a.89.3 yes 8
63.13 odd 6 882.2.k.a.521.4 8
63.23 odd 6 882.2.k.a.215.4 8
63.31 odd 6 882.2.d.a.881.6 8
63.32 odd 6 882.2.d.a.881.2 8
63.40 odd 6 126.2.k.a.89.2 yes 8
63.41 even 6 882.2.k.a.521.1 8
63.47 even 6 inner 1134.2.t.e.593.2 8
63.58 even 3 882.2.k.a.215.1 8
63.59 even 6 882.2.d.a.881.3 8
63.61 odd 6 inner 1134.2.t.e.593.3 8
252.31 even 6 7056.2.k.f.881.3 8
252.59 odd 6 7056.2.k.f.881.6 8
252.67 odd 6 7056.2.k.f.881.5 8
252.95 even 6 7056.2.k.f.881.4 8
252.103 even 6 1008.2.bt.c.593.3 8
252.131 odd 6 1008.2.bt.c.593.2 8
315.68 odd 12 3150.2.bp.e.1349.2 8
315.103 even 12 3150.2.bp.b.1349.2 8
315.194 even 6 3150.2.bf.a.1601.1 8
315.229 odd 6 3150.2.bf.a.1601.3 8
315.257 odd 12 3150.2.bp.b.1349.3 8
315.292 even 12 3150.2.bp.e.1349.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.k.a.17.2 8 9.5 odd 6
126.2.k.a.17.3 yes 8 9.4 even 3
126.2.k.a.89.2 yes 8 63.40 odd 6
126.2.k.a.89.3 yes 8 63.5 even 6
882.2.d.a.881.2 8 63.32 odd 6
882.2.d.a.881.3 8 63.59 even 6
882.2.d.a.881.6 8 63.31 odd 6
882.2.d.a.881.7 8 63.4 even 3
882.2.k.a.215.1 8 63.58 even 3
882.2.k.a.215.4 8 63.23 odd 6
882.2.k.a.521.1 8 63.41 even 6
882.2.k.a.521.4 8 63.13 odd 6
1008.2.bt.c.17.2 8 36.31 odd 6
1008.2.bt.c.17.3 8 36.23 even 6
1008.2.bt.c.593.2 8 252.131 odd 6
1008.2.bt.c.593.3 8 252.103 even 6
1134.2.l.f.215.1 8 21.5 even 6
1134.2.l.f.215.4 8 7.5 odd 6
1134.2.l.f.269.2 8 9.2 odd 6
1134.2.l.f.269.3 8 9.7 even 3
1134.2.t.e.593.2 8 63.47 even 6 inner
1134.2.t.e.593.3 8 63.61 odd 6 inner
1134.2.t.e.1025.2 8 1.1 even 1 trivial
1134.2.t.e.1025.3 8 3.2 odd 2 inner
3150.2.bf.a.1151.1 8 45.4 even 6
3150.2.bf.a.1151.3 8 45.14 odd 6
3150.2.bf.a.1601.1 8 315.194 even 6
3150.2.bf.a.1601.3 8 315.229 odd 6
3150.2.bp.b.899.2 8 45.32 even 12
3150.2.bp.b.899.3 8 45.13 odd 12
3150.2.bp.b.1349.2 8 315.103 even 12
3150.2.bp.b.1349.3 8 315.257 odd 12
3150.2.bp.e.899.2 8 45.22 odd 12
3150.2.bp.e.899.3 8 45.23 even 12
3150.2.bp.e.1349.2 8 315.68 odd 12
3150.2.bp.e.1349.3 8 315.292 even 12
7056.2.k.f.881.3 8 252.31 even 6
7056.2.k.f.881.4 8 252.95 even 6
7056.2.k.f.881.5 8 252.67 odd 6
7056.2.k.f.881.6 8 252.59 odd 6