Properties

Label 114.2.l.a
Level 114114
Weight 22
Character orbit 114.l
Analytic conductor 0.9100.910
Analytic rank 00
Dimension 1818
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [114,2,Mod(29,114)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(114, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 17])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("114.29"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 114=2319 114 = 2 \cdot 3 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 114.l (of order 1818, degree 66, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.9102945830430.910294583043
Analytic rank: 00
Dimension: 1818
Relative dimension: 33 over Q(ζ18)\Q(\zeta_{18})
Coefficient field: Q[x]/(x18)\mathbb{Q}[x]/(x^{18} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x18x1518x14+36x13+10x12+18x11+90x10567x9+270x8++19683 x^{18} - x^{15} - 18 x^{14} + 36 x^{13} + 10 x^{12} + 18 x^{11} + 90 x^{10} - 567 x^{9} + 270 x^{8} + \cdots + 19683 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C18]\mathrm{SU}(2)[C_{18}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β171,\beta_1,\ldots,\beta_{17} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β7β6)q2+(β17+β1)q3+(β8+β4)q4+(β15+β14+β2)q5+β5q6+(β16β15+β3)q7++(β17+2β16β14+3)q99+O(q100) q + ( - \beta_{7} - \beta_{6}) q^{2} + ( - \beta_{17} + \beta_1) q^{3} + (\beta_{8} + \beta_{4}) q^{4} + ( - \beta_{15} + \beta_{14} + \beta_{2}) q^{5} + \beta_{5} q^{6} + (\beta_{16} - \beta_{15} + \cdots - \beta_{3}) q^{7}+ \cdots + (\beta_{17} + 2 \beta_{16} - \beta_{14} + \cdots - 3) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 18q+3q6+9q812q13+12q1424q156q176q1924q2218q2518q263q27+6q28+6q2927q336q34+24q353q363q38+30q99+O(q100) 18 q + 3 q^{6} + 9 q^{8} - 12 q^{13} + 12 q^{14} - 24 q^{15} - 6 q^{17} - 6 q^{19} - 24 q^{22} - 18 q^{25} - 18 q^{26} - 3 q^{27} + 6 q^{28} + 6 q^{29} - 27 q^{33} - 6 q^{34} + 24 q^{35} - 3 q^{36} - 3 q^{38}+ \cdots - 30 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x18x1518x14+36x13+10x12+18x11+90x10567x9+270x8++19683 x^{18} - x^{15} - 18 x^{14} + 36 x^{13} + 10 x^{12} + 18 x^{11} + 90 x^{10} - 567 x^{9} + 270 x^{8} + \cdots + 19683 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν17+ν14+18ν1336ν1210ν1118ν1090ν9++729ν2)/6561 ( - \nu^{17} + \nu^{14} + 18 \nu^{13} - 36 \nu^{12} - 10 \nu^{11} - 18 \nu^{10} - 90 \nu^{9} + \cdots + 729 \nu^{2} ) / 6561 Copy content Toggle raw display
β3\beta_{3}== (2ν17+21ν1681ν15+97ν1457ν13198ν12+1568ν11+65610)/4374 ( 2 \nu^{17} + 21 \nu^{16} - 81 \nu^{15} + 97 \nu^{14} - 57 \nu^{13} - 198 \nu^{12} + 1568 \nu^{11} + \cdots - 65610 ) / 4374 Copy content Toggle raw display
