Properties

Label 115.2.a.c
Level $115$
Weight $2$
Character orbit 115.a
Self dual yes
Analytic conductor $0.918$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [115,2,Mod(1,115)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(115, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("115.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 115 = 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 115.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.918279623245\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.15317.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 4x^{2} + 5x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + ( - \beta_{2} - 1) q^{3} + (\beta_{2} + \beta_1 + 1) q^{4} + q^{5} + ( - \beta_{3} - 2 \beta_1 + 1) q^{6} + (\beta_{3} - \beta_{2} - \beta_1 - 1) q^{7} + (\beta_{3} + \beta_{2} + \beta_1 + 2) q^{8}+ \cdots + ( - 2 \beta_{3} + 2 \beta_{2} + \cdots + 6) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 2 q^{3} + 4 q^{4} + 4 q^{5} - q^{6} - 3 q^{7} + 9 q^{8} + 6 q^{9} + 2 q^{10} + 4 q^{11} - 19 q^{12} - 12 q^{14} - 2 q^{15} + 8 q^{16} - q^{17} + 3 q^{18} - 4 q^{19} + 4 q^{20} + 10 q^{21}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 4x^{2} + 5x + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 4\nu + 1 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 5\beta _1 + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.69353
−0.329727
1.32973
2.69353
−1.69353 −2.56155 0.868028 1.00000 4.33805 −0.819031 1.91702 3.56155 −1.69353
1.2 −0.329727 1.56155 −1.89128 1.00000 −0.514886 4.06562 1.28306 −0.561553 −0.329727
1.3 1.32973 1.56155 −0.231826 1.00000 2.07644 −3.50407 −2.96772 −0.561553 1.32973
1.4 2.69353 −2.56155 5.25508 1.00000 −6.89961 −2.74252 8.76763 3.56155 2.69353
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 115.2.a.c 4
3.b odd 2 1 1035.2.a.o 4
4.b odd 2 1 1840.2.a.u 4
5.b even 2 1 575.2.a.h 4
5.c odd 4 2 575.2.b.e 8
7.b odd 2 1 5635.2.a.v 4
8.b even 2 1 7360.2.a.cj 4
8.d odd 2 1 7360.2.a.cg 4
15.d odd 2 1 5175.2.a.bx 4
20.d odd 2 1 9200.2.a.cl 4
23.b odd 2 1 2645.2.a.m 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
115.2.a.c 4 1.a even 1 1 trivial
575.2.a.h 4 5.b even 2 1
575.2.b.e 8 5.c odd 4 2
1035.2.a.o 4 3.b odd 2 1
1840.2.a.u 4 4.b odd 2 1
2645.2.a.m 4 23.b odd 2 1
5175.2.a.bx 4 15.d odd 2 1
5635.2.a.v 4 7.b odd 2 1
7360.2.a.cg 4 8.d odd 2 1
7360.2.a.cj 4 8.b even 2 1
9200.2.a.cl 4 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 2T_{2}^{3} - 4T_{2}^{2} + 5T_{2} + 2 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(115))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 2 T^{3} + \cdots + 2 \) Copy content Toggle raw display
$3$ \( (T^{2} + T - 4)^{2} \) Copy content Toggle raw display
$5$ \( (T - 1)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 3 T^{3} + \cdots - 32 \) Copy content Toggle raw display
$11$ \( T^{4} - 4 T^{3} + \cdots + 32 \) Copy content Toggle raw display
$13$ \( T^{4} - 41T^{2} + 212 \) Copy content Toggle raw display
$17$ \( T^{4} + T^{3} + \cdots + 32 \) Copy content Toggle raw display
$19$ \( T^{4} + 4 T^{3} + \cdots + 32 \) Copy content Toggle raw display
$23$ \( (T + 1)^{4} \) Copy content Toggle raw display
$29$ \( T^{4} - 19 T^{3} + \cdots + 202 \) Copy content Toggle raw display
$31$ \( T^{4} + T^{3} + \cdots + 2144 \) Copy content Toggle raw display
$37$ \( T^{4} + 3 T^{3} + \cdots + 2008 \) Copy content Toggle raw display
$41$ \( T^{4} - 13 T^{3} + \cdots - 94 \) Copy content Toggle raw display
$43$ \( T^{4} + 6 T^{3} + \cdots + 128 \) Copy content Toggle raw display
$47$ \( T^{4} - 6 T^{3} + \cdots - 128 \) Copy content Toggle raw display
$53$ \( T^{4} - 19 T^{3} + \cdots - 8776 \) Copy content Toggle raw display
$59$ \( T^{4} - 23 T^{3} + \cdots - 3136 \) Copy content Toggle raw display
$61$ \( T^{4} - 56 T^{2} + \cdots - 32 \) Copy content Toggle raw display
$67$ \( T^{4} + 3 T^{3} + \cdots + 2032 \) Copy content Toggle raw display
$71$ \( T^{4} + 3 T^{3} + \cdots - 8 \) Copy content Toggle raw display
$73$ \( T^{4} + 32 T^{3} + \cdots + 1684 \) Copy content Toggle raw display
$79$ \( T^{4} - 2 T^{3} + \cdots + 512 \) Copy content Toggle raw display
$83$ \( T^{4} + 21 T^{3} + \cdots - 1216 \) Copy content Toggle raw display
$89$ \( T^{4} - 216 T^{2} + \cdots - 2752 \) Copy content Toggle raw display
$97$ \( T^{4} + 18 T^{3} + \cdots - 1072 \) Copy content Toggle raw display
show more
show less