Properties

Label 114.6.a.g
Level 114114
Weight 66
Character orbit 114.a
Self dual yes
Analytic conductor 18.28418.284
Analytic rank 00
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [114,6,Mod(1,114)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(114, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("114.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 114=2319 114 = 2 \cdot 3 \cdot 19
Weight: k k == 6 6
Character orbit: [χ][\chi] == 114.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 18.283755458718.2837554587
Analytic rank: 00
Dimension: 22
Coefficient field: Q(2441)\Q(\sqrt{2441})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x610 x^{2} - x - 610 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 3 3
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=12(1+32441)\beta = \frac{1}{2}(-1 + 3\sqrt{2441}). We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+4q29q3+16q4+(β3)q536q6+(β53)q7+64q8+81q9+(4β12)q10+(7β+229)q11144q12+(4β+550)q13++(567β+18549)q99+O(q100) q + 4 q^{2} - 9 q^{3} + 16 q^{4} + ( - \beta - 3) q^{5} - 36 q^{6} + ( - \beta - 53) q^{7} + 64 q^{8} + 81 q^{9} + ( - 4 \beta - 12) q^{10} + (7 \beta + 229) q^{11} - 144 q^{12} + (4 \beta + 550) q^{13}+ \cdots + (567 \beta + 18549) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+8q218q3+32q45q572q6105q7+128q8+162q920q10+451q11288q12+1096q13420q14+45q15+512q16+3057q17+648q18++36531q99+O(q100) 2 q + 8 q^{2} - 18 q^{3} + 32 q^{4} - 5 q^{5} - 72 q^{6} - 105 q^{7} + 128 q^{8} + 162 q^{9} - 20 q^{10} + 451 q^{11} - 288 q^{12} + 1096 q^{13} - 420 q^{14} + 45 q^{15} + 512 q^{16} + 3057 q^{17} + 648 q^{18}+ \cdots + 36531 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
25.2032
−24.2032
4.00000 −9.00000 16.0000 −76.6097 −36.0000 −126.610 64.0000 81.0000 −306.439
1.2 4.00000 −9.00000 16.0000 71.6097 −36.0000 21.6097 64.0000 81.0000 286.439
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 +1 +1
1919 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 114.6.a.g 2
3.b odd 2 1 342.6.a.g 2
4.b odd 2 1 912.6.a.j 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
114.6.a.g 2 1.a even 1 1 trivial
342.6.a.g 2 3.b odd 2 1
912.6.a.j 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T52+5T55486 T_{5}^{2} + 5T_{5} - 5486 acting on S6new(Γ0(114))S_{6}^{\mathrm{new}}(\Gamma_0(114)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T4)2 (T - 4)^{2} Copy content Toggle raw display
33 (T+9)2 (T + 9)^{2} Copy content Toggle raw display
55 T2+5T5486 T^{2} + 5T - 5486 Copy content Toggle raw display
77 T2+105T2736 T^{2} + 105T - 2736 Copy content Toggle raw display
1111 T2451T218270 T^{2} - 451T - 218270 Copy content Toggle raw display
1313 T21096T+212428 T^{2} - 1096 T + 212428 Copy content Toggle raw display
1717 T23057T+2286882 T^{2} - 3057 T + 2286882 Copy content Toggle raw display
1919 (T+361)2 (T + 361)^{2} Copy content Toggle raw display
2323 T2+386T2621000 T^{2} + 386 T - 2621000 Copy content Toggle raw display
2929 T23446T49778840 T^{2} - 3446 T - 49778840 Copy content Toggle raw display
3131 T215362T+52648720 T^{2} - 15362 T + 52648720 Copy content Toggle raw display
3737 T25174T+6143344 T^{2} - 5174 T + 6143344 Copy content Toggle raw display
4141 T2+2128T49484480 T^{2} + 2128 T - 49484480 Copy content Toggle raw display
4343 T2+157T3997688 T^{2} + 157 T - 3997688 Copy content Toggle raw display
4747 T2+1343T121482530 T^{2} + 1343 T - 121482530 Copy content Toggle raw display
5353 T25326T+6893848 T^{2} - 5326 T + 6893848 Copy content Toggle raw display
5959 T2+5796T+8310528 T^{2} + 5796 T + 8310528 Copy content Toggle raw display
6161 T21009T287764562 T^{2} - 1009 T - 287764562 Copy content Toggle raw display
6767 T245720T+432594576 T^{2} - 45720 T + 432594576 Copy content Toggle raw display
7171 T2+50876T359000480 T^{2} + 50876 T - 359000480 Copy content Toggle raw display
7373 T2++1353635406 T^{2} + \cdots + 1353635406 Copy content Toggle raw display
7979 T2+1944350720 T^{2} + \cdots - 1944350720 Copy content Toggle raw display
8383 T2+61662T+475822440 T^{2} + 61662 T + 475822440 Copy content Toggle raw display
8989 T2+726T18344160 T^{2} + 726 T - 18344160 Copy content Toggle raw display
9797 T2+10016587652 T^{2} + \cdots - 10016587652 Copy content Toggle raw display
show more
show less