Properties

Label 115.3.c.c.114.2
Level $115$
Weight $3$
Character 115.114
Analytic conductor $3.134$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [115,3,Mod(114,115)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(115, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("115.114");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 115 = 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 115.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.13352304014\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 6 x^{18} - 827 x^{16} - 12720 x^{14} + 346250 x^{12} + 9668500 x^{10} + 216406250 x^{8} + \cdots + 95367431640625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 114.2
Root \(-3.24366 + 3.80508i\) of defining polynomial
Character \(\chi\) \(=\) 115.114
Dual form 115.3.c.c.114.20

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.64975i q^{2} -3.06547i q^{3} -9.32065 q^{4} +(3.24366 + 3.80508i) q^{5} -11.1882 q^{6} -12.1877 q^{7} +19.4190i q^{8} -0.397130 q^{9} +(13.8876 - 11.8385i) q^{10} -10.9113i q^{11} +28.5722i q^{12} -17.9696i q^{13} +44.4819i q^{14} +(11.6644 - 9.94336i) q^{15} +33.5919 q^{16} -0.374070 q^{17} +1.44942i q^{18} -10.3828i q^{19} +(-30.2330 - 35.4658i) q^{20} +37.3610i q^{21} -39.8234 q^{22} +(22.9432 + 1.61605i) q^{23} +59.5285 q^{24} +(-3.95733 + 24.6848i) q^{25} -65.5844 q^{26} -26.3719i q^{27} +113.597 q^{28} -11.7286 q^{29} +(-36.2907 - 42.5720i) q^{30} +32.5811 q^{31} -44.9257i q^{32} -33.4483 q^{33} +1.36526i q^{34} +(-39.5327 - 46.3752i) q^{35} +3.70151 q^{36} -25.4631 q^{37} -37.8947 q^{38} -55.0853 q^{39} +(-73.8910 + 62.9887i) q^{40} +13.8789 q^{41} +136.358 q^{42} -14.5797 q^{43} +101.700i q^{44} +(-1.28815 - 1.51111i) q^{45} +(5.89818 - 83.7367i) q^{46} -41.7513i q^{47} -102.975i q^{48} +99.5396 q^{49} +(90.0933 + 14.4432i) q^{50} +1.14670i q^{51} +167.488i q^{52} +68.2269 q^{53} -96.2506 q^{54} +(41.5184 - 35.3925i) q^{55} -236.673i q^{56} -31.8283 q^{57} +42.8063i q^{58} +9.15737 q^{59} +(-108.720 + 92.6785i) q^{60} +63.7896i q^{61} -118.913i q^{62} +4.84009 q^{63} -29.6001 q^{64} +(68.3758 - 58.2872i) q^{65} +122.078i q^{66} -4.06489 q^{67} +3.48658 q^{68} +(4.95396 - 70.3316i) q^{69} +(-169.258 + 144.284i) q^{70} +47.2503 q^{71} -7.71187i q^{72} +80.6273i q^{73} +92.9338i q^{74} +(75.6706 + 12.1311i) q^{75} +96.7746i q^{76} +132.983i q^{77} +201.047i q^{78} -74.1335i q^{79} +(108.961 + 127.820i) q^{80} -84.4165 q^{81} -50.6546i q^{82} -151.130 q^{83} -348.229i q^{84} +(-1.21336 - 1.42337i) q^{85} +53.2123i q^{86} +35.9536i q^{87} +211.886 q^{88} -84.2652i q^{89} +(-5.51518 + 4.70144i) q^{90} +219.008i q^{91} +(-213.845 - 15.0626i) q^{92} -99.8764i q^{93} -152.382 q^{94} +(39.5075 - 33.6784i) q^{95} -137.719 q^{96} +36.3451 q^{97} -363.294i q^{98} +4.33320i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 56 q^{4} - 8 q^{6} - 72 q^{9} + 88 q^{16} + 44 q^{24} - 12 q^{25} - 56 q^{26} + 236 q^{31} + 92 q^{35} - 32 q^{36} - 168 q^{39} + 124 q^{41} - 248 q^{46} + 88 q^{49} + 200 q^{50} - 196 q^{54} + 268 q^{55}+ \cdots - 264 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/115\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(51\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.64975i 1.82487i −0.409218 0.912437i \(-0.634199\pi\)
0.409218 0.912437i \(-0.365801\pi\)
\(3\) 3.06547i 1.02182i −0.859633 0.510912i \(-0.829308\pi\)
0.859633 0.510912i \(-0.170692\pi\)
\(4\) −9.32065 −2.33016
\(5\) 3.24366 + 3.80508i 0.648732 + 0.761017i
\(6\) −11.1882 −1.86470
\(7\) −12.1877 −1.74110 −0.870549 0.492082i \(-0.836236\pi\)
−0.870549 + 0.492082i \(0.836236\pi\)
\(8\) 19.4190i 2.42738i
\(9\) −0.397130 −0.0441255
\(10\) 13.8876 11.8385i 1.38876 1.18385i
\(11\) 10.9113i 0.991935i −0.868341 0.495968i \(-0.834813\pi\)
0.868341 0.495968i \(-0.165187\pi\)
\(12\) 28.5722i 2.38102i
\(13\) 17.9696i 1.38228i −0.722723 0.691138i \(-0.757110\pi\)
0.722723 0.691138i \(-0.242890\pi\)
\(14\) 44.4819i 3.17728i
\(15\) 11.6644 9.94336i 0.777626 0.662891i
\(16\) 33.5919 2.09949
\(17\) −0.374070 −0.0220041 −0.0110021 0.999939i \(-0.503502\pi\)
−0.0110021 + 0.999939i \(0.503502\pi\)
\(18\) 1.44942i 0.0805235i
\(19\) 10.3828i 0.546464i −0.961948 0.273232i \(-0.911907\pi\)
0.961948 0.273232i \(-0.0880927\pi\)
\(20\) −30.2330 35.4658i −1.51165 1.77329i
\(21\) 37.3610i 1.77910i
\(22\) −39.8234 −1.81016
\(23\) 22.9432 + 1.61605i 0.997528 + 0.0702631i
\(24\) 59.5285 2.48035
\(25\) −3.95733 + 24.6848i −0.158293 + 0.987392i
\(26\) −65.5844 −2.52248
\(27\) 26.3719i 0.976736i
\(28\) 113.597 4.05704
\(29\) −11.7286 −0.404433 −0.202217 0.979341i \(-0.564814\pi\)
−0.202217 + 0.979341i \(0.564814\pi\)
\(30\) −36.2907 42.5720i −1.20969 1.41907i
\(31\) 32.5811 1.05100 0.525501 0.850793i \(-0.323878\pi\)
0.525501 + 0.850793i \(0.323878\pi\)
\(32\) 44.9257i 1.40393i
\(33\) −33.4483 −1.01358
\(34\) 1.36526i 0.0401548i
\(35\) −39.5327 46.3752i −1.12951 1.32500i
\(36\) 3.70151 0.102820
\(37\) −25.4631 −0.688192 −0.344096 0.938935i \(-0.611815\pi\)
−0.344096 + 0.938935i \(0.611815\pi\)
\(38\) −37.8947 −0.997228
\(39\) −55.0853 −1.41244
\(40\) −73.8910 + 62.9887i −1.84727 + 1.57472i
\(41\) 13.8789 0.338510 0.169255 0.985572i \(-0.445864\pi\)
0.169255 + 0.985572i \(0.445864\pi\)
\(42\) 136.358 3.24662
\(43\) −14.5797 −0.339063 −0.169532 0.985525i \(-0.554226\pi\)
−0.169532 + 0.985525i \(0.554226\pi\)
\(44\) 101.700i 2.31137i
\(45\) −1.28815 1.51111i −0.0286257 0.0335803i
\(46\) 5.89818 83.7367i 0.128221 1.82036i
\(47\) 41.7513i 0.888325i −0.895946 0.444163i \(-0.853501\pi\)
0.895946 0.444163i \(-0.146499\pi\)
\(48\) 102.975i 2.14531i
\(49\) 99.5396 2.03142
\(50\) 90.0933 + 14.4432i 1.80187 + 0.288865i
\(51\) 1.14670i 0.0224844i
\(52\) 167.488i 3.22093i
\(53\) 68.2269 1.28730 0.643650 0.765320i \(-0.277419\pi\)
0.643650 + 0.765320i \(0.277419\pi\)
\(54\) −96.2506 −1.78242
\(55\) 41.5184 35.3925i 0.754879 0.643500i
\(56\) 236.673i 4.22630i
