Properties

Label 114.6.a.g
Level $114$
Weight $6$
Character orbit 114.a
Self dual yes
Analytic conductor $18.284$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [114,6,Mod(1,114)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(114, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("114.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 114 = 2 \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 114.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.2837554587\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2441}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 610 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(-1 + 3\sqrt{2441})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 q^{2} - 9 q^{3} + 16 q^{4} + ( - \beta - 3) q^{5} - 36 q^{6} + ( - \beta - 53) q^{7} + 64 q^{8} + 81 q^{9} + ( - 4 \beta - 12) q^{10} + (7 \beta + 229) q^{11} - 144 q^{12} + (4 \beta + 550) q^{13}+ \cdots + (567 \beta + 18549) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} - 18 q^{3} + 32 q^{4} - 5 q^{5} - 72 q^{6} - 105 q^{7} + 128 q^{8} + 162 q^{9} - 20 q^{10} + 451 q^{11} - 288 q^{12} + 1096 q^{13} - 420 q^{14} + 45 q^{15} + 512 q^{16} + 3057 q^{17} + 648 q^{18}+ \cdots + 36531 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
25.2032
−24.2032
4.00000 −9.00000 16.0000 −76.6097 −36.0000 −126.610 64.0000 81.0000 −306.439
1.2 4.00000 −9.00000 16.0000 71.6097 −36.0000 21.6097 64.0000 81.0000 286.439
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 114.6.a.g 2
3.b odd 2 1 342.6.a.g 2
4.b odd 2 1 912.6.a.j 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
114.6.a.g 2 1.a even 1 1 trivial
342.6.a.g 2 3.b odd 2 1
912.6.a.j 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 5T_{5} - 5486 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(114))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 4)^{2} \) Copy content Toggle raw display
$3$ \( (T + 9)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 5T - 5486 \) Copy content Toggle raw display
$7$ \( T^{2} + 105T - 2736 \) Copy content Toggle raw display
$11$ \( T^{2} - 451T - 218270 \) Copy content Toggle raw display
$13$ \( T^{2} - 1096 T + 212428 \) Copy content Toggle raw display
$17$ \( T^{2} - 3057 T + 2286882 \) Copy content Toggle raw display
$19$ \( (T + 361)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 386 T - 2621000 \) Copy content Toggle raw display
$29$ \( T^{2} - 3446 T - 49778840 \) Copy content Toggle raw display
$31$ \( T^{2} - 15362 T + 52648720 \) Copy content Toggle raw display
$37$ \( T^{2} - 5174 T + 6143344 \) Copy content Toggle raw display
$41$ \( T^{2} + 2128 T - 49484480 \) Copy content Toggle raw display
$43$ \( T^{2} + 157 T - 3997688 \) Copy content Toggle raw display
$47$ \( T^{2} + 1343 T - 121482530 \) Copy content Toggle raw display
$53$ \( T^{2} - 5326 T + 6893848 \) Copy content Toggle raw display
$59$ \( T^{2} + 5796 T + 8310528 \) Copy content Toggle raw display
$61$ \( T^{2} - 1009 T - 287764562 \) Copy content Toggle raw display
$67$ \( T^{2} - 45720 T + 432594576 \) Copy content Toggle raw display
$71$ \( T^{2} + 50876 T - 359000480 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 1353635406 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 1944350720 \) Copy content Toggle raw display
$83$ \( T^{2} + 61662 T + 475822440 \) Copy content Toggle raw display
$89$ \( T^{2} + 726 T - 18344160 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 10016587652 \) Copy content Toggle raw display
show more
show less