Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [115,2,Mod(1,115)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(115, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("115.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 115.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 4.4.15317.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−1.69353 | −2.56155 | 0.868028 | 1.00000 | 4.33805 | −0.819031 | 1.91702 | 3.56155 | −1.69353 | ||||||||||||||||||||||||||||||
1.2 | −0.329727 | 1.56155 | −1.89128 | 1.00000 | −0.514886 | 4.06562 | 1.28306 | −0.561553 | −0.329727 | |||||||||||||||||||||||||||||||
1.3 | 1.32973 | 1.56155 | −0.231826 | 1.00000 | 2.07644 | −3.50407 | −2.96772 | −0.561553 | 1.32973 | |||||||||||||||||||||||||||||||
1.4 | 2.69353 | −2.56155 | 5.25508 | 1.00000 | −6.89961 | −2.74252 | 8.76763 | 3.56155 | 2.69353 | |||||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 115.2.a.c | ✓ | 4 |
3.b | odd | 2 | 1 | 1035.2.a.o | 4 | ||
4.b | odd | 2 | 1 | 1840.2.a.u | 4 | ||
5.b | even | 2 | 1 | 575.2.a.h | 4 | ||
5.c | odd | 4 | 2 | 575.2.b.e | 8 | ||
7.b | odd | 2 | 1 | 5635.2.a.v | 4 | ||
8.b | even | 2 | 1 | 7360.2.a.cj | 4 | ||
8.d | odd | 2 | 1 | 7360.2.a.cg | 4 | ||
15.d | odd | 2 | 1 | 5175.2.a.bx | 4 | ||
20.d | odd | 2 | 1 | 9200.2.a.cl | 4 | ||
23.b | odd | 2 | 1 | 2645.2.a.m | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
115.2.a.c | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
575.2.a.h | 4 | 5.b | even | 2 | 1 | ||
575.2.b.e | 8 | 5.c | odd | 4 | 2 | ||
1035.2.a.o | 4 | 3.b | odd | 2 | 1 | ||
1840.2.a.u | 4 | 4.b | odd | 2 | 1 | ||
2645.2.a.m | 4 | 23.b | odd | 2 | 1 | ||
5175.2.a.bx | 4 | 15.d | odd | 2 | 1 | ||
5635.2.a.v | 4 | 7.b | odd | 2 | 1 | ||
7360.2.a.cg | 4 | 8.d | odd | 2 | 1 | ||
7360.2.a.cj | 4 | 8.b | even | 2 | 1 | ||
9200.2.a.cl | 4 | 20.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .