Newspace parameters
Level: | |||
Weight: | |||
Character orbit: | 114.l (of order , degree , minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
29.1 |
|
−0.173648 | − | 0.984808i | −0.716422 | + | 1.57694i | −0.939693 | + | 0.342020i | −1.14133 | + | 3.13578i | 1.67739 | + | 0.431705i | −1.07356 | + | 1.85947i | 0.500000 | + | 0.866025i | −1.97348 | − | 2.25951i | 3.28633 | + | 0.579469i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
29.2 | −0.173648 | − | 0.984808i | −0.0553136 | − | 1.73117i | −0.939693 | + | 0.342020i | 0.882820 | − | 2.42553i | −1.69526 | + | 0.355087i | −1.58376 | + | 2.74316i | 0.500000 | + | 0.866025i | −2.99388 | + | 0.191514i | −2.54198 | − | 0.448219i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
29.3 | −0.173648 | − | 0.984808i | 1.53778 | + | 0.797015i | −0.939693 | + | 0.342020i | 0.258510 | − | 0.710252i | 0.517874 | − | 1.65282i | 0.777943 | − | 1.34744i | 0.500000 | + | 0.866025i | 1.72953 | + | 2.45127i | −0.744351 | − | 0.131249i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
41.1 | −0.766044 | − | 0.642788i | −1.67151 | + | 0.453924i | 0.173648 | + | 0.984808i | 1.96615 | + | 0.346685i | 1.57223 | + | 0.726702i | 0.910931 | + | 1.57778i | 0.500000 | − | 0.866025i | 2.58791 | − | 1.51748i | −1.28331 | − | 1.52939i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
41.2 | −0.766044 | − | 0.642788i | −0.845418 | − | 1.51171i | 0.173648 | + | 0.984808i | −2.22841 | − | 0.392929i | −0.324081 | + | 1.70146i | −1.16829 | − | 2.02354i | 0.500000 | − | 0.866025i | −1.57054 | + | 2.55605i | 1.45449 | + | 1.73339i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
41.3 | −0.766044 | − | 0.642788i | 1.57724 | + | 0.715766i | 0.173648 | + | 0.984808i | 0.262261 | + | 0.0462437i | −0.748148 | − | 1.56214i | 0.604656 | + | 1.04730i | 0.500000 | − | 0.866025i | 1.97536 | + | 2.25787i | −0.171179 | − | 0.204003i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
53.1 | 0.939693 | + | 0.342020i | −1.64823 | − | 0.532290i | 0.766044 | + | 0.642788i | 2.20556 | + | 2.62849i | −1.36678 | − | 1.06392i | 1.68651 | − | 2.92113i | 0.500000 | + | 0.866025i | 2.43333 | + | 1.75467i | 1.17355 | + | 3.22432i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
53.2 | 0.939693 | + | 0.342020i | 0.560041 | − | 1.63901i | 0.766044 | + | 0.642788i | −0.343148 | − | 0.408948i | 1.08684 | − | 1.34862i | −0.716507 | + | 1.24103i | 0.500000 | + | 0.866025i | −2.37271 | − | 1.83583i | −0.182585 | − | 0.501649i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
53.3 | 0.939693 | + | 0.342020i | 1.26184 | + | 1.18649i | 0.766044 | + | 0.642788i | −1.86241 | − | 2.21954i | 0.779936 | + | 1.54651i | 0.562083 | − | 0.973556i | 0.500000 | + | 0.866025i | 0.184473 | + | 2.99432i | −0.990970 | − | 2.72267i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
59.1 | −0.173648 | + | 0.984808i | −0.716422 | − | 1.57694i | −0.939693 | − | 0.342020i | −1.14133 | − | 3.13578i | 1.67739 | − | 0.431705i | −1.07356 | − | 1.85947i | 0.500000 | − | 0.866025i | −1.97348 | + | 2.25951i | 3.28633 | − | 0.579469i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