β4\beta_{4}== (5ν17+99ν16153ν1522ν14+207ν131485ν12++334611)/13122 ( - 5 \nu^{17} + 99 \nu^{16} - 153 \nu^{15} - 22 \nu^{14} + 207 \nu^{13} - 1485 \nu^{12} + \cdots + 334611 ) / 13122 Copy content Toggle raw display
β5\beta_{5}== (ν17+2ν1627ν15+50ν1447ν13+9ν12+409ν11+72171)/1458 ( \nu^{17} + 2 \nu^{16} - 27 \nu^{15} + 50 \nu^{14} - 47 \nu^{13} + 9 \nu^{12} + 409 \nu^{11} + \cdots - 72171 ) / 1458 Copy content Toggle raw display
β6\beta_{6}== (16ν17+81ν16+36ν15335ν14+477ν131422ν12++603612)/13122 ( - 16 \nu^{17} + 81 \nu^{16} + 36 \nu^{15} - 335 \nu^{14} + 477 \nu^{13} - 1422 \nu^{12} + \cdots + 603612 ) / 13122 Copy content Toggle raw display
β7\beta_{7}== (11ν173ν166ν15+92ν14+48ν13255ν12137ν11+225261)/4374 ( - 11 \nu^{17} - 3 \nu^{16} - 6 \nu^{15} + 92 \nu^{14} + 48 \nu^{13} - 255 \nu^{12} - 137 \nu^{11} + \cdots - 225261 ) / 4374 Copy content Toggle raw display
β8\beta_{8}== (5ν17105ν16+90ν15+275ν14318ν13+1296ν12+787320)/13122 ( - 5 \nu^{17} - 105 \nu^{16} + 90 \nu^{15} + 275 \nu^{14} - 318 \nu^{13} + 1296 \nu^{12} + \cdots - 787320 ) / 13122 Copy content Toggle raw display
β9\beta_{9}== (11ν17+147ν16216ν1543ν14+375ν132259ν12++452709)/13122 ( - 11 \nu^{17} + 147 \nu^{16} - 216 \nu^{15} - 43 \nu^{14} + 375 \nu^{13} - 2259 \nu^{12} + \cdots + 452709 ) / 13122 Copy content Toggle raw display
β10\beta_{10}== (17ν175ν16+99ν15136ν14+284ν13405ν121655ν11++63423)/4374 ( - 17 \nu^{17} - 5 \nu^{16} + 99 \nu^{15} - 136 \nu^{14} + 284 \nu^{13} - 405 \nu^{12} - 1655 \nu^{11} + \cdots + 63423 ) / 4374 Copy content Toggle raw display
β11\beta_{11}== (4ν17+17ν1610ν1523ν14+82ν13332ν12+536ν11++56862)/1458 ( - 4 \nu^{17} + 17 \nu^{16} - 10 \nu^{15} - 23 \nu^{14} + 82 \nu^{13} - 332 \nu^{12} + 536 \nu^{11} + \cdots + 56862 ) / 1458 Copy content Toggle raw display
β12\beta_{12}== (23ν17+10ν16+6ν15+86ν14+161ν13717ν1241ν11+247131)/4374 ( - 23 \nu^{17} + 10 \nu^{16} + 6 \nu^{15} + 86 \nu^{14} + 161 \nu^{13} - 717 \nu^{12} - 41 \nu^{11} + \cdots - 247131 ) / 4374 Copy content Toggle raw display
β13\beta_{13}== (9ν174ν16+39ν1521ν14+94ν13174ν12717ν11+34992)/1458 ( - 9 \nu^{17} - 4 \nu^{16} + 39 \nu^{15} - 21 \nu^{14} + 94 \nu^{13} - 174 \nu^{12} - 717 \nu^{11} + \cdots - 34992 ) / 1458 Copy content Toggle raw display
β14\beta_{14}== (76ν17108ν16+459ν15194ν14+747ν13522ν12+551124)/13122 ( - 76 \nu^{17} - 108 \nu^{16} + 459 \nu^{15} - 194 \nu^{14} + 747 \nu^{13} - 522 \nu^{12} + \cdots - 551124 ) / 13122 Copy content Toggle raw display
β15\beta_{15}== (11ν1717ν163ν15+13ν14145ν13+525ν12283ν11++10935)/1458 ( 11 \nu^{17} - 17 \nu^{16} - 3 \nu^{15} + 13 \nu^{14} - 145 \nu^{13} + 525 \nu^{12} - 283 \nu^{11} + \cdots + 10935 ) / 1458 Copy content Toggle raw display