\(57\) −31.8283 −0.558391
\(58\) 42.8063i 0.738039i
\(59\) 9.15737 0.155210 0.0776049 0.996984i \(-0.475273\pi\)
0.0776049 + 0.996984i \(0.475273\pi\)
\(60\) −108.720 + 92.6785i −1.81199 + 1.54464i
\(61\) 63.7896i 1.04573i 0.852415 + 0.522866i \(0.175137\pi\)
−0.852415 + 0.522866i \(0.824863\pi\)
\(62\) 118.913i 1.91795i
\(63\) 4.84009 0.0768268
\(64\) −29.6001 −0.462501
\(65\) 68.3758 58.2872i 1.05194 0.896727i
\(66\) 122.078i 1.84966i
\(67\) −4.06489 −0.0606700 −0.0303350 0.999540i \(-0.509657\pi\)
−0.0303350 + 0.999540i \(0.509657\pi\)
\(68\) 3.48658 0.0512732
\(69\) 4.95396 70.3316i 0.0717966 1.01930i
\(70\) −169.258 + 144.284i −2.41796 + 2.06121i
\(71\) 47.2503 0.665497 0.332748 0.943016i \(-0.392024\pi\)
0.332748 + 0.943016i \(0.392024\pi\)
\(72\) 7.71187i 0.107109i
\(73\) 80.6273i 1.10448i 0.833684 + 0.552241i \(0.186227\pi\)
−0.833684 + 0.552241i \(0.813773\pi\)
\(74\) 92.9338i 1.25586i
\(75\) 75.6706 + 12.1311i 1.00894 + 0.161748i
\(76\) 96.7746i 1.27335i
\(77\) 132.983i 1.72706i
\(78\) 201.047i 2.57753i
\(79\) 74.1335i 0.938398i −0.883092 0.469199i \(-0.844543\pi\)
0.883092 0.469199i \(-0.155457\pi\)
\(80\) 108.961 + 127.820i 1.36201 + 1.59775i
\(81\) −84.4165 −1.04218
\(82\) 50.6546i 0.617738i
\(83\) −151.130 −1.82084 −0.910420 0.413686i \(-0.864241\pi\)
−0.910420 + 0.413686i \(0.864241\pi\)
\(84\) 348.229i 4.14558i
\(85\) −1.21336 1.42337i −0.0142748 0.0167455i
\(86\) 53.2123i 0.618748i
\(87\) 35.9536i 0.413260i
\(88\) 211.886 2.40780
\(89\) 84.2652i 0.946799i −0.880848 0.473400i \(-0.843027\pi\)
0.880848 0.473400i \(-0.156973\pi\)
\(90\) −5.51518 + 4.70144i −0.0612797 + 0.0522382i
\(91\) 219.008i 2.40668i
\(92\) −213.845 15.0626i −2.32440 0.163724i
\(93\) 99.8764i 1.07394i
\(94\) −152.382 −1.62108
\(95\) 39.5075 33.6784i 0.415869 0.354509i
\(96\) −137.719 −1.43457
\(97\) 36.3451 0.374692 0.187346 0.982294i \(-0.440011\pi\)
0.187346 + 0.982294i \(0.440011\pi\)
\(98\) 363.294i 3.70708i
\(99\) 4.33320i 0.0437697i
\(100\) 36.8848 230.078i 0.368848 2.30078i
\(101\) 64.5806 0.639412 0.319706 0.947517i \(-0.396416\pi\)
0.319706 + 0.947517i \(0.396416\pi\)
\(102\) 4.18518 0.0410311
\(103\) 170.756 1.65782 0.828912 0.559379i \(-0.188961\pi\)
0.828912 + 0.559379i \(0.188961\pi\)
\(104\) 348.951 3.35530
\(105\) −142.162 + 121.186i −1.35392 + 1.15416i
\(106\) 249.011i 2.34916i
\(107\) −71.3921 −0.667216 −0.333608 0.942712i \(-0.608266\pi\)
−0.333608 + 0.942712i \(0.608266\pi\)
\(108\) 245.803i 2.27595i
\(109\) 35.8133i 0.328562i −0.986414 0.164281i \(-0.947470\pi\)
0.986414 0.164281i \(-0.0525304\pi\)
\(110\) −129.174 151.531i −1.17431 1.37756i
\(111\) 78.0564i 0.703211i
\(112\) −409.407 −3.65542
\(113\) 76.6774 0.678561 0.339280 0.940685i \(-0.389816\pi\)
0.339280 + 0.940685i \(0.389816\pi\)
\(114\) 116.165i 1.01899i
\(115\) 68.2706 + 92.5426i 0.593657 + 0.804718i
\(116\) 109.318 0.942394
\(117\) 7.13626i 0.0609936i
\(118\) 33.4221i 0.283238i
\(119\) 4.55905 0.0383114
\(120\) 193.090 + 226.511i 1.60908 + 1.88759i
\(121\) 1.94383 0.0160647
\(122\) 232.816 1.90833
\(123\) 42.5455i 0.345898i
\(124\) −303.677 −2.44901
\(125\) −106.764 + 65.0112i −0.854112 + 0.520089i
\(126\) 17.6651i 0.140199i
\(127\) 1.19072i 0.00937579i 0.999989 + 0.00468789i \(0.00149221\pi\)
−0.999989 + 0.00468789i \(0.998508\pi\)
\(128\) 71.6702i 0.559923i
\(129\) 44.6938i 0.346463i
\(130\) −212.734 249.554i −1.63641 1.91965i
\(131\) −168.759 −1.28824 −0.644120 0.764924i \(-0.722776\pi\)
−0.644120 + 0.764924i \(0.722776\pi\)
\(132\) 311.759 2.36181
\(133\) 126.543i 0.951448i
\(134\) 14.8358i 0.110715i
\(135\) 100.347 85.5414i 0.743313 0.633640i
\(136\) 7.26408i 0.0534123i
\(137\) −45.0248 −0.328648 −0.164324 0.986406i \(-0.552544\pi\)
−0.164324 + 0.986406i \(0.552544\pi\)
\(138\) −256.693 18.0807i −1.86009 0.131020i
\(139\) −17.7031 −0.127361 −0.0636804 0.997970i \(-0.520284\pi\)
−0.0636804 + 0.997970i \(0.520284\pi\)
\(140\) 368.470 + 432.246i 2.63193 + 3.08747i
\(141\) −127.987 −0.907712
\(142\) 172.452i 1.21445i
\(143\) −196.071 −1.37113
\(144\) −13.3403 −0.0926412
\(145\) −38.0435 44.6281i −0.262369 0.307780i
\(146\) 294.269 2.01554
\(147\) 305.136i 2.07576i
\(148\) 237.332 1.60360
\(149\) 20.2199i 0.135704i 0.997695 + 0.0678520i \(0.0216146\pi\)
−0.997695 + 0.0678520i \(0.978385\pi\)
\(150\) 44.2754 276.179i 0.295169 1.84119i
\(151\) 220.693 1.46154 0.730771 0.682622i \(-0.239161\pi\)
0.730771 + 0.682622i \(0.239161\pi\)
\(152\) 201.624 1.32647
\(153\) 0.148554 0.000970944
\(154\) 485.355 3.15166
\(155\) 105.682 + 123.974i 0.681819 + 0.799831i
\(156\) 513.431 3.29122
\(157\) 23.3995 0.149042 0.0745208 0.997219i \(-0.476257\pi\)
0.0745208 + 0.997219i \(0.476257\pi\)
\(158\) −270.568 −1.71246
\(159\) 209.148i 1.31540i
\(160\) 170.946 145.724i 1.06841 0.910774i
\(161\) −279.624 19.6959i −1.73679 0.122335i
\(162\) 308.099i 1.90184i
\(163\) 210.152i 1.28928i −0.764487 0.644639i \(-0.777008\pi\)
0.764487 0.644639i \(-0.222992\pi\)
\(164\) −129.361 −0.788784
\(165\) −108.495 127.273i −0.657544 0.771354i
\(166\) 551.585i 3.32280i
\(167\) 219.460i 1.31413i 0.753833 + 0.657066i \(0.228203\pi\)
−0.753833 + 0.657066i \(0.771797\pi\)
\(168\) −725.514 −4.31854
\(169\) −153.906 −0.910686
\(170\) −5.19494 + 4.42845i −0.0305585 + 0.0260497i
\(171\) 4.12333i 0.0241130i
\(172\) 135.892 0.790072
\(173\) 178.252i 1.03036i 0.857082 + 0.515179i \(0.172275\pi\)
−0.857082 + 0.515179i \(0.827725\pi\)
\(174\) 131.221 0.754146
\(175\) 48.2306 300.851i 0.275604 1.71915i
\(176\) 366.530i 2.08256i
\(177\) 28.0717i 0.158597i
\(178\) −307.546 −1.72779
\(179\) −259.957 −1.45227 −0.726137 0.687550i \(-0.758686\pi\)
−0.726137 + 0.687550i \(0.758686\pi\)
\(180\) 12.0064 + 14.0845i 0.0667024 + 0.0782474i
\(181\) 81.7698i 0.451767i −0.974154 0.225883i \(-0.927473\pi\)
0.974154 0.225883i \(-0.0725269\pi\)
\(182\) 799.322 4.39188
\(183\) 195.545 1.06855
\(184\) −31.3821 + 445.533i −0.170555 + 2.42138i
\(185\) −82.5936 96.8892i −0.446452 0.523725i
