Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [115,2,Mod(7,115)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(115, base_ring=CyclotomicField(44))
chi = DirichletCharacter(H, H._module([11, 38]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("115.7");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 115 = 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 115.l (of order \(44\), degree \(20\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(0.918279623245\) |
Analytic rank: | \(0\) |
Dimension: | \(200\) |
Relative dimension: | \(10\) over \(\Q(\zeta_{44})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{44}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 | −2.48666 | + | 0.177849i | 0.639470 | − | 2.93959i | 4.17220 | − | 0.599872i | 0.983237 | + | 2.00829i | −1.06734 | + | 7.42350i | 1.40495 | − | 2.57297i | −5.39608 | + | 1.17384i | −5.50340 | − | 2.51332i | −2.80215 | − | 4.81907i |
7.2 | −2.43652 | + | 0.174263i | −0.128656 | + | 0.591424i | 3.92662 | − | 0.564562i | −1.44483 | − | 1.70660i | 0.210410 | − | 1.46344i | −0.0458364 | + | 0.0839431i | −4.69506 | + | 1.02135i | 2.39567 | + | 1.09406i | 3.81775 | + | 3.90638i |
7.3 | −1.30561 | + | 0.0933793i | 0.136266 | − | 0.626406i | −0.283736 | + | 0.0407951i | −1.37401 | + | 1.76411i | −0.119418 | + | 0.830568i | −2.05467 | + | 3.76286i | 2.92471 | − | 0.636232i | 2.35508 | + | 1.07553i | 1.62920 | − | 2.43155i |
7.4 | −1.05653 | + | 0.0755644i | 0.0308132 | − | 0.141646i | −0.869101 | + | 0.124958i | 2.18100 | − | 0.493172i | −0.0218516 | + | 0.151981i | 0.717546 | − | 1.31409i | 2.97883 | − | 0.648004i | 2.70978 | + | 1.23752i | −2.26703 | + | 0.685856i |
7.5 | −0.643856 | + | 0.0460495i | −0.683154 | + | 3.14041i | −1.56721 | + | 0.225331i | −0.267157 | − | 2.22005i | 0.295239 | − | 2.05343i | −1.03991 | + | 1.90445i | 2.26018 | − | 0.491672i | −6.66656 | − | 3.04452i | 0.274243 | + | 1.41709i |
7.6 | −0.107969 | + | 0.00772212i | 0.390334 | − | 1.79434i | −1.96805 | + | 0.282962i | −2.08676 | − | 0.803398i | −0.0282880 | + | 0.196748i | 2.36052 | − | 4.32296i | 0.421846 | − | 0.0917670i | −0.338390 | − | 0.154538i | 0.231510 | + | 0.0706281i |
7.7 | 0.632652 | − | 0.0452482i | −0.364069 | + | 1.67360i | −1.58144 | + | 0.227377i | 1.17051 | + | 1.90523i | −0.154602 | + | 1.07528i | 0.0937908 | − | 0.171765i | −2.22976 | + | 0.485055i | 0.0605071 | + | 0.0276327i | 0.826736 | + | 1.15238i |
7.8 | 1.60196 | − | 0.114574i | 0.0509080 | − | 0.234020i | 0.573502 | − | 0.0824571i | 0.888172 | − | 2.05211i | 0.0547398 | − | 0.380723i | −0.562120 | + | 1.02945i | −2.22942 | + | 0.484980i | 2.67672 | + | 1.22242i | 1.18770 | − | 3.38916i |
7.9 | 1.82025 | − | 0.130187i | 0.475590 | − | 2.18625i | 1.31673 | − | 0.189318i | −1.13658 | + | 1.92566i | 0.581073 | − | 4.04145i | −0.696418 | + | 1.27539i | −1.19425 | + | 0.259794i | −1.82462 | − | 0.833276i | −1.81818 | + | 3.65316i |
7.10 | 2.13477 | − | 0.152682i | −0.476413 | + | 2.19004i | 2.55431 | − | 0.367254i | −2.17992 | − | 0.497948i | −0.682656 | + | 4.74797i | 1.43707 | − | 2.63180i | 1.21416 | − | 0.264125i | −1.84040 | − | 0.840481i | −4.72966 | − | 0.730172i |
17.1 | −2.39977 | + | 0.895067i | −0.939581 | + | 0.513050i | 3.44624 | − | 2.98618i | 1.67567 | + | 1.48058i | 1.79556 | − | 2.07219i | 0.380432 | + | 0.508198i | −3.14238 | + | 5.75484i | −1.00233 | + | 1.55966i | −5.34644 | − | 2.05322i |
17.2 | −1.75302 | + | 0.653844i | 0.975483 | − | 0.532654i | 1.13408 | − | 0.982690i | 0.872739 | − | 2.05872i | −1.36177 | + | 1.57157i | −1.17575 | − | 1.57062i | 0.447790 | − | 0.820066i | −0.954075 | + | 1.48457i | −0.183850 | + | 4.17962i |
17.3 | −1.54777 | + | 0.577290i | −2.80985 | + | 1.53430i | 0.550844 | − | 0.477309i | −1.14879 | − | 1.91841i | 3.46329 | − | 3.99685i | 1.53995 | + | 2.05714i | 1.00633 | − | 1.84296i | 3.91929 | − | 6.09853i | 2.88555 | + | 2.30607i |
17.4 | −1.07057 | + | 0.399303i | −0.256216 | + | 0.139905i | −0.524814 | + | 0.454754i | −1.94143 | + | 1.10943i | 0.218434 | − | 0.252086i | −1.96263 | − | 2.62176i | 1.47546 | − | 2.70211i | −1.57585 | + | 2.45207i | 1.63545 | − | 1.96295i |
17.5 | −0.117766 | + | 0.0439246i | −0.632714 | + | 0.345488i | −1.49956 | + | 1.29938i | 2.23369 | + | 0.103094i | 0.0593371 | − | 0.0684786i | 1.63018 | + | 2.17766i | 0.239998 | − | 0.439523i | −1.34096 | + | 2.08657i | −0.267582 | + | 0.0859729i |
17.6 | 0.0418710 | − | 0.0156171i | 2.62848 | − | 1.43526i | −1.50999 | + | 1.30841i | −0.593814 | − | 2.15578i | 0.0876426 | − | 0.101145i | 1.31081 | + | 1.75104i | −0.0856252 | + | 0.156811i | 3.22702 | − | 5.02134i | −0.0585306 | − | 0.0809910i |
17.7 | 0.864755 | − | 0.322537i | 1.68339 | − | 0.919199i | −0.867728 | + | 0.751890i | 1.28668 | + | 1.82879i | 1.15924 | − | 1.33784i | −2.26318 | − | 3.02326i | −1.39250 | + | 2.55018i | 0.366945 | − | 0.570978i | 1.70251 | + | 1.16645i |
17.8 | 1.03990 | − | 0.387863i | −2.64829 | + | 1.44608i | −0.580545 | + | 0.503045i | −0.406014 | + | 2.19890i | −2.19308 | + | 2.53095i | −0.573224 | − | 0.765738i | −1.47241 | + | 2.69652i | 3.30039 | − | 5.13550i | 0.430656 | + | 2.44411i |
17.9 | 1.79955 | − | 0.671199i | 0.756071 | − | 0.412846i | 1.27639 | − | 1.10600i | −2.21107 | − | 0.333414i | 1.08349 | − | 1.25041i | −0.0833334 | − | 0.111320i | −0.286357 | + | 0.524424i | −1.22072 | + | 1.89948i | −4.20273 | + | 0.884071i |
17.10 | 2.04194 | − | 0.761604i | −1.49195 | + | 0.814667i | 2.07797 | − | 1.80057i | 1.48286 | − | 1.67366i | −2.42602 | + | 2.79977i | 0.435377 | + | 0.581596i | 0.782870 | − | 1.43372i | −0.0596878 | + | 0.0928760i | 1.75324 | − | 4.54686i |
See next 80 embeddings (of 200 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
23.d | odd | 22 | 1 | inner |
115.l | even | 44 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 115.2.l.a | ✓ | 200 |
5.b | even | 2 | 1 | 575.2.r.b | 200 | ||
5.c | odd | 4 | 1 | inner | 115.2.l.a | ✓ | 200 |
5.c | odd | 4 | 1 | 575.2.r.b | 200 | ||
23.d | odd | 22 | 1 | inner | 115.2.l.a | ✓ | 200 |
115.i | odd | 22 | 1 | 575.2.r.b | 200 | ||
115.l | even | 44 | 1 | inner | 115.2.l.a | ✓ | 200 |
115.l | even | 44 | 1 | 575.2.r.b | 200 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
115.2.l.a | ✓ | 200 | 1.a | even | 1 | 1 | trivial |
115.2.l.a | ✓ | 200 | 5.c | odd | 4 | 1 | inner |
115.2.l.a | ✓ | 200 | 23.d | odd | 22 | 1 | inner |
115.2.l.a | ✓ | 200 | 115.l | even | 44 | 1 | inner |
575.2.r.b | 200 | 5.b | even | 2 | 1 | ||
575.2.r.b | 200 | 5.c | odd | 4 | 1 | ||
575.2.r.b | 200 | 115.i | odd | 22 | 1 | ||
575.2.r.b | 200 | 115.l | even | 44 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(115, [\chi])\).