β16\beta_{16}== (103ν1799ν1627ν15157ν141026ν13+4140ν12++669222)/13122 ( 103 \nu^{17} - 99 \nu^{16} - 27 \nu^{15} - 157 \nu^{14} - 1026 \nu^{13} + 4140 \nu^{12} + \cdots + 669222 ) / 13122 Copy content Toggle raw display
β17\beta_{17}== (17ν17+10ν16+27ν1510ν14+188ν13576ν12269ν11+78732)/1458 ( - 17 \nu^{17} + 10 \nu^{16} + 27 \nu^{15} - 10 \nu^{14} + 188 \nu^{13} - 576 \nu^{12} - 269 \nu^{11} + \cdots - 78732 ) / 1458 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β16+β15+β9β82β4 -\beta_{16} + \beta_{15} + \beta_{9} - \beta_{8} - 2\beta_{4} Copy content Toggle raw display
ν3\nu^{3}== β15+β144β72β6+β5+β3+2β2 -\beta_{15} + \beta_{14} - 4\beta_{7} - 2\beta_{6} + \beta_{5} + \beta_{3} + 2\beta_{2} Copy content Toggle raw display
ν4\nu^{4}== β17+β13+β12+2β11+2β103β73β6++2 - \beta_{17} + \beta_{13} + \beta_{12} + 2 \beta_{11} + 2 \beta_{10} - 3 \beta_{7} - 3 \beta_{6} + \cdots + 2 Copy content Toggle raw display
ν5\nu^{5}== 3β172β16+β15+3β13+3β10β92β8+12 - 3 \beta_{17} - 2 \beta_{16} + \beta_{15} + 3 \beta_{13} + 3 \beta_{10} - \beta_{9} - 2 \beta_{8} + \cdots - 12 Copy content Toggle raw display
ν6\nu^{6}== 9β16+10β15+2β14β133β12+3β11+3β10+6 - 9 \beta_{16} + 10 \beta_{15} + 2 \beta_{14} - \beta_{13} - 3 \beta_{12} + 3 \beta_{11} + 3 \beta_{10} + \cdots - 6 Copy content Toggle raw display
ν7\nu^{7}== 4β17+9β169β15+15β147β13+2β12+4β11+2 - 4 \beta_{17} + 9 \beta_{16} - 9 \beta_{15} + 15 \beta_{14} - 7 \beta_{13} + 2 \beta_{12} + 4 \beta_{11} + \cdots - 2 Copy content Toggle raw display
ν8\nu^{8}== 18β17β16+15β159β14+21β12+24β11++9β1 - 18 \beta_{17} - \beta_{16} + 15 \beta_{15} - 9 \beta_{14} + 21 \beta_{12} + 24 \beta_{11} + \cdots + 9 \beta_1 Copy content Toggle raw display
ν9\nu^{9}== 27β1727β16+11β15+β144β13+3β1230β11+30 - 27 \beta_{17} - 27 \beta_{16} + 11 \beta_{15} + \beta_{14} - 4 \beta_{13} + 3 \beta_{12} - 30 \beta_{11} + \cdots - 30 Copy content Toggle raw display
ν10\nu^{10}== 33β1754β16+63β15+24β1489β13+β12+2β11++140 33 \beta_{17} - 54 \beta_{16} + 63 \beta_{15} + 24 \beta_{14} - 89 \beta_{13} + \beta_{12} + 2 \beta_{11} + \cdots + 140 Copy content Toggle raw display
ν11\nu^{11}== 15β17+100β16103β15+126β14129β13+102β12++120 - 15 \beta_{17} + 100 \beta_{16} - 103 \beta_{15} + 126 \beta_{14} - 129 \beta_{13} + 102 \beta_{12} + \cdots + 120 Copy content Toggle raw display
ν12\nu^{12}== 90β1781β16+136β15154β14+33β13+249β12+51 - 90 \beta_{17} - 81 \beta_{16} + 136 \beta_{15} - 154 \beta_{14} + 33 \beta_{13} + 249 \beta_{12} + \cdots - 51 Copy content Toggle raw display