\(186\) −364.524 −1.95980
\(187\) 4.08159i 0.0218267i
\(188\) 389.149i 2.06994i
\(189\) 321.412i 1.70059i
\(190\) −122.917 144.192i −0.646934 0.758907i
\(191\) 151.168i 0.791453i 0.918368 + 0.395727i \(0.129507\pi\)
−0.918368 + 0.395727i \(0.870493\pi\)
\(192\) 90.7382i 0.472595i
\(193\) 203.305i 1.05340i 0.850053 + 0.526698i \(0.176570\pi\)
−0.850053 + 0.526698i \(0.823430\pi\)
\(194\) 132.650i 0.683765i
\(195\) −178.678 209.604i −0.916298 1.07489i
\(196\) −927.773 −4.73354
\(197\) 28.3927i 0.144125i 0.997400 + 0.0720626i \(0.0229582\pi\)
−0.997400 + 0.0720626i \(0.977042\pi\)
\(198\) 15.8151 0.0798741
\(199\) 273.697i 1.37536i 0.726014 + 0.687680i \(0.241371\pi\)
−0.726014 + 0.687680i \(0.758629\pi\)
\(200\) −479.354 76.8473i −2.39677 0.384237i
\(201\) 12.4608i 0.0619941i
\(202\) 235.703i 1.16685i
\(203\) 142.944 0.704157
\(204\) 10.6880i 0.0523922i
\(205\) 45.0185 + 52.8105i 0.219603 + 0.257612i
\(206\) 623.215i 3.02532i
\(207\) −9.11141 0.641782i −0.0440165 0.00310040i
\(208\) 603.632i 2.90208i
\(209\) −113.290 −0.542057
\(210\) 442.300 + 518.855i 2.10619 + 2.47074i
\(211\) 40.1001 0.190048 0.0950238 0.995475i \(-0.469707\pi\)
0.0950238 + 0.995475i \(0.469707\pi\)
\(212\) −635.919 −2.99962
\(213\) 144.844i 0.680021i
\(214\) 260.563i 1.21758i
\(215\) −47.2917 55.4771i −0.219961 0.258033i
\(216\) 512.116 2.37091
\(217\) −397.088 −1.82990
\(218\) −130.709 −0.599584
\(219\) 247.161 1.12859
\(220\) −386.978 + 329.881i −1.75899 + 1.49946i
\(221\) 6.72189i 0.0304158i
\(222\) 284.886 1.28327
\(223\) 131.579i 0.590041i 0.955491 + 0.295021i \(0.0953265\pi\)
−0.955491 + 0.295021i \(0.904673\pi\)
\(224\) 547.541i 2.44438i
\(225\) 1.57157 9.80307i 0.00698476 0.0435692i
\(226\) 279.853i 1.23829i
\(227\) 113.610 0.500486 0.250243 0.968183i \(-0.419489\pi\)
0.250243 + 0.968183i \(0.419489\pi\)
\(228\) 296.660 1.30114
\(229\) 86.3794i 0.377203i −0.982054 0.188601i \(-0.939605\pi\)
0.982054 0.188601i \(-0.0603954\pi\)
\(230\) 337.757 249.170i 1.46851 1.08335i
\(231\) 407.657 1.76475
\(232\) 227.757i 0.981711i
\(233\) 14.6508i 0.0628790i 0.999506 + 0.0314395i \(0.0100092\pi\)
−0.999506 + 0.0314395i \(0.989991\pi\)
\(234\) 26.0455 0.111306
\(235\) 158.867 135.427i 0.676030 0.576285i
\(236\) −85.3526 −0.361664
\(237\) −227.254 −0.958878
\(238\) 16.6394i 0.0699134i
\(239\) 56.1742 0.235039 0.117519 0.993071i \(-0.462506\pi\)
0.117519 + 0.993071i \(0.462506\pi\)
\(240\) 391.828 334.016i 1.63262 1.39173i
\(241\) 437.008i 1.81331i −0.421871 0.906656i \(-0.638627\pi\)
0.421871 0.906656i \(-0.361373\pi\)
\(242\) 7.09449i 0.0293161i
\(243\) 21.4296i 0.0881875i
\(244\) 594.561i 2.43672i
\(245\) 322.873 + 378.757i 1.31785 + 1.54595i
\(246\) −155.280 −0.631220
\(247\) −186.575 −0.755365
\(248\) 632.692i 2.55118i
\(249\) 463.284i 1.86058i
\(250\) 237.274 + 389.661i 0.949097 + 1.55865i
\(251\) 64.4696i 0.256851i 0.991719 + 0.128425i \(0.0409923\pi\)
−0.991719 + 0.128425i \(0.959008\pi\)
\(252\) −45.1128 −0.179019
\(253\) 17.6332 250.339i 0.0696964 0.989484i
\(254\) 4.34584 0.0171096
\(255\) −4.36330 + 3.71952i −0.0171110 + 0.0145863i
\(256\) −379.978 −1.48429
\(257\) 167.595i 0.652120i 0.945349 + 0.326060i \(0.105721\pi\)
−0.945349 + 0.326060i \(0.894279\pi\)
\(258\) 163.121 0.632251
\(259\) 310.336 1.19821
\(260\) −637.306 + 543.275i −2.45118 + 2.08952i
\(261\) 4.65776 0.0178458
\(262\) 615.929i 2.35087i
\(263\) −451.846 −1.71805 −0.859023 0.511937i \(-0.828928\pi\)
−0.859023 + 0.511937i \(0.828928\pi\)
\(264\) 649.532i 2.46035i
\(265\) 221.305 + 259.609i 0.835113 + 0.979657i
\(266\) 461.848 1.73627
\(267\) −258.313 −0.967463
\(268\) 37.8874 0.141371
\(269\) 447.061 1.66194 0.830968 0.556320i \(-0.187787\pi\)
0.830968 + 0.556320i \(0.187787\pi\)
\(270\) −312.204 366.242i −1.15631 1.35645i
\(271\) 382.640 1.41196 0.705979 0.708233i \(-0.250507\pi\)
0.705979 + 0.708233i \(0.250507\pi\)
\(272\) −12.5657 −0.0461975
\(273\) 671.362 2.45920
\(274\) 164.329i 0.599741i
\(275\) 269.343 + 43.1795i 0.979429 + 0.157016i
\(276\) −46.1741 + 655.536i −0.167298 + 2.37513i
\(277\) 210.611i 0.760327i 0.924919 + 0.380164i \(0.124132\pi\)
−0.924919 + 0.380164i \(0.875868\pi\)
\(278\) 64.6120i 0.232417i
\(279\) −12.9389 −0.0463760
\(280\) 900.559 767.686i 3.21628 2.74174i
\(281\) 410.892i 1.46225i −0.682243 0.731125i \(-0.738995\pi\)
0.682243 0.731125i \(-0.261005\pi\)
\(282\) 467.122i 1.65646i
\(283\) 141.513 0.500047 0.250024 0.968240i \(-0.419562\pi\)
0.250024 + 0.968240i \(0.419562\pi\)
\(284\) −440.403 −1.55072
\(285\) −103.240 121.109i −0.362246 0.424945i
\(286\) 715.610i 2.50213i
\(287\) −169.152 −0.589380
\(288\) 17.8413i 0.0619491i
\(289\) −288.860 −0.999516
\(290\) −162.881 + 138.849i −0.561660 + 0.478790i
\(291\) 111.415i 0.382869i
\(292\) 751.498i 2.57362i
\(293\) 286.076 0.976367 0.488184 0.872741i \(-0.337660\pi\)
0.488184 + 0.872741i \(0.337660\pi\)
\(294\) −1113.67 −3.78799
\(295\) 29.7034 + 34.8446i 0.100690 + 0.118117i
\(296\) 494.468i 1.67050i
\(297\) −287.751 −0.968859
\(298\) 73.7975 0.247643
\(299\) 29.0398 412.279i 0.0971230 1.37886i
\(300\) −705.299 113.069i −2.35100 0.376898i
\(301\) 177.693 0.590342
\(302\) 805.473i 2.66713i
\(303\) 197.970i 0.653367i
\(304\) 348.778i 1.14730i
\(305\) −242.725 + 206.912i −0.795819 + 0.678400i
\(306\) 0.542186i 0.00177185i
\(307\) 225.226i 0.733634i 0.930293 + 0.366817i \(0.119553\pi\)
−0.930293 + 0.366817i \(0.880447\pi\)
\(308\) 1239.49i 4.02432i
\(309\) 523.447i 1.69400i
\(310\) 452.473 385.712i 1.45959 1.24423i
\(311\) 217.119 0.698131 0.349065 0.937098i \(-0.386499\pi\)
0.349065 + 0.937098i \(0.386499\pi\)
\(312\) 1069.70i 3.42853i
\(313\) −215.119 −0.687280 −0.343640 0.939102i \(-0.611660\pi\)
−0.343640 + 0.939102i \(0.611660\pi\)
\(314\) 85.4023i 0.271982i
\(315\) 15.6996 + 18.4170i 0.0498400 + 0.0584665i
\(316\) 690.972i 2.18662i
\(317\) 403.874i 1.27405i −0.770843 0.637025i \(-0.780165\pi\)
0.770843 0.637025i \(-0.219835\pi\)
\(318\) −763.336 −2.40043
\(319\) 127.974i 0.401171i
\(320\) −96.0126 112.631i −0.300039 0.351971i
\(321\) 218.851i 0.681778i
\(322\) −71.8851 + 1020.56i −0.223246 + 3.16943i
\(323\) 3.88391i 0.0120245i
\(324\) 786.816 2.42844
\(325\) 443.576 + 71.1115i 1.36485 + 0.218805i
\(326\) −767.002 −2.35277
\(327\) −109.785 −0.335733
\(328\) 269.515i 0.821692i
\(329\) 508.851i 1.54666i
\(330\) −464.516 + 395.979i −1.40762 + 1.19994i
\(331\) −475.088 −1.43531 −0.717655 0.696399i \(-0.754784\pi\)
−0.717655 + 0.696399i \(0.754784\pi\)
\(332\) 1408.63 4.24285
\(333\) 10.1122 0.0303668
\(334\) 800.973 2.39812
\(335\) −13.1851 15.4673i −0.0393586 0.0461709i
\(336\) 1255.03i 3.73520i
\(337\) 515.422 1.52944 0.764720 0.644362i \(-0.222877\pi\)
0.764720 + 0.644362i \(0.222877\pi\)
\(338\) 561.718i 1.66189i
\(339\) 235.052i 0.693370i
\(340\) 11.3093 + 13.2667i 0.0332626 + 0.0390198i
\(341\) 355.501i 1.04253i
\(342\) 15.0491 0.0440032
\(343\) −615.961 −1.79580
\(344\) 283.124i 0.823034i
\(345\) 283.687 209.282i 0.822280 0.606614i
\(346\) 650.575 1.88027
\(347\) 415.425i 1.19719i −0.801051 0.598596i \(-0.795726\pi\)
0.801051 0.598596i \(-0.204274\pi\)
\(348\) 335.111i 0.962962i
\(349\) −291.133 −0.834193 −0.417096 0.908862i \(-0.636952\pi\)
−0.417096 + 0.908862i \(0.636952\pi\)
\(350\) −1098.03 176.030i −3.13722 0.502942i
\(351\) −473.892 −1.35012
\(352\) −490.198 −1.39261
\(353\) 143.579i 0.406740i −0.979102 0.203370i \(-0.934811\pi\)
0.979102 0.203370i \(-0.0651895\pi\)
\(354\) −102.455 −0.289420
\(355\) 153.264 + 179.791i 0.431729 + 0.506454i
\(356\) 785.406i 2.20620i
\(357\) 13.9757i 0.0391475i
\(358\) 948.777i 2.65022i
\(359\) 458.518i 1.27721i 0.769536 + 0.638604i \(0.220488\pi\)
−0.769536 + 0.638604i \(0.779512\pi\)
\(360\) 29.3443 25.0147i 0.0815119 0.0694852i
\(361\) 253.197 0.701377
\(362\) −298.439 −0.824417
\(363\) 5.95876i 0.0164153i
\(364\) 2041.29i 5.60795i
\(365\) −306.793 + 261.527i −0.840530 + 0.716514i
\(366\) 713.691i 1.94998i
\(367\) 540.344 1.47233 0.736164 0.676803i \(-0.236635\pi\)
0.736164 + 0.676803i \(0.236635\pi\)
\(368\) 770.703 + 54.2862i 2.09430 + 0.147517i
\(369\) −5.51173 −0.0149369
\(370\) −353.621 + 301.446i −0.955732 + 0.814718i
\(371\) −831.528 −2.24132
\(372\) 930.913i 2.50245i
\(373\) −153.140 −0.410563 −0.205282 0.978703i \(-0.565811\pi\)
−0.205282 + 0.978703i \(0.565811\pi\)
\(374\) 14.8968 0.0398309
\(375\) 199.290 + 327.282i 0.531440 + 0.872752i
\(376\) 810.768 2.15630
\(377\) 210.757i 0.559038i
\(378\) 1173.07 3.10337
\(379\) 389.555i 1.02785i 0.857835 + 0.513925i \(0.171809\pi\)
−0.857835 + 0.513925i \(0.828191\pi\)
\(380\) −368.236 + 313.904i −0.969041 + 0.826063i
\(381\) 3.65014 0.00958041
\(382\) 551.723 1.44430
\(383\) −57.2079 −0.149368 −0.0746840 0.997207i \(-0.523795\pi\)
−0.0746840 + 0.997207i \(0.523795\pi\)
\(384\) −219.703 −0.572144
\(385\) −506.013 + 431.353i −1.31432 + 1.12040i
\(386\) 742.013 1.92231
\(387\) 5.79004 0.0149613
\(388\) −338.760 −0.873092
\(389\) 507.440i 1.30447i −0.758015 0.652237i \(-0.773831\pi\)
0.758015 0.652237i \(-0.226169\pi\)
\(390\) −765.002 + 652.129i −1.96154 + 1.67213i
\(391\) −8.58236 0.604517i −0.0219498 0.00154608i
\(392\) 1932.96i 4.93102i
\(393\) 517.328i 1.31636i
\(394\) 103.626 0.263010
\(395\) 282.084 240.464i 0.714137 0.608769i
\(396\) 40.3882i 0.101990i
\(397\) 453.820i 1.14312i −0.820559 0.571561i \(-0.806338\pi\)
0.820559 0.571561i \(-0.193662\pi\)
\(398\) 998.923 2.50986
\(399\) 387.913 0.972213
\(400\) −132.934 + 829.209i −0.332335 + 2.07302i
\(401\) 518.111i 1.29205i −0.763318 0.646023i \(-0.776431\pi\)
0.763318 0.646023i \(-0.223569\pi\)
\(402\) 45.4788 0.113131
\(403\) 585.468i 1.45278i
\(404\) −601.933 −1.48993
\(405\) −273.818 321.212i −0.676095 0.793115i
\(406\) 521.709i 1.28500i
\(407\) 277.835i 0.682641i
\(408\) −22.2678 −0.0545780
\(409\) 255.249 0.624080 0.312040 0.950069i \(-0.398988\pi\)
0.312040 + 0.950069i \(0.398988\pi\)
\(410\) 192.745 164.306i 0.470109 0.400747i
\(411\) 138.022i 0.335821i
\(412\) −1591.55 −3.86300
\(413\) −111.607 −0.270235
\(414\) −2.34234 + 33.2543i −0.00565783 + 0.0803245i
\(415\) −490.213 575.061i −1.18124 1.38569i
\(416\) −807.297 −1.94062
\(417\) 54.2685i 0.130140i
\(418\) 413.480i 0.989186i
\(419\) 443.006i 1.05729i −0.848842 0.528647i \(-0.822700\pi\)
0.848842 0.528647i \(-0.177300\pi\)
\(420\) 1325.04 1129.54i 3.15486 2.68937i
\(421\) 460.877i 1.09472i −0.836897 0.547360i \(-0.815633\pi\)
0.836897 0.547360i \(-0.184367\pi\)
\(422\) 146.355i 0.346813i
\(423\) 16.5807i 0.0391978i
\(424\) 1324.90i 3.12476i
\(425\) 1.48032 9.23386i 0.00348310 0.0217267i
\(426\) −528.646 −1.24095
\(427\) 777.448i 1.82072i
\(428\) 665.421 1.55472
\(429\) 601.051i 1.40105i
\(430\) −202.477 + 172.603i −0.470877 + 0.401401i
\(431\) 61.7007i 0.143157i 0.997435 + 0.0715785i \(0.0228037\pi\)
−0.997435 + 0.0715785i \(0.977196\pi\)
\(432\) 885.880i 2.05065i
\(433\) 560.427 1.29429 0.647144 0.762368i \(-0.275963\pi\)
0.647144 + 0.762368i \(0.275963\pi\)
\(434\) 1449.27i 3.33933i
\(435\) −136.806 + 116.621i −0.314497 + 0.268095i
\(436\) 333.803i 0.765603i
\(437\) 16.7792 238.215i 0.0383963 0.545114i
\(438\) 902.074i 2.05953i
\(439\) −213.637 −0.486644 −0.243322 0.969946i \(-0.578237\pi\)
−0.243322 + 0.969946i \(0.578237\pi\)
\(440\) 687.287 + 806.245i 1.56202 + 1.83238i
\(441\) −39.5301 −0.0896375
\(442\) 24.5332 0.0555050
\(443\) 387.430i 0.874559i 0.899326 + 0.437280i \(0.144058\pi\)
−0.899326 + 0.437280i \(0.855942\pi\)
\(444\) 727.536i 1.63860i
\(445\) 320.636 273.328i 0.720530 0.614219i
\(446\) 480.231 1.07675
\(447\) 61.9836 0.138666
\(448\) 360.756 0.805259
\(449\) −440.505 −0.981079 −0.490540 0.871419i \(-0.663200\pi\)
−0.490540 + 0.871419i \(0.663200\pi\)
\(450\) −35.7787 5.73584i −0.0795083 0.0127463i
\(451\) 151.437i 0.335780i
\(452\) −714.683 −1.58116
\(453\) 676.528i 1.49344i
\(454\) 414.649i 0.913324i
\(455\) −833.342 + 710.386i −1.83152 + 1.56129i
\(456\) 618.074i 1.35542i
\(457\) 109.473 0.239547 0.119774 0.992801i \(-0.461783\pi\)
0.119774 + 0.992801i \(0.461783\pi\)
\(458\) −315.263 −0.688347
\(459\) 9.86494i 0.0214922i
\(460\) −636.326 862.556i −1.38332 1.87512i
\(461\) −120.723 −0.261871 −0.130936 0.991391i \(-0.541798\pi\)
−0.130936 + 0.991391i \(0.541798\pi\)
\(462\) 1487.84i 3.22044i
\(463\) 110.321i 0.238275i 0.992878 + 0.119138i \(0.0380130\pi\)
−0.992878 + 0.119138i \(0.961987\pi\)
\(464\) −393.984 −0.849104
\(465\) 380.038 323.965i 0.817287 0.696700i
\(466\) 53.4717 0.114746
\(467\) 614.180 1.31516 0.657580 0.753385i \(-0.271580\pi\)
0.657580 + 0.753385i \(0.271580\pi\)
\(468\) 66.5145i 0.142125i
\(469\) 49.5416 0.105632
\(470\) −494.274 579.825i −1.05165 1.23367i
\(471\) 71.7306i 0.152294i
\(472\) 177.827i 0.376752i
\(473\) 159.084i 0.336329i
\(474\) 829.420i 1.74983i
\(475\) 256.298 + 41.0882i 0.539575 + 0.0865015i
\(476\) −42.4933 −0.0892717
\(477\) −27.0949 −0.0568028
\(478\) 205.022i 0.428915i
\(479\) 326.931i 0.682528i 0.939968 + 0.341264i \(0.110855\pi\)
−0.939968 + 0.341264i \(0.889145\pi\)
\(480\) −446.713 524.031i −0.930651 1.09173i
\(481\) 457.561i 0.951271i
\(482\) −1594.97 −3.30906
\(483\) −60.3773 + 857.180i −0.125005 + 1.77470i
\(484\) −18.1178 −0.0374334
\(485\) 117.891 + 138.296i 0.243075 + 0.285147i
\(486\) 78.2125 0.160931
\(487\) 509.809i 1.04684i 0.852076 + 0.523418i \(0.175343\pi\)
−0.852076 + 0.523418i \(0.824657\pi\)
\(488\) −1238.73 −2.53838
\(489\) −644.216 −1.31742
\(490\) 1382.37 1178.40i 2.82115 2.40491i
\(491\) −60.2356 −0.122679 −0.0613397 0.998117i \(-0.519537\pi\)
−0.0613397 + 0.998117i \(0.519537\pi\)
\(492\) 396.551i 0.805999i
\(493\) 4.38731 0.00889920
\(494\) 680.952i 1.37844i
\(495\) −16.4882 + 14.0554i −0.0333094 + 0.0283948i
\(496\) 1094.46 2.20657
\(497\) −575.871 −1.15869
\(498\) 1690.87 3.39532
\(499\) −628.018 −1.25855 −0.629276 0.777182i \(-0.716649\pi\)
−0.629276 + 0.777182i \(0.716649\pi\)
\(500\) 995.109 605.946i 1.99022 1.21189i
\(501\) 672.749 1.34281
\(502\) 235.298 0.468720
\(503\) 408.012 0.811157 0.405578 0.914060i \(-0.367070\pi\)
0.405578 + 0.914060i \(0.367070\pi\)
\(504\) 93.9898i 0.186488i
\(505\) 209.478 + 245.735i 0.414807 + 0.486603i
\(506\) −913.675 64.3567i −1.80568 0.127187i
\(507\) 471.795i 0.930562i
\(508\) 11.0983i 0.0218471i
\(509\) 168.871 0.331769 0.165885 0.986145i \(-0.446952\pi\)
0.165885 + 0.986145i \(0.446952\pi\)
\(510\) 13.5753 + 15.9249i 0.0266182 + 0.0312254i
\(511\) 982.659i 1.92301i
\(512\) 1100.14i 2.14872i
\(513\) −273.815 −0.533752
\(514\) 611.679 1.19004
\(515\) 553.874 + 649.740i 1.07548 + 1.26163i
\(516\) 416.575i 0.807315i
\(517\) −455.560 −0.881161
\(518\) 1132.65i 2.18658i
\(519\) 546.427 1.05285
\(520\) 1131.88 + 1327.79i 2.17669 + 2.55344i
\(521\) 816.261i 1.56672i 0.621569 + 0.783360i \(0.286496\pi\)
−0.621569 + 0.783360i \(0.713504\pi\)
\(522\) 16.9996i 0.0325664i
\(523\) −918.460 −1.75614 −0.878069 0.478534i \(-0.841168\pi\)
−0.878069 + 0.478534i \(0.841168\pi\)
\(524\) 1572.95 3.00181
\(525\) −922.250 147.850i −1.75667 0.281619i
\(526\) 1649.12i 3.13521i
\(527\) −12.1876 −0.0231264
\(528\) −1123.59 −2.12801
\(529\) 523.777 + 74.1546i 0.990126 + 0.140179i
\(530\) 947.507 807.707i 1.78775 1.52398i
\(531\) −3.63667 −0.00684871
\(532\) 1179.46i 2.21703i
\(533\) 249.399i 0.467915i
\(534\) 942.775i 1.76550i
\(535\) −231.572 271.653i −0.432845 0.507763i
\(536\) 78.9362i 0.147269i
\(537\) 796.892i 1.48397i
\(538\) 1631.66i 3.03282i
\(539\) 1086.11i 2.01504i
\(540\) −935.301 + 797.301i −1.73204 + 1.47648i
\(541\) −749.196 −1.38484 −0.692418 0.721497i \(-0.743455\pi\)
−0.692418 + 0.721497i \(0.743455\pi\)
\(542\) 1396.54i 2.57664i
\(543\) −250.663 −0.461627
\(544\) 16.8054i 0.0308923i
\(545\) 136.273 116.166i 0.250041 0.213149i
\(546\) 2450.30i 4.48773i
\(547\) 420.350i 0.768464i 0.923237 + 0.384232i \(0.125534\pi\)
−0.923237 + 0.384232i \(0.874466\pi\)
\(548\) 419.660 0.765803
\(549\) 25.3328i 0.0461435i
\(550\) 157.594 983.033i 0.286535 1.78733i
\(551\) 121.776i 0.221008i
\(552\) 1365.77 + 96.2010i 2.47422 + 0.174277i
\(553\) 903.515i 1.63384i
\(554\) 768.676 1.38750
\(555\) −297.011 + 253.189i −0.535155 + 0.456196i
\(556\) 165.005 0.296771
\(557\) 454.071 0.815209 0.407604 0.913159i \(-0.366364\pi\)
0.407604 + 0.913159i \(0.366364\pi\)
\(558\) 47.2238i 0.0846304i
\(559\) 261.992i 0.468679i
\(560\) −1327.98 1557.83i −2.37139 2.78184i
\(561\) 12.5120 0.0223030
\(562\) −1499.65 −2.66842
\(563\) −291.886 −0.518448 −0.259224 0.965817i \(-0.583467\pi\)
−0.259224 + 0.965817i \(0.583467\pi\)
\(564\) 1192.93 2.11512
\(565\) 248.715 + 291.764i 0.440204 + 0.516396i
\(566\) 516.488i 0.912523i
\(567\) 1028.84 1.81453
\(568\) 917.554i 1.61541i
\(569\) 22.8719i 0.0401966i −0.999798 0.0200983i \(-0.993602\pi\)
0.999798 0.0200983i \(-0.00639792\pi\)
\(570\) −442.018 + 376.800i −0.775470 + 0.661053i
\(571\) 330.897i 0.579504i 0.957102 + 0.289752i \(0.0935728\pi\)
−0.957102 + 0.289752i \(0.906427\pi\)
\(572\) 1827.51 3.19495
\(573\) 463.400 0.808726
\(574\) 617.362i 1.07554i
\(575\) −130.685 + 559.952i −0.227279 + 0.973830i
\(576\) 11.7551 0.0204081
\(577\) 674.901i 1.16967i 0.811151 + 0.584836i \(0.198841\pi\)
−0.811151 + 0.584836i \(0.801159\pi\)
\(578\) 1054.27i 1.82399i
\(579\) 623.227 1.07639
\(580\) 354.590 + 415.963i 0.611362 + 0.717178i
\(581\) 1841.92 3.17026
\(582\) −406.636 −0.698688
\(583\) 744.443i 1.27692i
\(584\) −1565.70 −2.68100
\(585\) −27.1541 + 23.1476i −0.0464172 + 0.0395685i
\(586\) 1044.10i 1.78175i
\(587\) 337.351i 0.574703i 0.957825 + 0.287352i \(0.0927748\pi\)
−0.957825 + 0.287352i \(0.907225\pi\)
\(588\) 2844.07i 4.83685i
\(589\) 338.284i 0.574336i
\(590\) 127.174 108.410i 0.215549 0.183746i
\(591\) 87.0370 0.147271
\(592\) −855.353 −1.44485
\(593\) 1052.75i 1.77530i −0.460520 0.887650i \(-0.652337\pi\)
0.460520 0.887650i \(-0.347663\pi\)
\(594\) 1050.22i 1.76804i
\(595\) 14.7880 + 17.3476i 0.0248538 + 0.0291556i
\(596\) 188.463i 0.316212i
\(597\) 839.010 1.40538
\(598\) −1504.71 105.988i −2.51624 0.177237i
\(599\) −825.344 −1.37787 −0.688935 0.724823i \(-0.741921\pi\)
−0.688935 + 0.724823i \(0.741921\pi\)
\(600\) −235.574 + 1469.45i −0.392623 + 2.44908i
\(601\) 148.497 0.247083 0.123542 0.992339i \(-0.460575\pi\)
0.123542 + 0.992339i \(0.460575\pi\)
\(602\) 648.534i 1.07730i
\(603\) 1.61429 0.00267710
\(604\) −2057.00 −3.40563
\(605\) 6.30513 + 7.39644i 0.0104217 + 0.0122255i
\(606\) −722.541 −1.19231
\(607\) 0.574338i 0.000946190i 1.00000 0.000473095i \(0.000150591\pi\)
−1.00000 0.000473095i \(0.999849\pi\)
\(608\) −466.456 −0.767197
\(609\) 438.191i 0.719525i
\(610\) 755.176 + 885.884i 1.23799 + 1.45227i
\(611\) −750.253 −1.22791
\(612\) −1.38462 −0.00226246
\(613\) 847.151 1.38198 0.690988 0.722866i \(-0.257176\pi\)
0.690988 + 0.722866i \(0.257176\pi\)
\(614\) 822.017 1.33879
\(615\) 161.889 138.003i 0.263234 0.224395i
\(616\) −2582.40 −4.19221
\(617\) −192.343 −0.311738 −0.155869 0.987778i \(-0.549818\pi\)
−0.155869 + 0.987778i \(0.549818\pi\)
\(618\) −1910.45 −3.09134
\(619\) 934.813i 1.51020i 0.655611 + 0.755099i \(0.272411\pi\)
−0.655611 + 0.755099i \(0.727589\pi\)
\(620\) −985.024 1155.52i −1.58875 1.86373i
\(621\) 42.6183 605.054i 0.0686285 0.974322i
\(622\) 792.428i 1.27400i
\(623\) 1027.00i 1.64847i
\(624\) −1850.42 −2.96541
\(625\) −593.679 195.372i −0.949887 0.312595i
\(626\) 785.128i 1.25420i
\(627\) 347.287i 0.553887i
\(628\) −218.099 −0.347291
\(629\) 9.52499 0.0151431
\(630\) 67.2172 57.2996i 0.106694 0.0909518i
\(631\) 555.181i 0.879844i −0.898036 0.439922i \(-0.855006\pi\)
0.898036 0.439922i \(-0.144994\pi\)
\(632\) 1439.60 2.27785
\(633\) 122.926i 0.194195i
\(634\) −1474.04 −2.32498
\(635\) −4.53081 + 3.86231i −0.00713513 + 0.00608238i
\(636\) 1949.39i 3.06508i
\(637\) 1788.69i 2.80798i
\(638\) 467.071 0.732087
\(639\) −18.7645 −0.0293654
\(640\) 272.711 232.474i 0.426111 0.363240i
\(641\) 748.031i 1.16698i 0.812122 + 0.583488i \(0.198312\pi\)
−0.812122 + 0.583488i \(0.801688\pi\)
\(642\) 798.750 1.24416
\(643\) −229.224 −0.356492 −0.178246 0.983986i \(-0.557042\pi\)
−0.178246 + 0.983986i \(0.557042\pi\)
\(644\) 2606.28 + 183.579i 4.04701 + 0.285060i
\(645\) −170.064 + 144.971i −0.263664 + 0.224762i
\(646\) 14.1753 0.0219432
\(647\) 527.882i 0.815892i −0.913006 0.407946i \(-0.866245\pi\)
0.913006 0.407946i \(-0.133755\pi\)
\(648\) 1639.28i 2.52976i
\(649\) 99.9187i 0.153958i
\(650\) 259.539 1618.94i 0.399291 2.49067i
\(651\) 1217.26i 1.86983i
\(652\) 1958.75i 3.00422i
\(653\) 302.572i 0.463356i 0.972792 + 0.231678i \(0.0744216\pi\)
−0.972792 + 0.231678i \(0.925578\pi\)
\(654\) 400.686i 0.612670i
\(655\) −547.398 642.144i −0.835723 0.980372i
\(656\) 466.219 0.710700
\(657\) 32.0195i 0.0487359i
\(658\) 1857.18 2.82246
\(659\) 530.234i 0.804604i −0.915507 0.402302i \(-0.868210\pi\)
0.915507 0.402302i \(-0.131790\pi\)
\(660\) 1011.24 + 1186.27i 1.53218 + 1.79738i
\(661\) 632.276i 0.956545i 0.878211 + 0.478273i \(0.158737\pi\)
−0.878211 + 0.478273i \(0.841263\pi\)
\(662\) 1733.95i 2.61926i
\(663\) 20.6058 0.0310796
\(664\) 2934.79i 4.41986i
\(665\) −481.505 + 410.461i −0.724068 + 0.617235i
\(666\) 36.9068i 0.0554156i
\(667\) −269.090 18.9539i −0.403433 0.0284167i
\(668\) 2045.51i 3.06214i
\(669\) 403.353 0.602919
\(670\) −56.4516 + 48.1224i −0.0842560 + 0.0718245i
\(671\) 696.027 1.03730
\(672\) 1678.47 2.49772
\(673\) 1249.04i 1.85593i −0.372673 0.927963i \(-0.621559\pi\)
0.372673 0.927963i \(-0.378441\pi\)
\(674\) 1881.16i 2.79104i
\(675\) 650.985 + 104.362i 0.964422 + 0.154611i
\(676\) 1434.50 2.12205
\(677\) 61.8524 0.0913625 0.0456812 0.998956i \(-0.485454\pi\)
0.0456812 + 0.998956i \(0.485454\pi\)
\(678\) −857.882 −1.26531
\(679\) −442.962 −0.652375
\(680\) 27.6404 23.5622i 0.0406477 0.0346503i
\(681\) 348.270i 0.511409i
\(682\) −1297.49 −1.90248
\(683\) 1191.39i 1.74434i 0.489200 + 0.872172i \(0.337289\pi\)
−0.489200 + 0.872172i \(0.662711\pi\)
\(684\) 38.4321i 0.0561873i
\(685\) −146.045 171.323i −0.213205 0.250107i
\(686\) 2248.10i 3.27711i
\(687\) −264.794 −0.385435
\(688\) −489.760 −0.711860
\(689\) 1226.01i 1.77940i
\(690\) −763.825 1035.38i −1.10699 1.50056i
\(691\) 435.751 0.630609 0.315304 0.948991i \(-0.397893\pi\)
0.315304 + 0.948991i \(0.397893\pi\)
\(692\) 1661.42i 2.40090i
\(693\) 52.8116i 0.0762072i
\(694\) −1516.20 −2.18472
\(695\) −57.4230 67.3620i −0.0826230 0.0969237i
\(696\) −698.183 −1.00314
\(697\) −5.19170 −0.00744863
\(698\) 1062.56i 1.52230i
\(699\) 44.9117 0.0642513
\(700\) −449.541 + 2804.12i −0.642201 + 4.00589i
\(701\) 676.541i 0.965108i 0.875866 + 0.482554i \(0.160291\pi\)
−0.875866 + 0.482554i \(0.839709\pi\)
\(702\) 1729.58i 2.46379i
\(703\) 264.379i 0.376072i
\(704\) 322.975i 0.458771i
\(705\) −415.148 487.003i −0.588862 0.690784i
\(706\) −524.028 −0.742249
\(707\) −787.088 −1.11328
\(708\) 261.646i 0.369557i
\(709\) 336.510i 0.474627i −0.971433 0.237313i \(-0.923733\pi\)
0.971433 0.237313i \(-0.0762668\pi\)
\(710\) 656.193 559.374i 0.924215 0.787851i
\(711\) 29.4406i 0.0414073i
\(712\) 1636.35 2.29824
\(713\) 747.513 + 52.6527i 1.04840 + 0.0738467i
\(714\) −51.0076 −0.0714392
\(715\) −635.989 746.068i −0.889495 1.04345i
\(716\) 2422.97 3.38403
\(717\) 172.201i 0.240168i
\(718\) 1673.47 2.33074
\(719\) −560.437 −0.779468 −0.389734 0.920927i \(-0.627433\pi\)
−0.389734 + 0.920927i \(0.627433\pi\)
\(720\) −43.2715 50.7611i −0.0600993 0.0705015i
\(721\) −2081.12 −2.88643
\(722\) 924.105i 1.27992i
\(723\) −1339.64 −1.85289
\(724\) 762.148i 1.05269i
\(725\) 46.4137 289.517i 0.0640189 0.399334i
\(726\) −21.7480 −0.0299559
\(727\) 206.877 0.284563 0.142281 0.989826i \(-0.454556\pi\)
0.142281 + 0.989826i \(0.454556\pi\)
\(728\) −4252.91 −5.84191
\(729\) −694.056 −0.952066
\(730\) 954.509 + 1119.72i 1.30755 + 1.53386i
\(731\) 5.45384 0.00746080
\(732\) −1822.61 −2.48990
\(733\) 816.371 1.11374 0.556869 0.830600i \(-0.312002\pi\)
0.556869 + 0.830600i \(0.312002\pi\)
\(734\) 1972.12i 2.68681i
\(735\) 1161.07 989.758i 1.57968 1.34661i
\(736\) 72.6023 1030.74i 0.0986444 1.40046i
\(737\) 44.3532i 0.0601807i
\(738\) 20.1164i 0.0272580i
\(739\) 486.014 0.657664 0.328832 0.944388i \(-0.393345\pi\)
0.328832 + 0.944388i \(0.393345\pi\)
\(740\) 769.826 + 903.070i 1.04031 + 1.22036i
\(741\) 571.941i 0.771850i
\(742\) 3034.87i 4.09012i
\(743\) −549.254 −0.739238 −0.369619 0.929183i \(-0.620512\pi\)
−0.369619 + 0.929183i \(0.620512\pi\)
\(744\) 1939.50 2.60686
\(745\) −76.9384 + 65.5865i −0.103273 + 0.0880356i
\(746\) 558.922i 0.749226i
\(747\) 60.0181 0.0803455
\(748\) 38.0431i 0.0508597i
\(749\) 870.105 1.16169
\(750\) 1194.50 727.358i 1.59266 0.969811i
\(751\) 435.216i 0.579515i 0.957100 + 0.289757i \(0.0935746\pi\)
−0.957100 + 0.289757i \(0.906425\pi\)
\(752\) 1402.50i 1.86503i
\(753\) 197.630 0.262457
\(754\) 769.211 1.02017
\(755\) 715.853 + 839.755i 0.948150 + 1.11226i
\(756\) 2995.77i 3.96266i
\(757\) −651.064 −0.860058 −0.430029 0.902815i \(-0.641497\pi\)
−0.430029 + 0.902815i \(0.641497\pi\)
\(758\) 1421.78 1.87569
\(759\) −767.409 54.0541i −1.01108 0.0712175i
\(760\) 654.000 + 767.197i 0.860527 + 1.00947i
\(761\) −107.717 −0.141547 −0.0707736 0.997492i \(-0.522547\pi\)
−0.0707736 + 0.997492i \(0.522547\pi\)
\(762\) 13.3221i 0.0174830i
\(763\) 436.481i 0.572059i
\(764\) 1408.98i 1.84421i
\(765\) 0.481860 + 0.565262i 0.000629883 + 0.000738905i
\(766\) 208.794i 0.272578i
\(767\) 164.554i 0.214543i
\(768\) 1164.81i 1.51668i
\(769\) 913.047i 1.18732i 0.804717 + 0.593659i \(0.202317\pi\)
−0.804717 + 0.593659i \(0.797683\pi\)
\(770\) 1574.33 + 1846.82i 2.04458 + 2.39846i
\(771\) 513.758 0.666352
\(772\) 1894.94i 2.45458i
\(773\) −1303.84 −1.68672 −0.843362 0.537345i \(-0.819427\pi\)
−0.843362 + 0.537345i \(0.819427\pi\)
\(774\) 21.1322i 0.0273026i
\(775\) −128.934 + 804.258i −0.166366 + 1.03775i
\(776\) 705.786i 0.909518i
\(777\) 951.327i 1.22436i
\(778\) −1852.03 −2.38050
\(779\) 144.102i 0.184984i
\(780\) 1665.39 + 1953.65i 2.13512 + 2.50467i
\(781\) 515.561i 0.660130i
\(782\) −2.20633 + 31.3234i −0.00282140 + 0.0400555i
\(783\) 309.304i 0.395024i
\(784\) 3343.72 4.26495
\(785\) 75.9001 + 89.0371i 0.0966880 + 0.113423i
\(786\) 1888.11 2.40218
\(787\) 1106.36 1.40579 0.702895 0.711294i \(-0.251891\pi\)
0.702895 + 0.711294i \(0.251891\pi\)
\(788\) 264.638i 0.335835i
\(789\) 1385.12i 1.75554i
\(790\) −877.632 1029.54i −1.11093 1.30321i
\(791\) −934.520 −1.18144
\(792\) −84.1464 −0.106245
\(793\) 1146.27 1.44549
\(794\) −1656.33 −2.08605
\(795\) 795.825 678.405i 1.00104 0.853339i
\(796\) 2551.03i 3.20481i
\(797\) −514.580 −0.645646 −0.322823 0.946459i \(-0.604632\pi\)
−0.322823 + 0.946459i \(0.604632\pi\)
\(798\) 1415.78i 1.77416i
\(799\) 15.6179i 0.0195468i
\(800\) 1108.98 + 177.786i 1.38623 + 0.222232i
\(801\) 33.4642i 0.0417780i
\(802\) −1890.97 −2.35782
\(803\) 879.747 1.09558
\(804\) 116.143i 0.144456i
\(805\) −832.061 1127.88i −1.03362 1.40109i
\(806\) −2136.81 −2.65113
\(807\) 1370.45i 1.69821i
\(808\) 1254.09i 1.55209i
\(809\) 455.926 0.563568 0.281784 0.959478i \(-0.409074\pi\)
0.281784 + 0.959478i \(0.409074\pi\)
\(810\) −1172.34 + 999.368i −1.44733 + 1.23379i
\(811\) 429.150 0.529162 0.264581 0.964364i \(-0.414766\pi\)
0.264581 + 0.964364i \(0.414766\pi\)
\(812\) −1332.33 −1.64080
\(813\) 1172.97i 1.44277i
\(814\) 1014.03 1.24573
\(815\) 799.647 681.663i 0.981162 0.836396i
\(816\) 38.5199i 0.0472057i
\(817\) 151.379i 0.185286i
\(818\) 931.594i 1.13887i
\(819\) 86.9744i 0.106196i
\(820\) −419.602 492.228i −0.511709 0.600278i
\(821\) 355.911 0.433509 0.216754 0.976226i \(-0.430453\pi\)
0.216754 + 0.976226i \(0.430453\pi\)
\(822\) 503.746 0.612830
\(823\) 64.3646i 0.0782073i −0.999235 0.0391036i \(-0.987550\pi\)
0.999235 0.0391036i \(-0.0124503\pi\)
\(824\) 3315.91i 4.02416i
\(825\) 132.366 825.664i 0.160443 1.00080i
\(826\) 407.338i 0.493145i
\(827\) 1333.98 1.61304 0.806518 0.591209i \(-0.201349\pi\)
0.806518 + 0.591209i \(0.201349\pi\)
\(828\) 84.9242 + 5.98182i 0.102565 + 0.00722442i
\(829\) 843.007 1.01690 0.508448 0.861093i \(-0.330219\pi\)
0.508448 + 0.861093i \(0.330219\pi\)
\(830\) −2098.83 + 1789.15i −2.52871 + 2.15561i
\(831\) 645.622 0.776921
\(832\) 531.901i 0.639304i
\(833\) −37.2348 −0.0446997
\(834\) 198.066 0.237490
\(835\) −835.064 + 711.854i −1.00008 + 0.852520i
\(836\) 1055.94 1.26308
\(837\) 859.224i 1.02655i
\(838\) −1616.86 −1.92943
\(839\) 466.892i 0.556486i −0.960511 0.278243i \(-0.910248\pi\)
0.960511 0.278243i \(-0.0897520\pi\)
\(840\) −2353.32 2760.64i −2.80157 3.28648i
\(841\) −703.441 −0.836434
\(842\) −1682.08 −1.99772
\(843\) −1259.58 −1.49416
\(844\) −373.758 −0.442842
\(845\) −499.219 585.625i −0.590791 0.693047i
\(846\) 60.5153 0.0715310
\(847\) −23.6908 −0.0279702
\(848\) 2291.87 2.70268
\(849\) 433.806i 0.510961i
\(850\) −33.7012 5.40279i −0.0396485 0.00635622i
\(851\) −584.204 41.1497i −0.686491 0.0483545i
\(852\) 1350.04i 1.58456i
\(853\) 912.358i 1.06959i −0.844983 0.534794i \(-0.820389\pi\)
0.844983 0.534794i \(-0.179611\pi\)
\(854\) −2837.49 −3.32258
\(855\) −15.6896 + 13.3747i −0.0183504 + 0.0156429i
\(856\) 1386.36i 1.61958i
\(857\) 1218.75i 1.42211i 0.703136 + 0.711055i \(0.251782\pi\)
−0.703136 + 0.711055i \(0.748218\pi\)
\(858\) 2193.68 2.55674
\(859\) 660.884 0.769365 0.384682 0.923049i \(-0.374311\pi\)
0.384682 + 0.923049i \(0.374311\pi\)
\(860\) 440.789 + 517.082i 0.512545 + 0.601258i
\(861\) 518.531i 0.602243i
\(862\) 225.192 0.261244
\(863\) 1280.50i 1.48378i −0.670524 0.741888i \(-0.733931\pi\)
0.670524 0.741888i \(-0.266069\pi\)
\(864\) −1184.78 −1.37127
\(865\) −678.264 + 578.189i −0.784120 + 0.668427i
\(866\) 2045.41i 2.36191i
\(867\) 885.493i 1.02133i
\(868\) 3701.12 4.26396
\(869\) −808.891 −0.930830
\(870\) 425.638 + 499.309i 0.489239 + 0.573918i
\(871\) 73.0444i 0.0838627i
\(872\) 695.458 0.797544
\(873\) −14.4337 −0.0165335
\(874\) −869.423 61.2397i −0.994764 0.0700683i
