Properties

Label 115.2.a.c
Level 115115
Weight 22
Character orbit 115.a
Self dual yes
Analytic conductor 0.9180.918
Analytic rank 00
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [115,2,Mod(1,115)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(115, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("115.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 115=523 115 = 5 \cdot 23
Weight: k k == 2 2
Character orbit: [χ][\chi] == 115.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 0.9182796232450.918279623245
Analytic rank: 00
Dimension: 44
Coefficient field: 4.4.15317.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x42x34x2+5x+2 x^{4} - 2x^{3} - 4x^{2} + 5x + 2 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+(β21)q3+(β2+β1+1)q4+q5+(β32β1+1)q6+(β3β2β11)q7+(β3+β2+β1+2)q8++(2β3+2β2++6)q99+O(q100) q + \beta_1 q^{2} + ( - \beta_{2} - 1) q^{3} + (\beta_{2} + \beta_1 + 1) q^{4} + q^{5} + ( - \beta_{3} - 2 \beta_1 + 1) q^{6} + (\beta_{3} - \beta_{2} - \beta_1 - 1) q^{7} + (\beta_{3} + \beta_{2} + \beta_1 + 2) q^{8}+ \cdots + ( - 2 \beta_{3} + 2 \beta_{2} + \cdots + 6) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q22q3+4q4+4q5q63q7+9q8+6q9+2q10+4q1119q1212q142q15+8q16q17+3q184q19+4q20+10q21++6q99+O(q100) 4 q + 2 q^{2} - 2 q^{3} + 4 q^{4} + 4 q^{5} - q^{6} - 3 q^{7} + 9 q^{8} + 6 q^{9} + 2 q^{10} + 4 q^{11} - 19 q^{12} - 12 q^{14} - 2 q^{15} + 8 q^{16} - q^{17} + 3 q^{18} - 4 q^{19} + 4 q^{20} + 10 q^{21}+ \cdots + 6 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x42x34x2+5x+2 x^{4} - 2x^{3} - 4x^{2} + 5x + 2 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν2ν3 \nu^{2} - \nu - 3 Copy content Toggle raw display
β3\beta_{3}== ν3ν24ν+1 \nu^{3} - \nu^{2} - 4\nu + 1 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+β1+3 \beta_{2} + \beta _1 + 3 Copy content Toggle raw display
ν3\nu^{3}== β3+β2+5β1+2 \beta_{3} + \beta_{2} + 5\beta _1 + 2 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−1.69353
−0.329727
1.32973
2.69353
−1.69353 −2.56155 0.868028 1.00000 4.33805 −0.819031 1.91702 3.56155 −1.69353
1.2 −0.329727 1.56155 −1.89128 1.00000 −0.514886 4.06562 1.28306 −0.561553 −0.329727
1.3 1.32973 1.56155 −0.231826 1.00000 2.07644 −3.50407 −2.96772 −0.561553 1.32973
1.4 2.69353 −2.56155 5.25508 1.00000 −6.89961 −2.74252 8.76763 3.56155 2.69353
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
55 1 -1
2323 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 115.2.a.c 4
3.b odd 2 1 1035.2.a.o 4
4.b odd 2 1 1840.2.a.u 4
5.b even 2 1 575.2.a.h 4
5.c odd 4 2 575.2.b.e 8
7.b odd 2 1 5635.2.a.v 4
8.b even 2 1 7360.2.a.cj 4
8.d odd 2 1 7360.2.a.cg 4
15.d odd 2 1 5175.2.a.bx 4
20.d odd 2 1 9200.2.a.cl 4
23.b odd 2 1 2645.2.a.m 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
115.2.a.c 4 1.a even 1 1 trivial
575.2.a.h 4 5.b even 2 1
575.2.b.e 8 5.c odd 4 2
1035.2.a.o 4 3.b odd 2 1
1840.2.a.u 4 4.b odd 2 1
2645.2.a.m 4 23.b odd 2 1
5175.2.a.bx 4 15.d odd 2 1
5635.2.a.v 4 7.b odd 2 1
7360.2.a.cg 4 8.d odd 2 1
7360.2.a.cj 4 8.b even 2 1
9200.2.a.cl 4 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T242T234T22+5T2+2 T_{2}^{4} - 2T_{2}^{3} - 4T_{2}^{2} + 5T_{2} + 2 acting on S2new(Γ0(115))S_{2}^{\mathrm{new}}(\Gamma_0(115)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T42T3++2 T^{4} - 2 T^{3} + \cdots + 2 Copy content Toggle raw display
33 (T2+T4)2 (T^{2} + T - 4)^{2} Copy content Toggle raw display
55 (T1)4 (T - 1)^{4} Copy content Toggle raw display
77 T4+3T3+32 T^{4} + 3 T^{3} + \cdots - 32 Copy content Toggle raw display
1111 T44T3++32 T^{4} - 4 T^{3} + \cdots + 32 Copy content Toggle raw display
1313 T441T2+212 T^{4} - 41T^{2} + 212 Copy content Toggle raw display
1717 T4+T3++32 T^{4} + T^{3} + \cdots + 32 Copy content Toggle raw display
1919 T4+4T3++32 T^{4} + 4 T^{3} + \cdots + 32 Copy content Toggle raw display
2323 (T+1)4 (T + 1)^{4} Copy content Toggle raw display
2929 T419T3++202 T^{4} - 19 T^{3} + \cdots + 202 Copy content Toggle raw display
3131 T4+T3++2144 T^{4} + T^{3} + \cdots + 2144 Copy content Toggle raw display
3737 T4+3T3++2008 T^{4} + 3 T^{3} + \cdots + 2008 Copy content Toggle raw display
4141 T413T3+94 T^{4} - 13 T^{3} + \cdots - 94 Copy content Toggle raw display
4343 T4+6T3++128 T^{4} + 6 T^{3} + \cdots + 128 Copy content Toggle raw display
4747 T46T3+128 T^{4} - 6 T^{3} + \cdots - 128 Copy content Toggle raw display
5353 T419T3+8776 T^{4} - 19 T^{3} + \cdots - 8776 Copy content Toggle raw display
5959 T423T3+3136 T^{4} - 23 T^{3} + \cdots - 3136 Copy content Toggle raw display
6161 T456T2+32 T^{4} - 56 T^{2} + \cdots - 32 Copy content Toggle raw display
6767 T4+3T3++2032 T^{4} + 3 T^{3} + \cdots + 2032 Copy content Toggle raw display
7171 T4+3T3+8 T^{4} + 3 T^{3} + \cdots - 8 Copy content Toggle raw display
7373 T4+32T3++1684 T^{4} + 32 T^{3} + \cdots + 1684 Copy content Toggle raw display
7979 T42T3++512 T^{4} - 2 T^{3} + \cdots + 512 Copy content Toggle raw display
8383 T4+21T3+1216 T^{4} + 21 T^{3} + \cdots - 1216 Copy content Toggle raw display
8989 T4216T2+2752 T^{4} - 216 T^{2} + \cdots - 2752 Copy content Toggle raw display
9797 T4+18T3+1072 T^{4} + 18 T^{3} + \cdots - 1072 Copy content Toggle raw display
show more
show less