ν13\nu^{13}== 62β17171β16189β15+153β1419β13100β12+2 - 62 \beta_{17} - 171 \beta_{16} - 189 \beta_{15} + 153 \beta_{14} - 19 \beta_{13} - 100 \beta_{12} + \cdots - 2 Copy content Toggle raw display
ν14\nu^{14}== 372β17106β16+206β15+243β14426β13+9β12++354 372 \beta_{17} - 106 \beta_{16} + 206 \beta_{15} + 243 \beta_{14} - 426 \beta_{13} + 9 \beta_{12} + \cdots + 354 Copy content Toggle raw display
ν15\nu^{15}== 351β17+765β16802β15+916β14+46β13+327β12+2208 - 351 \beta_{17} + 765 \beta_{16} - 802 \beta_{15} + 916 \beta_{14} + 46 \beta_{13} + 327 \beta_{12} + \cdots - 2208 Copy content Toggle raw display
ν16\nu^{16}== 878β17630β16+927β151554β14+1726β13+430β12+4210 - 878 \beta_{17} - 630 \beta_{16} + 927 \beta_{15} - 1554 \beta_{14} + 1726 \beta_{13} + 430 \beta_{12} + \cdots - 4210 Copy content Toggle raw display
ν17\nu^{17}== 918β17+406β163786β15+1656β14378β133126β12++54 - 918 \beta_{17} + 406 \beta_{16} - 3786 \beta_{15} + 1656 \beta_{14} - 378 \beta_{13} - 3126 \beta_{12} + \cdots + 54 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/114Z)×\left(\mathbb{Z}/114\mathbb{Z}\right)^\times.

nn 7777 9797
χ(n)\chi(n) 1-1 β4β8-\beta_{4} - \beta_{8}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
29.1
−1.72388 + 0.168030i
1.47158 0.913487i
0.0786547 + 1.73026i
−0.442647 + 1.67453i
−1.73189 0.0237018i
1.40849 1.00804i
−0.363139 1.69356i
1.69944 0.334495i
−0.396613 + 1.68603i
−1.72388 0.168030i
1.47158 + 0.913487i
0.0786547 1.73026i
−0.363139 + 1.69356i
1.69944 + 0.334495i
−0.396613 1.68603i
−0.442647 1.67453i
−1.73189 + 0.0237018i
1.40849 + 1.00804i
−0.173648 0.984808i −0.716422 + 1.57694i −0.939693 + 0.342020i −1.14133 + 3.13578i 1.67739 + 0.431705i −1.07356 + 1.85947i 0.500000 + 0.866025i −1.97348 2.25951i 3.28633 + 0.579469i
29.2 −0.173648 0.984808i −0.0553136 1.73117i −0.939693 + 0.342020i 0.882820 2.42553i −1.69526 + 0.355087i −1.58376 + 2.74316i 0.500000 + 0.866025i −2.99388 + 0.191514i −2.54198 0.448219i
29.3 −0.173648 0.984808i 1.53778 + 0.797015i −0.939693 + 0.342020i 0.258510 0.710252i 0.517874 1.65282i 0.777943 1.34744i 0.500000 + 0.866025i 1.72953 + 2.45127i −0.744351 0.131249i
41.1 −0.766044 0.642788i −1.67151 + 0.453924i 0.173648 + 0.984808i 1.96615 + 0.346685i 1.57223 + 0.726702i 0.910931 + 1.57778i 0.500000 0.866025i 2.58791 1.51748i −1.28331 1.52939i
41.2 −0.766044 0.642788i −0.845418 1.51171i 0.173648 + 0.984808i −2.22841 0.392929i −0.324081 + 1.70146i −1.16829 2.02354i 0.500000 0.866025i −1.57054 + 2.55605i 1.45449 + 1.73339i
41.3 −0.766044 0.642788i 1.57724 + 0.715766i 0.173648 + 0.984808i 0.262261 + 0.0462437i −0.748148 1.56214i 0.604656 + 1.04730i 0.500000 0.866025i 1.97536 + 2.25787i −0.171179 0.204003i
53.1 0.939693 + 0.342020i −1.64823 0.532290i 0.766044 + 0.642788i 2.20556 + 2.62849i −1.36678 1.06392i 1.68651 2.92113i 0.500000 + 0.866025i 2.43333 + 1.75467i 1.17355 + 3.22432i
53.2 0.939693 + 0.342020i 0.560041 1.63901i 0.766044 + 0.642788i −0.343148 0.408948i 1.08684 1.34862i −0.716507 + 1.24103i 0.500000 + 0.866025i −2.37271 1.83583i −0.182585 0.501649i
53.3 0.939693 + 0.342020i 1.26184 + 1.18649i 0.766044 + 0.642788i −1.86241 2.21954i 0.779936 + 1.54651i 0.562083 0.973556i 0.500000 + 0.866025i 0.184473 + 2.99432i −0.990970 2.72267i
59.1 −0.173648 + 0.984808i −0.716422 1.57694i −0.939693 0.342020i −1.14133 3.13578i 1.67739 0.431705i −1.07356 1.85947i 0.500000 0.866025i −1.97348 + 2.25951i 3.28633 0.579469i
59.2 −0.173648 + 0.984808i −0.0553136 + 1.73117i −0.939693 0.342020i 0.882820 + 2.42553i −1.69526 0.355087i −1.58376 2.74316i 0.500000 0.866025i −2.99388 0.191514i −2.54198 + 0.448219i
59.3 −0.173648 + 0.984808i 1.53778 0.797015i −0.939693 0.342020i 0.258510 + 0.710252i 0.517874 + 1.65282i 0.777943 + 1.34744i 0.500000 0.866025i 1.72953 2.45127i −0.744351 + 0.131249i
71.1 0.939693 0.342020i −1.64823 + 0.532290i 0.766044 0.642788i 2.20556 2.62849i −1.36678 + 1.06392i 1.68651 + 2.92113i 0.500000 0.866025i 2.43333 1.75467i 1.17355 3.22432i
71.2 0.939693 0.342020i 0.560041 + 1.63901i 0.766044 0.642788i −0.343148 + 0.408948i 1.08684 + 1.34862i −0.716507 1.24103i 0.500000 0.866025i −2.37271 + 1.83583i −0.182585 + 0.501649i
71.3 0.939693 0.342020i 1.26184 1.18649i 0.766044 0.642788i −1.86241 + 2.21954i 0.779936 1.54651i 0.562083 + 0.973556i 0.500000 0.866025i 0.184473 2.99432i −0.990970 + 2.72267i
89.1 −0.766044 + 0.642788i −1.67151 0.453924i 0.173648 0.984808i 1.96615 0.346685i 1.57223 0.726702i 0.910931 1.57778i 0.500000 + 0.866025i 2.58791 + 1.51748i −1.28331 + 1.52939i
89.2 −0.766044 + 0.642788i −0.845418 + 1.51171i 0.173648 0.984808i −2.22841 + 0.392929i −0.324081 1.70146i −1.16829 + 2.02354i 0.500000 + 0.866025i −1.57054 2.55605i 1.45449 1.73339i
89.3 −0.766044 + 0.642788i 1.57724 0.715766i 0.173648 0.984808i 0.262261 0.0462437i −0.748148 + 1.56214i 0.604656 1.04730i 0.500000 + 0.866025i 1.97536 2.25787i −0.171179 + 0.204003i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 29.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
57.j even 18 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 114.2.l.a 18
3.b odd 2 1 114.2.l.b yes 18
4.b odd 2 1 912.2.cc.d 18
12.b even 2 1 912.2.cc.c 18
19.f odd 18 1 114.2.l.b yes 18
57.j even 18 1 inner 114.2.l.a 18
76.k even 18 1 912.2.cc.c 18
228.u odd 18 1 912.2.cc.d 18
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
114.2.l.a 18 1.a even 1 1 trivial
114.2.l.a 18 57.j even 18 1 inner
114.2.l.b yes 18 3.b odd 2 1
114.2.l.b yes 18 19.f odd 18 1
912.2.cc.c 18 12.b even 2 1
912.2.cc.c 18 76.k even 18 1
912.2.cc.d 18 4.b odd 2 1
912.2.cc.d 18 228.u odd 18 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T518+9T516+108T514+162T513+46T512324T511++1728 T_{5}^{18} + 9 T_{5}^{16} + 108 T_{5}^{14} + 162 T_{5}^{13} + 46 T_{5}^{12} - 324 T_{5}^{11} + \cdots + 1728 acting on S2new(114,[χ])S_{2}^{\mathrm{new}}(114, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T6T3+1)3 (T^{6} - T^{3} + 1)^{3} Copy content Toggle raw display
33 T18+T15++19683 T^{18} + T^{15} + \cdots + 19683 Copy content Toggle raw display
55 T18+9T16++1728 T^{18} + 9 T^{16} + \cdots + 1728 Copy content Toggle raw display
77 T18+21T16++87616 T^{18} + 21 T^{16} + \cdots + 87616 Copy content Toggle raw display
1111 T1851T16++35769627 T^{18} - 51 T^{16} + \cdots + 35769627 Copy content Toggle raw display
1313 T18+12T17++2365632 T^{18} + 12 T^{17} + \cdots + 2365632 Copy content Toggle raw display
1717 T18+6T17++3878307 T^{18} + 6 T^{17} + \cdots + 3878307 Copy content Toggle raw display
1919 T18++322687697779 T^{18} + \cdots + 322687697779 Copy content Toggle raw display
2323 T18++123187392 T^{18} + \cdots + 123187392 Copy content Toggle raw display
2929 T18++52719833664 T^{18} + \cdots + 52719833664 Copy content Toggle raw display
3131 T18++6231379854528 T^{18} + \cdots + 6231379854528 Copy content Toggle raw display
3737 T18++7868768303808 T^{18} + \cdots + 7868768303808 Copy content Toggle raw display
4141 T18++1846709769969 T^{18} + \cdots + 1846709769969 Copy content Toggle raw display
4343 T18++390621250009 T^{18} + \cdots + 390621250009 Copy content Toggle raw display
4747 T18++3499077312 T^{18} + \cdots + 3499077312 Copy content Toggle raw display
5353 T18++3426463296 T^{18} + \cdots + 3426463296 Copy content Toggle raw display
5959 T18++38983402581561 T^{18} + \cdots + 38983402581561 Copy content Toggle raw display
6161 T18++65033160256 T^{18} + \cdots + 65033160256 Copy content Toggle raw display
6767 T18++56 ⁣ ⁣23 T^{18} + \cdots + 56\!\cdots\!23 Copy content Toggle raw display
7171 T18++404099233344 T^{18} + \cdots + 404099233344 Copy content Toggle raw display
7373 T18++192753487369 T^{18} + \cdots + 192753487369 Copy content Toggle raw display
7979 T18++21259626441408 T^{18} + \cdots + 21259626441408 Copy content Toggle raw display
8383 T18++176145902499843 T^{18} + \cdots + 176145902499843 Copy content Toggle raw display
8989 T18++381874169643201 T^{18} + \cdots + 381874169643201 Copy content Toggle raw display
9797 T18++17447631785307 T^{18} + \cdots + 17447631785307 Copy content Toggle raw display
show more
show less