\(875\) 1301.21 792.336i 1.48709 0.905526i
\(876\) −2303.70 −2.62979
\(877\) 83.1670i 0.0948313i −0.998875 0.0474156i \(-0.984901\pi\)
0.998875 0.0474156i \(-0.0150985\pi\)
\(878\) 779.719i 0.888063i
\(879\) 876.957i 0.997676i
\(880\) 1394.68 1188.90i 1.58486 1.35102i
\(881\) 625.318i 0.709782i 0.934908 + 0.354891i \(0.115482\pi\)
−0.934908 + 0.354891i \(0.884518\pi\)
\(882\) 144.275i 0.163577i
\(883\) 227.584i 0.257739i −0.991662 0.128870i \(-0.958865\pi\)
0.991662 0.128870i \(-0.0411349\pi\)
\(884\) 62.6524i 0.0708737i
\(885\) 106.815 91.0550i 0.120695 0.102887i
\(886\) 1414.02 1.59596
\(887\) 1473.82i 1.66158i 0.556590 + 0.830788i \(0.312110\pi\)
−0.556590 + 0.830788i \(0.687890\pi\)
\(888\) −1515.78 −1.70696
\(889\) 14.5122i 0.0163242i
\(890\) −997.576 1170.24i −1.12087 1.31488i
\(891\) 921.092i 1.03377i
\(892\) 1226.40i 1.37489i
\(893\) −433.496 −0.485438
\(894\) 226.224i 0.253047i
\(895\) −843.213 989.158i −0.942137 1.10520i
\(896\) 873.494i 0.974881i
\(897\) −1263.83 89.0206i −1.40895 0.0992426i
\(898\) 1607.73i 1.79035i
\(899\) −382.129 −0.425060
\(900\) −14.6481 + 91.3709i −0.0162756 + 0.101523i
\(901\) −25.5217 −0.0283259
\(902\) −552.706 −0.612756
\(903\) 544.713i 0.603226i
\(904\) 1489.00i 1.64712i
\(905\) 311.141 265.234i 0.343802 0.293076i
\(906\) −2469.16 −2.72534
\(907\) 997.272 1.09953 0.549764 0.835320i \(-0.314718\pi\)
0.549764 + 0.835320i \(0.314718\pi\)
\(908\) −1058.92 −1.16621
\(909\) −25.6469 −0.0282144
\(910\) 2592.73 + 3041.49i 2.84915 + 3.34229i
\(911\) 261.725i 0.287294i 0.989629 + 0.143647i \(0.0458830\pi\)
−0.989629 + 0.143647i \(0.954117\pi\)
\(912\) −1069.17 −1.17234
\(913\) 1649.02i 1.80615i
\(914\) 399.549i 0.437143i
\(915\) 634.283 + 744.067i 0.693206 + 0.813188i
\(916\) 805.112i 0.878943i
\(917\) 2056.79 2.24295
\(918\) 36.0045 0.0392206
\(919\) 1615.07i 1.75743i 0.477351 + 0.878713i \(0.341597\pi\)
−0.477351 + 0.878713i \(0.658403\pi\)
\(920\) −1797.08 + 1325.75i −1.95335 + 1.44103i
\(921\) 690.424 0.749646
\(922\) 440.607i 0.477882i
\(923\) 849.068i 0.919900i
\(924\) −3799.62 −4.11215
\(925\) 100.766 628.551i 0.108936 0.679515i
\(926\) 402.645 0.434822
\(927\) −67.8122 −0.0731523
\(928\) 526.914i 0.567795i
\(929\) 1085.56 1.16853 0.584265 0.811563i \(-0.301383\pi\)
0.584265 + 0.811563i \(0.301383\pi\)
\(930\) −1182.39 1387.04i −1.27139 1.49144i
\(931\) 1033.50i 1.11010i
\(932\) 136.555i 0.146518i
\(933\) 665.572i 0.713367i
\(934\) 2241.60i 2.40000i
\(935\) −15.5308 + 13.2393i −0.0166105 + 0.0141597i
\(936\) −138.579 −0.148055
\(937\) 847.610 0.904600 0.452300 0.891866i \(-0.350604\pi\)
0.452300 + 0.891866i \(0.350604\pi\)
\(938\) 180.814i 0.192766i
\(939\) 659.440i 0.702279i
\(940\) −1480.74 + 1262.27i −1.57526 + 1.34284i
\(941\) 562.777i 0.598063i 0.954243 + 0.299031i \(0.0966635\pi\)
−0.954243 + 0.299031i \(0.903336\pi\)
\(942\) −261.799 −0.277918
\(943\) 318.426 + 22.4291i 0.337674 + 0.0237848i
\(944\) 307.613 0.325861
\(945\) −1223.00 + 1042.55i −1.29418 + 1.10323i
\(946\) 580.614 0.613757
\(947\) 463.167i 0.489089i 0.969638 + 0.244545i \(0.0786384\pi\)
−0.969638 + 0.244545i \(0.921362\pi\)
\(948\) 2118.16 2.23434
\(949\) 1448.84 1.52670
\(950\) 149.962 935.423i 0.157854 0.984655i
\(951\) −1238.07 −1.30186
\(952\) 88.5323i 0.0929961i
\(953\) −373.393 −0.391808 −0.195904 0.980623i \(-0.562764\pi\)
−0.195904 + 0.980623i \(0.562764\pi\)
\(954\) 98.8896i 0.103658i
\(955\) −575.205 + 490.336i −0.602309 + 0.513441i
\(956\) −523.580 −0.547678
\(957\) 392.300 0.409927
\(958\) 1193.21 1.24553
\(959\) 548.748 0.572208
\(960\) −345.267 + 294.324i −0.359653 + 0.306588i
\(961\) 100.527 0.104606
\(962\) 1669.98 1.73595
\(963\) 28.3519 0.0294413
\(964\) 4073.20i 4.22531i
\(965\) −773.594 + 659.454i −0.801652 + 0.683372i
\(966\) 3128.49 + 220.362i 3.23860 + 0.228118i
\(967\) 1005.98i 1.04031i −0.854071 0.520156i \(-0.825874\pi\)
0.854071 0.520156i \(-0.174126\pi\)
\(968\) 37.7473i 0.0389951i
\(969\) 11.9060 0.0122869
\(970\) 504.746 430.273i 0.520356 0.443580i
\(971\) 621.178i 0.639730i 0.947463 + 0.319865i \(0.103638\pi\)
−0.947463 + 0.319865i \(0.896362\pi\)
\(972\) 199.737i 0.205491i
\(973\) 215.760 0.221748
\(974\) 1860.67 1.91034
\(975\) 217.990 1359.77i 0.223580 1.39464i
\(976\) 2142.81i 2.19550i
\(977\) 676.931 0.692866 0.346433 0.938075i \(-0.387393\pi\)
0.346433 + 0.938075i \(0.387393\pi\)
\(978\) 2351.23i 2.40412i
\(979\) −919.441 −0.939164
\(980\) −3009.38 3530.26i −3.07080 3.60230i
\(981\) 14.2225i 0.0144980i
\(982\) 219.845i 0.223874i
\(983\) −1520.24 −1.54653 −0.773266 0.634081i \(-0.781378\pi\)
−0.773266 + 0.634081i \(0.781378\pi\)
\(984\) 826.191 0.839625
\(985\) −108.037 + 92.0962i −0.109682 + 0.0934987i
\(986\) 16.0126i 0.0162399i
\(987\) 1559.87 1.58042
\(988\) 1739.00 1.76012
\(989\) −334.505 23.5616i −0.338225 0.0238236i
\(990\) 51.2987 + 60.1777i 0.0518169 + 0.0607855i
\(991\) 1736.62 1.75239 0.876196 0.481956i \(-0.160073\pi\)
0.876196 + 0.481956i \(0.160073\pi\)
\(992\) 1463.73i 1.47553i
\(993\) 1456.37i 1.46663i
\(994\) 2101.78i 2.11447i
\(995\) −1041.44 + 887.779i −1.04667 + 0.892240i
\(996\) 4318.11i 4.33545i
\(997\) 1589.28i 1.59406i 0.603937 + 0.797032i \(0.293598\pi\)
−0.603937 + 0.797032i \(0.706402\pi\)
\(998\) 2292.11i 2.29670i
\(999\) 671.509i 0.672182i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 115.3.c.c.114.2 yes 20
5.2 odd 4 575.3.d.i.551.19 20
5.3 odd 4 575.3.d.i.551.2 20
5.4 even 2 inner 115.3.c.c.114.19 yes 20
23.22 odd 2 inner 115.3.c.c.114.1 20
115.22 even 4 575.3.d.i.551.20 20
115.68 even 4 575.3.d.i.551.1 20
115.114 odd 2 inner 115.3.c.c.114.20 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
115.3.c.c.114.1 20 23.22 odd 2 inner
115.3.c.c.114.2 yes 20 1.1 even 1 trivial
115.3.c.c.114.19 yes 20 5.4 even 2 inner
115.3.c.c.114.20 yes 20 115.114 odd 2 inner
575.3.d.i.551.1 20 115.68 even 4
575.3.d.i.551.2 20 5.3 odd 4
575.3.d.i.551.19 20 5.2 odd 4
575.3.d.i.551.20 20 115.22 even 4