59.2 | −0.173648 | + | 0.984808i | −0.0553136 | + | 1.73117i | −0.939693 | − | 0.342020i | 0.882820 | + | 2.42553i | −1.69526 | − | 0.355087i | −1.58376 | − | 2.74316i | 0.500000 | − | 0.866025i | −2.99388 | − | 0.191514i | −2.54198 | + | 0.448219i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
59.3 | −0.173648 | + | 0.984808i | 1.53778 | − | 0.797015i | −0.939693 | − | 0.342020i | 0.258510 | + | 0.710252i | 0.517874 | + | 1.65282i | 0.777943 | + | 1.34744i | 0.500000 | − | 0.866025i | 1.72953 | − | 2.45127i | −0.744351 | + | 0.131249i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
71.1 | 0.939693 | − | 0.342020i | −1.64823 | + | 0.532290i | 0.766044 | − | 0.642788i | 2.20556 | − | 2.62849i | −1.36678 | + | 1.06392i | 1.68651 | + | 2.92113i | 0.500000 | − | 0.866025i | 2.43333 | − | 1.75467i | 1.17355 | − | 3.22432i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
71.2 | 0.939693 | − | 0.342020i | 0.560041 | + | 1.63901i | 0.766044 | − | 0.642788i | −0.343148 | + | 0.408948i | 1.08684 | + | 1.34862i | −0.716507 | − | 1.24103i | 0.500000 | − | 0.866025i | −2.37271 | + | 1.83583i | −0.182585 | + | 0.501649i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
71.3 | 0.939693 | − | 0.342020i | 1.26184 | − | 1.18649i | 0.766044 | − | 0.642788i | −1.86241 | + | 2.21954i | 0.779936 | − | 1.54651i | 0.562083 | + | 0.973556i | 0.500000 | − | 0.866025i | 0.184473 | − | 2.99432i | −0.990970 | + | 2.72267i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
89.1 | −0.766044 | + | 0.642788i | −1.67151 | − | 0.453924i | 0.173648 | − | 0.984808i | 1.96615 | − | 0.346685i | 1.57223 | − | 0.726702i | 0.910931 | − | 1.57778i | 0.500000 | + | 0.866025i | 2.58791 | + | 1.51748i | −1.28331 | + | 1.52939i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
89.2 | −0.766044 | + | 0.642788i | −0.845418 | + | 1.51171i | 0.173648 | − | 0.984808i | −2.22841 | + | 0.392929i | −0.324081 | − | 1.70146i | −1.16829 | + | 2.02354i | 0.500000 | + | 0.866025i | −1.57054 | − | 2.55605i | 1.45449 | − | 1.73339i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
89.3 | −0.766044 | + | 0.642788i | 1.57724 | − | 0.715766i | 0.173648 | − | 0.984808i | 0.262261 | − | 0.0462437i | −0.748148 | + | 1.56214i | 0.604656 | − | 1.04730i | 0.500000 | + | 0.866025i | 1.97536 | − | 2.25787i | −0.171179 | + | 0.204003i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
57.j | even | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 114.2.l.a | ✓ | 18 |
3.b | odd | 2 | 1 | 114.2.l.b | yes | 18 | |
4.b | odd | 2 | 1 | 912.2.cc.d | 18 | ||
12.b | even | 2 | 1 | 912.2.cc.c | 18 | ||
19.f | odd | 18 | 1 | 114.2.l.b | yes | 18 | |
57.j | even | 18 | 1 | inner | 114.2.l.a | ✓ | 18 |
76.k | even | 18 | 1 | 912.2.cc.c | 18 | ||
228.u | odd | 18 | 1 | 912.2.cc.d | 18 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
114.2.l.a | ✓ | 18 | 1.a | even | 1 | 1 | trivial |
114.2.l.a | ✓ | 18 | 57.j | even | 18 | 1 | inner |
114.2.l.b | yes | 18 | 3.b | odd | 2 | 1 | |
114.2.l.b | yes | 18 | 19.f | odd | 18 | 1 | |
912.2.cc.c | 18 | 12.b | even | 2 | 1 | ||
912.2.cc.c | 18 | 76.k | even | 18 | 1 | ||
912.2.cc.d | 18 | 4.b | odd | 2 | 1 | ||
912.2.cc.d | 18 | 228.u | odd | 18 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .