Properties

Label 115.4.a.c.1.2
Level $115$
Weight $4$
Character 115.1
Self dual yes
Analytic conductor $6.785$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [115,4,Mod(1,115)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(115, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("115.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 115 = 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 115.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.78521965066\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{109}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-4.72015\) of defining polynomial
Character \(\chi\) \(=\) 115.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{2} +3.72015 q^{3} +1.00000 q^{4} +5.00000 q^{5} -11.1605 q^{6} -25.6008 q^{7} +21.0000 q^{8} -13.1605 q^{9} -15.0000 q^{10} +12.6008 q^{11} +3.72015 q^{12} +8.16046 q^{13} +76.8023 q^{14} +18.6008 q^{15} -71.0000 q^{16} -76.0411 q^{17} +39.4814 q^{18} -103.362 q^{19} +5.00000 q^{20} -95.2388 q^{21} -37.8023 q^{22} -23.0000 q^{23} +78.1232 q^{24} +25.0000 q^{25} -24.4814 q^{26} -149.403 q^{27} -25.6008 q^{28} -267.202 q^{29} -55.8023 q^{30} -63.7574 q^{31} +45.0000 q^{32} +46.8768 q^{33} +228.123 q^{34} -128.004 q^{35} -13.1605 q^{36} +112.164 q^{37} +310.086 q^{38} +30.3582 q^{39} +105.000 q^{40} -239.078 q^{41} +285.716 q^{42} +282.239 q^{43} +12.6008 q^{44} -65.8023 q^{45} +69.0000 q^{46} +577.291 q^{47} -264.131 q^{48} +312.399 q^{49} -75.0000 q^{50} -282.884 q^{51} +8.16046 q^{52} -2.31326 q^{53} +448.209 q^{54} +63.0038 q^{55} -537.616 q^{56} -384.522 q^{57} +801.605 q^{58} +272.888 q^{59} +18.6008 q^{60} +294.049 q^{61} +191.272 q^{62} +336.918 q^{63} +433.000 q^{64} +40.8023 q^{65} -140.630 q^{66} +426.732 q^{67} -76.0411 q^{68} -85.5635 q^{69} +384.011 q^{70} -1020.85 q^{71} -276.370 q^{72} -286.650 q^{73} -336.493 q^{74} +93.0038 q^{75} -103.362 q^{76} -322.589 q^{77} -91.0745 q^{78} -551.866 q^{79} -355.000 q^{80} -200.470 q^{81} +717.235 q^{82} +21.7021 q^{83} -95.2388 q^{84} -380.205 q^{85} -846.716 q^{86} -994.031 q^{87} +264.616 q^{88} -1049.63 q^{89} +197.407 q^{90} -208.914 q^{91} -23.0000 q^{92} -237.187 q^{93} -1731.87 q^{94} -516.810 q^{95} +167.407 q^{96} +1729.19 q^{97} -937.198 q^{98} -165.832 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{2} - 3 q^{3} + 2 q^{4} + 10 q^{5} + 9 q^{6} + q^{7} + 42 q^{8} + 5 q^{9} - 30 q^{10} - 27 q^{11} - 3 q^{12} - 15 q^{13} - 3 q^{14} - 15 q^{15} - 142 q^{16} - 79 q^{17} - 15 q^{18} - 71 q^{19}+ \cdots - 885 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.00000 −1.06066 −0.530330 0.847791i \(-0.677932\pi\)
−0.530330 + 0.847791i \(0.677932\pi\)
\(3\) 3.72015 0.715944 0.357972 0.933732i \(-0.383468\pi\)
0.357972 + 0.933732i \(0.383468\pi\)
\(4\) 1.00000 0.125000
\(5\) 5.00000 0.447214
\(6\) −11.1605 −0.759373
\(7\) −25.6008 −1.38231 −0.691156 0.722706i \(-0.742898\pi\)
−0.691156 + 0.722706i \(0.742898\pi\)
\(8\) 21.0000 0.928078
\(9\) −13.1605 −0.487424
\(10\) −15.0000 −0.474342
\(11\) 12.6008 0.345389 0.172694 0.984975i \(-0.444753\pi\)
0.172694 + 0.984975i \(0.444753\pi\)
\(12\) 3.72015 0.0894930
\(13\) 8.16046 0.174100 0.0870502 0.996204i \(-0.472256\pi\)
0.0870502 + 0.996204i \(0.472256\pi\)
\(14\) 76.8023 1.46616
\(15\) 18.6008 0.320180
\(16\) −71.0000 −1.10938
\(17\) −76.0411 −1.08486 −0.542431 0.840100i \(-0.682496\pi\)
−0.542431 + 0.840100i \(0.682496\pi\)
\(18\) 39.4814 0.516992
\(19\) −103.362 −1.24805 −0.624023 0.781406i \(-0.714503\pi\)
−0.624023 + 0.781406i \(0.714503\pi\)
\(20\) 5.00000 0.0559017
\(21\) −95.2388 −0.989657
\(22\) −37.8023 −0.366340
\(23\) −23.0000 −0.208514
\(24\) 78.1232 0.664451
\(25\) 25.0000 0.200000
\(26\) −24.4814 −0.184661
\(27\) −149.403 −1.06491
\(28\) −25.6008 −0.172789
\(29\) −267.202 −1.71097 −0.855484 0.517829i \(-0.826740\pi\)
−0.855484 + 0.517829i \(0.826740\pi\)
\(30\) −55.8023 −0.339602
\(31\) −63.7574 −0.369392 −0.184696 0.982796i \(-0.559130\pi\)
−0.184696 + 0.982796i \(0.559130\pi\)
\(32\) 45.0000 0.248592
\(33\) 46.8768 0.247279
\(34\) 228.123 1.15067
\(35\) −128.004 −0.618188
\(36\) −13.1605 −0.0609281
\(37\) 112.164 0.498370 0.249185 0.968456i \(-0.419837\pi\)
0.249185 + 0.968456i \(0.419837\pi\)
\(38\) 310.086 1.32375
\(39\) 30.3582 0.124646
\(40\) 105.000 0.415049
\(41\) −239.078 −0.910677 −0.455339 0.890318i \(-0.650482\pi\)
−0.455339 + 0.890318i \(0.650482\pi\)
\(42\) 285.716 1.04969
\(43\) 282.239 1.00095 0.500477 0.865750i \(-0.333158\pi\)
0.500477 + 0.865750i \(0.333158\pi\)
\(44\) 12.6008 0.0431736
\(45\) −65.8023 −0.217983
\(46\) 69.0000 0.221163
\(47\) 577.291 1.79163 0.895815 0.444427i \(-0.146593\pi\)
0.895815 + 0.444427i \(0.146593\pi\)
\(48\) −264.131 −0.794250
\(49\) 312.399 0.910785
\(50\) −75.0000 −0.212132
\(51\) −282.884 −0.776701
\(52\) 8.16046 0.0217625
\(53\) −2.31326 −0.00599529 −0.00299764 0.999996i \(-0.500954\pi\)
−0.00299764 + 0.999996i \(0.500954\pi\)
\(54\) 448.209 1.12951
\(55\) 63.0038 0.154462
\(56\) −537.616 −1.28289
\(57\) −384.522 −0.893531
\(58\) 801.605 1.81476
\(59\) 272.888 0.602153 0.301077 0.953600i \(-0.402654\pi\)
0.301077 + 0.953600i \(0.402654\pi\)
\(60\) 18.6008 0.0400225
\(61\) 294.049 0.617198 0.308599 0.951192i \(-0.400140\pi\)
0.308599 + 0.951192i \(0.400140\pi\)
\(62\) 191.272 0.391800
\(63\) 336.918 0.673772
\(64\) 433.000 0.845703
\(65\) 40.8023 0.0778600
\(66\) −140.630 −0.262279
\(67\) 426.732 0.778113 0.389056 0.921214i \(-0.372801\pi\)
0.389056 + 0.921214i \(0.372801\pi\)
\(68\) −76.0411 −0.135608
\(69\) −85.5635 −0.149285
\(70\) 384.011 0.655688
\(71\) −1020.85 −1.70638 −0.853191 0.521598i \(-0.825336\pi\)
−0.853191 + 0.521598i \(0.825336\pi\)
\(72\) −276.370 −0.452368
\(73\) −286.650 −0.459586 −0.229793 0.973240i \(-0.573805\pi\)
−0.229793 + 0.973240i \(0.573805\pi\)
\(74\) −336.493 −0.528601
\(75\) 93.0038 0.143189
\(76\) −103.362 −0.156006
\(77\) −322.589 −0.477435
\(78\) −91.0745 −0.132207
\(79\) −551.866 −0.785947 −0.392974 0.919550i \(-0.628554\pi\)
−0.392974 + 0.919550i \(0.628554\pi\)
\(80\) −355.000 −0.496128
\(81\) −200.470 −0.274993
\(82\) 717.235 0.965919
\(83\) 21.7021 0.0287001 0.0143501 0.999897i \(-0.495432\pi\)
0.0143501 + 0.999897i \(0.495432\pi\)
\(84\) −95.2388 −0.123707
\(85\) −380.205 −0.485165
\(86\) −846.716 −1.06167
\(87\) −994.031 −1.22496
\(88\) 264.616 0.320547
\(89\) −1049.63 −1.25012 −0.625058 0.780578i \(-0.714925\pi\)
−0.625058 + 0.780578i \(0.714925\pi\)
\(90\) 197.407 0.231206
\(91\) −208.914 −0.240661
\(92\) −23.0000 −0.0260643
\(93\) −237.187 −0.264464
\(94\) −1731.87 −1.90031
\(95\) −516.810 −0.558143
\(96\) 167.407 0.177978
\(97\) 1729.19 1.81003 0.905014 0.425381i \(-0.139860\pi\)
0.905014 + 0.425381i \(0.139860\pi\)
\(98\) −937.198 −0.966033
\(99\) −165.832 −0.168351
\(100\) 25.0000 0.0250000
\(101\) 855.874 0.843195 0.421597 0.906783i \(-0.361470\pi\)
0.421597 + 0.906783i \(0.361470\pi\)
\(102\) 848.653 0.823816
\(103\) −632.534 −0.605101 −0.302551 0.953133i \(-0.597838\pi\)
−0.302551 + 0.953133i \(0.597838\pi\)
\(104\) 171.370 0.161579
\(105\) −476.194 −0.442588
\(106\) 6.93977 0.00635896
\(107\) 1309.62 1.18323 0.591616 0.806220i \(-0.298490\pi\)
0.591616 + 0.806220i \(0.298490\pi\)
\(108\) −149.403 −0.133114
\(109\) 1726.21 1.51689 0.758443 0.651739i \(-0.225960\pi\)
0.758443 + 0.651739i \(0.225960\pi\)
\(110\) −189.011 −0.163832
\(111\) 417.268 0.356805
\(112\) 1817.65 1.53350
\(113\) −1492.24 −1.24228 −0.621142 0.783698i \(-0.713331\pi\)
−0.621142 + 0.783698i \(0.713331\pi\)
\(114\) 1153.57 0.947732
\(115\) −115.000 −0.0932505
\(116\) −267.202 −0.213871
\(117\) −107.395 −0.0848608
\(118\) −818.665 −0.638680
\(119\) 1946.71 1.49962
\(120\) 390.616 0.297152
\(121\) −1172.22 −0.880707
\(122\) −882.146 −0.654637
\(123\) −889.408 −0.651994
\(124\) −63.7574 −0.0461741
\(125\) 125.000 0.0894427
\(126\) −1010.75 −0.714644
\(127\) −1368.29 −0.956034 −0.478017 0.878351i \(-0.658644\pi\)
−0.478017 + 0.878351i \(0.658644\pi\)
\(128\) −1659.00 −1.14560
\(129\) 1049.97 0.716627
\(130\) −122.407 −0.0825830
\(131\) 1984.24 1.32339 0.661694 0.749774i \(-0.269838\pi\)
0.661694 + 0.749774i \(0.269838\pi\)
\(132\) 46.8768 0.0309098
\(133\) 2646.15 1.72519
\(134\) −1280.19 −0.825313
\(135\) −747.015 −0.476243
\(136\) −1596.86 −1.00684
\(137\) 273.331 0.170455 0.0852273 0.996362i \(-0.472838\pi\)
0.0852273 + 0.996362i \(0.472838\pi\)
\(138\) 256.691 0.158340
\(139\) −557.889 −0.340428 −0.170214 0.985407i \(-0.554446\pi\)
−0.170214 + 0.985407i \(0.554446\pi\)
\(140\) −128.004 −0.0772736
\(141\) 2147.61 1.28271
\(142\) 3062.56 1.80989
\(143\) 102.828 0.0601323
\(144\) 934.393 0.540736
\(145\) −1336.01 −0.765168
\(146\) 859.949 0.487465
\(147\) 1162.17 0.652071
\(148\) 112.164 0.0622963
\(149\) −1354.16 −0.744545 −0.372272 0.928124i \(-0.621421\pi\)
−0.372272 + 0.928124i \(0.621421\pi\)
\(150\) −279.011 −0.151875
\(151\) 162.652 0.0876586 0.0438293 0.999039i \(-0.486044\pi\)
0.0438293 + 0.999039i \(0.486044\pi\)
\(152\) −2170.60 −1.15828
\(153\) 1000.74 0.528789
\(154\) 967.768 0.506396
\(155\) −318.787 −0.165197
\(156\) 30.3582 0.0155808
\(157\) −2364.83 −1.20213 −0.601063 0.799201i \(-0.705256\pi\)
−0.601063 + 0.799201i \(0.705256\pi\)
\(158\) 1655.60 0.833623
\(159\) −8.60567 −0.00429229
\(160\) 225.000 0.111174
\(161\) 588.818 0.288232
\(162\) 601.410 0.291674
\(163\) 471.162 0.226406 0.113203 0.993572i \(-0.463889\pi\)
0.113203 + 0.993572i \(0.463889\pi\)
\(164\) −239.078 −0.113835
\(165\) 234.384 0.110586
\(166\) −65.1062 −0.0304411
\(167\) −3735.73 −1.73102 −0.865508 0.500895i \(-0.833004\pi\)
−0.865508 + 0.500895i \(0.833004\pi\)
\(168\) −2000.01 −0.918479
\(169\) −2130.41 −0.969689
\(170\) 1140.62 0.514596
\(171\) 1360.29 0.608328
\(172\) 282.239 0.125119
\(173\) −2709.33 −1.19067 −0.595336 0.803477i \(-0.702981\pi\)
−0.595336 + 0.803477i \(0.702981\pi\)
\(174\) 2982.09 1.29926
\(175\) −640.019 −0.276462
\(176\) −894.654 −0.383165
\(177\) 1015.19 0.431108
\(178\) 3148.88 1.32595
\(179\) 3300.43 1.37813 0.689066 0.724699i \(-0.258021\pi\)
0.689066 + 0.724699i \(0.258021\pi\)
\(180\) −65.8023 −0.0272479
\(181\) −583.868 −0.239771 −0.119886 0.992788i \(-0.538253\pi\)
−0.119886 + 0.992788i \(0.538253\pi\)
\(182\) 626.742 0.255259
\(183\) 1093.91 0.441879
\(184\) −483.000 −0.193518
\(185\) 560.821 0.222878
\(186\) 711.562 0.280507
\(187\) −958.176 −0.374699
\(188\) 577.291 0.223954
\(189\) 3824.83 1.47204
\(190\) 1550.43 0.592000
\(191\) −3058.98 −1.15885 −0.579424 0.815026i \(-0.696722\pi\)
−0.579424 + 0.815026i \(0.696722\pi\)
\(192\) 1610.83 0.605476
\(193\) −1336.93 −0.498625 −0.249313 0.968423i \(-0.580205\pi\)
−0.249313 + 0.968423i \(0.580205\pi\)
\(194\) −5187.57 −1.91983
\(195\) 151.791 0.0557434
\(196\) 312.399 0.113848
\(197\) −2449.21 −0.885783 −0.442892 0.896575i \(-0.646047\pi\)
−0.442892 + 0.896575i \(0.646047\pi\)
\(198\) 497.496 0.178563
\(199\) 1138.66 0.405614 0.202807 0.979219i \(-0.434994\pi\)
0.202807 + 0.979219i \(0.434994\pi\)
\(200\) 525.000 0.185616
\(201\) 1587.51 0.557085
\(202\) −2567.62 −0.894343
\(203\) 6840.56 2.36509
\(204\) −282.884 −0.0970876
\(205\) −1195.39 −0.407267
\(206\) 1897.60 0.641807
\(207\) 302.691 0.101635
\(208\) −579.393 −0.193143
\(209\) −1302.44 −0.431061
\(210\) 1428.58 0.469436
\(211\) 5596.81 1.82607 0.913034 0.407884i \(-0.133733\pi\)
0.913034 + 0.407884i \(0.133733\pi\)
\(212\) −2.31326 −0.000749411 0
\(213\) −3797.74 −1.22167
\(214\) −3928.86 −1.25501
\(215\) 1411.19 0.447640
\(216\) −3137.46 −0.988321
\(217\) 1632.24 0.510615
\(218\) −5178.62 −1.60890
\(219\) −1066.38 −0.329038
\(220\) 63.0038 0.0193078
\(221\) −620.530 −0.188875
\(222\) −1251.81 −0.378449
\(223\) 5580.60 1.67581 0.837903 0.545820i \(-0.183782\pi\)
0.837903 + 0.545820i \(0.183782\pi\)
\(224\) −1152.03 −0.343632
\(225\) −329.011 −0.0974849
\(226\) 4476.72 1.31764
\(227\) −566.323 −0.165587 −0.0827934 0.996567i \(-0.526384\pi\)
−0.0827934 + 0.996567i \(0.526384\pi\)
\(228\) −384.522 −0.111691
\(229\) −693.702 −0.200180 −0.100090 0.994978i \(-0.531913\pi\)
−0.100090 + 0.994978i \(0.531913\pi\)
\(230\) 345.000 0.0989071
\(231\) −1200.08 −0.341816
\(232\) −5611.23 −1.58791
\(233\) −2208.68 −0.621011 −0.310506 0.950572i \(-0.600498\pi\)
−0.310506 + 0.950572i \(0.600498\pi\)
\(234\) 322.186 0.0900084
\(235\) 2886.46 0.801241
\(236\) 272.888 0.0752691
\(237\) −2053.03 −0.562694
\(238\) −5840.13 −1.59059
\(239\) −3876.79 −1.04924 −0.524621 0.851336i \(-0.675793\pi\)
−0.524621 + 0.851336i \(0.675793\pi\)
\(240\) −1320.65 −0.355199
\(241\) −2024.57 −0.541136 −0.270568 0.962701i \(-0.587211\pi\)
−0.270568 + 0.962701i \(0.587211\pi\)
\(242\) 3516.66 0.934131
\(243\) 3288.10 0.868033
\(244\) 294.049 0.0771498
\(245\) 1562.00 0.407315
\(246\) 2668.22 0.691544
\(247\) −843.481 −0.217285
\(248\) −1338.91 −0.342825
\(249\) 80.7350 0.0205477
\(250\) −375.000 −0.0948683
\(251\) −733.444 −0.184441 −0.0922203 0.995739i \(-0.529396\pi\)
−0.0922203 + 0.995739i \(0.529396\pi\)
\(252\) 336.918 0.0842215
\(253\) −289.818 −0.0720185
\(254\) 4104.88 1.01403
\(255\) −1414.42 −0.347351
\(256\) 1513.00 0.369385
\(257\) 2367.83 0.574713 0.287356 0.957824i \(-0.407224\pi\)
0.287356 + 0.957824i \(0.407224\pi\)
\(258\) −3149.91 −0.760097
\(259\) −2871.49 −0.688903
\(260\) 40.8023 0.00973250
\(261\) 3516.50 0.833968
\(262\) −5952.72 −1.40366
\(263\) 6632.76 1.55511 0.777554 0.628816i \(-0.216460\pi\)
0.777554 + 0.628816i \(0.216460\pi\)
\(264\) 984.412 0.229494
\(265\) −11.5663 −0.00268117
\(266\) −7938.44 −1.82984
\(267\) −3904.78 −0.895013
\(268\) 426.732 0.0972641
\(269\) −6092.97 −1.38102 −0.690511 0.723322i \(-0.742614\pi\)
−0.690511 + 0.723322i \(0.742614\pi\)
\(270\) 2241.05 0.505132
\(271\) −1981.30 −0.444115 −0.222058 0.975034i \(-0.571277\pi\)
−0.222058 + 0.975034i \(0.571277\pi\)
\(272\) 5398.92 1.20352
\(273\) −777.192 −0.172300
\(274\) −819.994 −0.180794
\(275\) 315.019 0.0690777
\(276\) −85.5635 −0.0186606
\(277\) −4097.42 −0.888773 −0.444386 0.895835i \(-0.646578\pi\)
−0.444386 + 0.895835i \(0.646578\pi\)
\(278\) 1673.67 0.361079
\(279\) 839.077 0.180051
\(280\) −2688.08 −0.573727
\(281\) −3866.40 −0.820819 −0.410409 0.911901i \(-0.634614\pi\)
−0.410409 + 0.911901i \(0.634614\pi\)
\(282\) −6442.84 −1.36052
\(283\) 3982.00 0.836415 0.418208 0.908351i \(-0.362658\pi\)
0.418208 + 0.908351i \(0.362658\pi\)
\(284\) −1020.85 −0.213298
\(285\) −1922.61 −0.399599
\(286\) −308.484 −0.0637799
\(287\) 6120.59 1.25884
\(288\) −592.221 −0.121170
\(289\) 869.245 0.176927
\(290\) 4008.02 0.811583
\(291\) 6432.86 1.29588
\(292\) −286.650 −0.0574483
\(293\) −7491.70 −1.49375 −0.746877 0.664962i \(-0.768448\pi\)
−0.746877 + 0.664962i \(0.768448\pi\)
\(294\) −3486.52 −0.691626
\(295\) 1364.44 0.269291
\(296\) 2355.45 0.462526
\(297\) −1882.59 −0.367809
\(298\) 4062.48 0.789709
\(299\) −187.691 −0.0363024
\(300\) 93.0038 0.0178986
\(301\) −7225.53 −1.38363
\(302\) −487.957 −0.0929760
\(303\) 3183.98 0.603680
\(304\) 7338.70 1.38455
\(305\) 1470.24 0.276019
\(306\) −3002.21 −0.560865
\(307\) −5813.01 −1.08067 −0.540335 0.841450i \(-0.681703\pi\)
−0.540335 + 0.841450i \(0.681703\pi\)
\(308\) −322.589 −0.0596793
\(309\) −2353.12 −0.433218
\(310\) 956.361 0.175218
\(311\) 4769.43 0.869613 0.434807 0.900524i \(-0.356817\pi\)
0.434807 + 0.900524i \(0.356817\pi\)
\(312\) 637.521 0.115681
\(313\) 7053.43 1.27375 0.636875 0.770967i \(-0.280227\pi\)
0.636875 + 0.770967i \(0.280227\pi\)
\(314\) 7094.49 1.27505
\(315\) 1684.59 0.301320
\(316\) −551.866 −0.0982434
\(317\) 8845.36 1.56721 0.783604 0.621261i \(-0.213379\pi\)
0.783604 + 0.621261i \(0.213379\pi\)
\(318\) 25.8170 0.00455266
\(319\) −3366.94 −0.590949
\(320\) 2165.00 0.378210
\(321\) 4871.99 0.847127
\(322\) −1766.45 −0.305716
\(323\) 7859.76 1.35396
\(324\) −200.470 −0.0343741
\(325\) 204.011 0.0348201
\(326\) −1413.48 −0.240140
\(327\) 6421.75 1.08601
\(328\) −5020.64 −0.845179
\(329\) −14779.1 −2.47659
\(330\) −703.152 −0.117295
\(331\) 4264.07 0.708079 0.354040 0.935230i \(-0.384808\pi\)
0.354040 + 0.935230i \(0.384808\pi\)
\(332\) 21.7021 0.00358752
\(333\) −1476.13 −0.242918
\(334\) 11207.2 1.83602
\(335\) 2133.66 0.347983
\(336\) 6761.95 1.09790
\(337\) −1290.58 −0.208613 −0.104306 0.994545i \(-0.533262\pi\)
−0.104306 + 0.994545i \(0.533262\pi\)
\(338\) 6391.22 1.02851
\(339\) −5551.36 −0.889405
\(340\) −380.205 −0.0606457
\(341\) −803.392 −0.127584
\(342\) −4080.87 −0.645229
\(343\) 783.403 0.123323
\(344\) 5927.01 0.928963
\(345\) −427.818 −0.0667621
\(346\) 8127.98 1.26290
\(347\) −1805.09 −0.279257 −0.139629 0.990204i \(-0.544591\pi\)
−0.139629 + 0.990204i \(0.544591\pi\)
\(348\) −994.031 −0.153120
\(349\) −3586.81 −0.550136 −0.275068 0.961425i \(-0.588700\pi\)
−0.275068 + 0.961425i \(0.588700\pi\)
\(350\) 1920.06 0.293233
\(351\) −1219.20 −0.185402
\(352\) 567.034 0.0858609
\(353\) −2292.90 −0.345719 −0.172859 0.984947i \(-0.555301\pi\)
−0.172859 + 0.984947i \(0.555301\pi\)
\(354\) −3045.56 −0.457259
\(355\) −5104.27 −0.763118
\(356\) −1049.63 −0.156264
\(357\) 7242.06 1.07364
\(358\) −9901.28 −1.46173
\(359\) −3077.18 −0.452388 −0.226194 0.974082i \(-0.572628\pi\)
−0.226194 + 0.974082i \(0.572628\pi\)
\(360\) −1381.85 −0.202305
\(361\) 3824.70 0.557618
\(362\) 1751.60 0.254316
\(363\) −4360.84 −0.630537
\(364\) −208.914 −0.0300826
\(365\) −1433.25 −0.205533
\(366\) −3281.72 −0.468684
\(367\) −1378.56 −0.196076 −0.0980382 0.995183i \(-0.531257\pi\)
−0.0980382 + 0.995183i \(0.531257\pi\)
\(368\) 1633.00 0.231321
\(369\) 3146.38 0.443886
\(370\) −1682.46 −0.236398
\(371\) 59.2211 0.00828736
\(372\) −237.187 −0.0330580
\(373\) 11182.3 1.55227 0.776135 0.630567i \(-0.217178\pi\)
0.776135 + 0.630567i \(0.217178\pi\)
\(374\) 2874.53 0.397429
\(375\) 465.019 0.0640360
\(376\) 12123.1 1.66277
\(377\) −2180.49 −0.297880
\(378\) −11474.5 −1.56133
\(379\) 12021.9 1.62935 0.814677 0.579915i \(-0.196914\pi\)
0.814677 + 0.579915i \(0.196914\pi\)
\(380\) −516.810 −0.0697679
\(381\) −5090.26 −0.684467
\(382\) 9176.93 1.22914
\(383\) −13274.6 −1.77102 −0.885512 0.464617i \(-0.846192\pi\)
−0.885512 + 0.464617i \(0.846192\pi\)
\(384\) −6171.73 −0.820182
\(385\) −1612.95 −0.213515
\(386\) 4010.80 0.528872
\(387\) −3714.39 −0.487889
\(388\) 1729.19 0.226254
\(389\) 11016.4 1.43587 0.717934 0.696112i \(-0.245088\pi\)
0.717934 + 0.696112i \(0.245088\pi\)
\(390\) −455.372 −0.0591248
\(391\) 1748.94 0.226210
\(392\) 6560.38 0.845279
\(393\) 7381.67 0.947471
\(394\) 7347.64 0.939515
\(395\) −2759.33 −0.351486
\(396\) −165.832 −0.0210439
\(397\) −1893.18 −0.239335 −0.119668 0.992814i \(-0.538183\pi\)
−0.119668 + 0.992814i \(0.538183\pi\)
\(398\) −3415.97 −0.430219
\(399\) 9844.07 1.23514
\(400\) −1775.00 −0.221875
\(401\) 11281.8 1.40495 0.702475 0.711709i \(-0.252078\pi\)
0.702475 + 0.711709i \(0.252078\pi\)
\(402\) −4762.52 −0.590878
\(403\) −520.290 −0.0643113
\(404\) 855.874 0.105399
\(405\) −1002.35 −0.122981
\(406\) −20521.7 −2.50856
\(407\) 1413.36 0.172131
\(408\) −5940.57 −0.720839
\(409\) −14677.6 −1.77447 −0.887236 0.461316i \(-0.847377\pi\)
−0.887236 + 0.461316i \(0.847377\pi\)
\(410\) 3586.17 0.431972
\(411\) 1016.83 0.122036
\(412\) −632.534 −0.0756376
\(413\) −6986.15 −0.832363
\(414\) −908.072 −0.107800
\(415\) 108.510 0.0128351
\(416\) 367.221 0.0432800
\(417\) −2075.43 −0.243728
\(418\) 3907.32 0.457209
\(419\) 2196.50 0.256100 0.128050 0.991768i \(-0.459128\pi\)
0.128050 + 0.991768i \(0.459128\pi\)
\(420\) −476.194 −0.0553235
\(421\) −6571.28 −0.760723 −0.380362 0.924838i \(-0.624200\pi\)
−0.380362 + 0.924838i \(0.624200\pi\)
\(422\) −16790.4 −1.93684
\(423\) −7597.42 −0.873284
\(424\) −48.5784 −0.00556409
\(425\) −1901.03 −0.216973
\(426\) 11393.2 1.29578
\(427\) −7527.87 −0.853160
\(428\) 1309.62 0.147904
\(429\) 382.536 0.0430513
\(430\) −4233.58 −0.474794
\(431\) −583.607 −0.0652235 −0.0326118 0.999468i \(-0.510382\pi\)
−0.0326118 + 0.999468i \(0.510382\pi\)
\(432\) 10607.6 1.18139
\(433\) −2677.60 −0.297176 −0.148588 0.988899i \(-0.547473\pi\)
−0.148588 + 0.988899i \(0.547473\pi\)
\(434\) −4896.71 −0.541589
\(435\) −4970.15 −0.547817
\(436\) 1726.21 0.189611
\(437\) 2377.33 0.260236
\(438\) 3199.14 0.348997
\(439\) −5509.18 −0.598949 −0.299475 0.954104i \(-0.596811\pi\)
−0.299475 + 0.954104i \(0.596811\pi\)
\(440\) 1323.08 0.143353
\(441\) −4111.32 −0.443939
\(442\) 1861.59 0.200332
\(443\) −13054.6 −1.40009 −0.700047 0.714097i \(-0.746838\pi\)
−0.700047 + 0.714097i \(0.746838\pi\)
\(444\) 417.268 0.0446006
\(445\) −5248.14 −0.559069
\(446\) −16741.8 −1.77746
\(447\) −5037.68 −0.533052
\(448\) −11085.1 −1.16903
\(449\) −11819.1 −1.24227 −0.621135 0.783704i \(-0.713328\pi\)
−0.621135 + 0.783704i \(0.713328\pi\)
\(450\) 987.034 0.103398
\(451\) −3012.57 −0.314537
\(452\) −1492.24 −0.155285
\(453\) 605.091 0.0627587
\(454\) 1698.97 0.175631
\(455\) −1044.57 −0.107627
\(456\) −8074.97 −0.829266
\(457\) −4144.87 −0.424264 −0.212132 0.977241i \(-0.568041\pi\)
−0.212132 + 0.977241i \(0.568041\pi\)
\(458\) 2081.11 0.212323
\(459\) 11360.8 1.15528
\(460\) −115.000 −0.0116563
\(461\) −6061.38 −0.612379 −0.306189 0.951971i \(-0.599054\pi\)
−0.306189 + 0.951971i \(0.599054\pi\)
\(462\) 3600.24 0.362551
\(463\) −5729.13 −0.575066 −0.287533 0.957771i \(-0.592835\pi\)
−0.287533 + 0.957771i \(0.592835\pi\)
\(464\) 18971.3 1.89811
\(465\) −1185.94 −0.118272
\(466\) 6626.05 0.658682
\(467\) 8958.05 0.887643 0.443821 0.896115i \(-0.353622\pi\)
0.443821 + 0.896115i \(0.353622\pi\)
\(468\) −107.395 −0.0106076
\(469\) −10924.7 −1.07559
\(470\) −8659.37 −0.849845
\(471\) −8797.53 −0.860655
\(472\) 5730.65 0.558845
\(473\) 3556.42 0.345718
\(474\) 6159.08 0.596827
\(475\) −2584.05 −0.249609
\(476\) 1946.71 0.187452
\(477\) 30.4435 0.00292225
\(478\) 11630.4 1.11289
\(479\) 6356.60 0.606347 0.303174 0.952935i \(-0.401954\pi\)
0.303174 + 0.952935i \(0.401954\pi\)
\(480\) 837.034 0.0795942
\(481\) 915.312 0.0867664
\(482\) 6073.70 0.573961
\(483\) 2190.49 0.206358
\(484\) −1172.22 −0.110088
\(485\) 8645.96 0.809469
\(486\) −9864.31 −0.920688
\(487\) 13991.2 1.30185 0.650926 0.759141i \(-0.274381\pi\)
0.650926 + 0.759141i \(0.274381\pi\)
\(488\) 6175.02 0.572808
\(489\) 1752.79 0.162094
\(490\) −4685.99 −0.432023
\(491\) −5301.96 −0.487320 −0.243660 0.969861i \(-0.578348\pi\)
−0.243660 + 0.969861i \(0.578348\pi\)
\(492\) −889.408 −0.0814992
\(493\) 20318.3 1.85617
\(494\) 2530.44 0.230466
\(495\) −829.159 −0.0752888
\(496\) 4526.78 0.409795
\(497\) 26134.7 2.35875
\(498\) −242.205 −0.0217941
\(499\) −8013.45 −0.718900 −0.359450 0.933164i \(-0.617036\pi\)
−0.359450 + 0.933164i \(0.617036\pi\)
\(500\) 125.000 0.0111803
\(501\) −13897.5 −1.23931
\(502\) 2200.33 0.195629
\(503\) −11881.9 −1.05325 −0.526627 0.850097i \(-0.676544\pi\)
−0.526627 + 0.850097i \(0.676544\pi\)
\(504\) 7075.27 0.625313
\(505\) 4279.37 0.377088
\(506\) 869.453 0.0763871
\(507\) −7925.44 −0.694243
\(508\) −1368.29 −0.119504
\(509\) −12113.8 −1.05488 −0.527441 0.849592i \(-0.676848\pi\)
−0.527441 + 0.849592i \(0.676848\pi\)
\(510\) 4243.27 0.368422
\(511\) 7338.45 0.635291
\(512\) 8733.00 0.753804
\(513\) 15442.6 1.32906
\(514\) −7103.49 −0.609575
\(515\) −3162.67 −0.270609
\(516\) 1049.97 0.0895783
\(517\) 7274.31 0.618808
\(518\) 8614.48 0.730692
\(519\) −10079.1 −0.852454
\(520\) 856.848 0.0722602
\(521\) −15327.6 −1.28890 −0.644449 0.764647i \(-0.722913\pi\)
−0.644449 + 0.764647i \(0.722913\pi\)
\(522\) −10549.5 −0.884556
\(523\) 14545.8 1.21614 0.608070 0.793883i \(-0.291944\pi\)
0.608070 + 0.793883i \(0.291944\pi\)
\(524\) 1984.24 0.165423
\(525\) −2380.97 −0.197931
\(526\) −19898.3 −1.64944
\(527\) 4848.18 0.400740
\(528\) −3328.25 −0.274325
\(529\) 529.000 0.0434783
\(530\) 34.6989 0.00284381
\(531\) −3591.34 −0.293504
\(532\) 2646.15 0.215648
\(533\) −1950.99 −0.158549
\(534\) 11714.3 0.949304
\(535\) 6548.10 0.529157
\(536\) 8961.36 0.722149
\(537\) 12278.1 0.986665
\(538\) 18278.9 1.46479
\(539\) 3936.47 0.314575
\(540\) −747.015 −0.0595304
\(541\) −5468.93 −0.434617 −0.217308 0.976103i \(-0.569728\pi\)
−0.217308 + 0.976103i \(0.569728\pi\)
\(542\) 5943.89 0.471055
\(543\) −2172.08 −0.171663
\(544\) −3421.85 −0.269688
\(545\) 8631.03 0.678372
\(546\) 2331.58 0.182751
\(547\) −19566.3 −1.52943 −0.764713 0.644371i \(-0.777119\pi\)
−0.764713 + 0.644371i \(0.777119\pi\)
\(548\) 273.331 0.0213068
\(549\) −3869.82 −0.300837
\(550\) −945.057 −0.0732680
\(551\) 27618.5 2.13537
\(552\) −1796.83 −0.138548
\(553\) 14128.2 1.08642
\(554\) 12292.3 0.942686
\(555\) 2086.34 0.159568
\(556\) −557.889 −0.0425536
\(557\) −9803.11 −0.745729 −0.372865 0.927886i \(-0.621624\pi\)
−0.372865 + 0.927886i \(0.621624\pi\)
\(558\) −2517.23 −0.190973
\(559\) 2303.20 0.174266
\(560\) 9088.27 0.685803
\(561\) −3564.56 −0.268264
\(562\) 11599.2 0.870610
\(563\) −4909.73 −0.367532 −0.183766 0.982970i \(-0.558829\pi\)
−0.183766 + 0.982970i \(0.558829\pi\)
\(564\) 2147.61 0.160338
\(565\) −7461.19 −0.555566
\(566\) −11946.0 −0.887153
\(567\) 5132.18 0.380126
\(568\) −21438.0 −1.58366
\(569\) 11498.2 0.847155 0.423578 0.905860i \(-0.360774\pi\)
0.423578 + 0.905860i \(0.360774\pi\)
\(570\) 5767.84 0.423839
\(571\) 14766.6 1.08225 0.541124 0.840943i \(-0.317999\pi\)
0.541124 + 0.840943i \(0.317999\pi\)
\(572\) 102.828 0.00751653
\(573\) −11379.9 −0.829670
\(574\) −18361.8 −1.33520
\(575\) −575.000 −0.0417029
\(576\) −5698.48 −0.412216
\(577\) 13364.0 0.964212 0.482106 0.876113i \(-0.339872\pi\)
0.482106 + 0.876113i \(0.339872\pi\)
\(578\) −2607.73 −0.187660
\(579\) −4973.60 −0.356988
\(580\) −1336.01 −0.0956460
\(581\) −555.590 −0.0396725
\(582\) −19298.6 −1.37449
\(583\) −29.1488 −0.00207070
\(584\) −6019.64 −0.426532
\(585\) −536.977 −0.0379509
\(586\) 22475.1 1.58437
\(587\) 12524.7 0.880664 0.440332 0.897835i \(-0.354861\pi\)
0.440332 + 0.897835i \(0.354861\pi\)
\(588\) 1162.17 0.0815089
\(589\) 6590.09 0.461019
\(590\) −4093.32 −0.285626
\(591\) −9111.45 −0.634171
\(592\) −7963.66 −0.552879
\(593\) −17938.6 −1.24224 −0.621121 0.783714i \(-0.713323\pi\)
−0.621121 + 0.783714i \(0.713323\pi\)
\(594\) 5647.78 0.390120
\(595\) 9733.55 0.670650
\(596\) −1354.16 −0.0930681
\(597\) 4235.98 0.290397
\(598\) 563.072 0.0385045
\(599\) −26735.8 −1.82370 −0.911848 0.410528i \(-0.865344\pi\)
−0.911848 + 0.410528i \(0.865344\pi\)
\(600\) 1953.08 0.132890
\(601\) −21043.6 −1.42826 −0.714131 0.700012i \(-0.753178\pi\)
−0.714131 + 0.700012i \(0.753178\pi\)
\(602\) 21676.6 1.46756
\(603\) −5615.98 −0.379271
\(604\) 162.652 0.0109573
\(605\) −5861.10 −0.393864
\(606\) −9551.95 −0.640299
\(607\) 5098.83 0.340947 0.170474 0.985362i \(-0.445470\pi\)
0.170474 + 0.985362i \(0.445470\pi\)
\(608\) −4651.29 −0.310254
\(609\) 25447.9 1.69327
\(610\) −4410.73 −0.292763
\(611\) 4710.96 0.311923
\(612\) 1000.74 0.0660986
\(613\) −12784.8 −0.842369 −0.421185 0.906975i \(-0.638386\pi\)
−0.421185 + 0.906975i \(0.638386\pi\)
\(614\) 17439.0 1.14622
\(615\) −4447.04 −0.291580
\(616\) −6774.37 −0.443096
\(617\) −8940.73 −0.583372 −0.291686 0.956514i \(-0.594216\pi\)
−0.291686 + 0.956514i \(0.594216\pi\)
\(618\) 7059.37 0.459498
\(619\) 1333.26 0.0865725 0.0432863 0.999063i \(-0.486217\pi\)
0.0432863 + 0.999063i \(0.486217\pi\)
\(620\) −318.787 −0.0206497
\(621\) 3436.27 0.222050
\(622\) −14308.3 −0.922364
\(623\) 26871.3 1.72805
\(624\) −2155.43 −0.138279
\(625\) 625.000 0.0400000
\(626\) −21160.3 −1.35102
\(627\) −4845.28 −0.308615
\(628\) −2364.83 −0.150266
\(629\) −8529.09 −0.540663
\(630\) −5053.77 −0.319598
\(631\) −16667.9 −1.05157 −0.525784 0.850618i \(-0.676228\pi\)
−0.525784 + 0.850618i \(0.676228\pi\)
\(632\) −11589.2 −0.729420
\(633\) 20821.0 1.30736
\(634\) −26536.1 −1.66228
\(635\) −6841.46 −0.427551
\(636\) −8.60567 −0.000536536 0
\(637\) 2549.32 0.158568
\(638\) 10100.8 0.626796
\(639\) 13434.9 0.831733
\(640\) −8295.00 −0.512326
\(641\) 27431.9 1.69032 0.845158 0.534516i \(-0.179506\pi\)
0.845158 + 0.534516i \(0.179506\pi\)
\(642\) −14616.0 −0.898514
\(643\) 9618.00 0.589886 0.294943 0.955515i \(-0.404699\pi\)
0.294943 + 0.955515i \(0.404699\pi\)
\(644\) 588.818 0.0360290
\(645\) 5249.86 0.320485
\(646\) −23579.3 −1.43609
\(647\) −12548.6 −0.762496 −0.381248 0.924473i \(-0.624506\pi\)
−0.381248 + 0.924473i \(0.624506\pi\)
\(648\) −4209.87 −0.255215
\(649\) 3438.60 0.207977
\(650\) −612.034 −0.0369323
\(651\) 6072.18 0.365572
\(652\) 471.162 0.0283008
\(653\) −8829.79 −0.529152 −0.264576 0.964365i \(-0.585232\pi\)
−0.264576 + 0.964365i \(0.585232\pi\)
\(654\) −19265.3 −1.15188
\(655\) 9921.19 0.591837
\(656\) 16974.6 1.01028
\(657\) 3772.44 0.224014
\(658\) 44337.3 2.62682
\(659\) 5935.56 0.350860 0.175430 0.984492i \(-0.443868\pi\)
0.175430 + 0.984492i \(0.443868\pi\)
\(660\) 234.384 0.0138233
\(661\) −1182.03 −0.0695549 −0.0347775 0.999395i \(-0.511072\pi\)
−0.0347775 + 0.999395i \(0.511072\pi\)
\(662\) −12792.2 −0.751032
\(663\) −2308.47 −0.135224
\(664\) 455.743 0.0266360
\(665\) 13230.7 0.771527
\(666\) 4428.40 0.257653
\(667\) 6145.64 0.356762
\(668\) −3735.73 −0.216377
\(669\) 20760.7 1.19978
\(670\) −6400.97 −0.369091
\(671\) 3705.24 0.213173
\(672\) −4285.74 −0.246021
\(673\) −6053.25 −0.346710 −0.173355 0.984859i \(-0.555461\pi\)
−0.173355 + 0.984859i \(0.555461\pi\)
\(674\) 3871.74 0.221267
\(675\) −3735.08 −0.212982
\(676\) −2130.41 −0.121211
\(677\) 16694.2 0.947728 0.473864 0.880598i \(-0.342859\pi\)
0.473864 + 0.880598i \(0.342859\pi\)
\(678\) 16654.1 0.943357
\(679\) −44268.6 −2.50202
\(680\) −7984.31 −0.450271
\(681\) −2106.81 −0.118551
\(682\) 2410.18 0.135323
\(683\) −4150.03 −0.232499 −0.116249 0.993220i \(-0.537087\pi\)
−0.116249 + 0.993220i \(0.537087\pi\)
\(684\) 1360.29 0.0760410
\(685\) 1366.66 0.0762296
\(686\) −2350.21 −0.130804
\(687\) −2580.68 −0.143317
\(688\) −20039.0 −1.11043
\(689\) −18.8772 −0.00104378
\(690\) 1283.45 0.0708119
\(691\) 33382.4 1.83781 0.918904 0.394481i \(-0.129076\pi\)
0.918904 + 0.394481i \(0.129076\pi\)
\(692\) −2709.33 −0.148834
\(693\) 4245.42 0.232713
\(694\) 5415.27 0.296197
\(695\) −2789.45 −0.152244
\(696\) −20874.6 −1.13686
\(697\) 18179.8 0.987960
\(698\) 10760.4 0.583508
\(699\) −8216.64 −0.444609
\(700\) −640.019 −0.0345578
\(701\) −29528.7 −1.59099 −0.795494 0.605961i \(-0.792789\pi\)
−0.795494 + 0.605961i \(0.792789\pi\)
\(702\) 3657.59 0.196648
\(703\) −11593.5 −0.621989
\(704\) 5456.13 0.292096
\(705\) 10738.1 0.573644
\(706\) 6878.69 0.366690
\(707\) −21911.0 −1.16556
\(708\) 1015.19 0.0538885
\(709\) 27016.3 1.43106 0.715529 0.698583i \(-0.246186\pi\)
0.715529 + 0.698583i \(0.246186\pi\)
\(710\) 15312.8 0.809408
\(711\) 7262.82 0.383090
\(712\) −22042.2 −1.16020
\(713\) 1466.42 0.0770237
\(714\) −21726.2 −1.13877
\(715\) 514.140 0.0268920
\(716\) 3300.43 0.172266
\(717\) −14422.3 −0.751198
\(718\) 9231.54 0.479830
\(719\) 24752.9 1.28390 0.641952 0.766745i \(-0.278125\pi\)
0.641952 + 0.766745i \(0.278125\pi\)
\(720\) 4671.96 0.241825
\(721\) 16193.4 0.836438
\(722\) −11474.1 −0.591443
\(723\) −7531.69 −0.387423
\(724\) −583.868 −0.0299714
\(725\) −6680.04 −0.342194
\(726\) 13082.5 0.668785
\(727\) −17574.5 −0.896565 −0.448283 0.893892i \(-0.647964\pi\)
−0.448283 + 0.893892i \(0.647964\pi\)
\(728\) −4387.19 −0.223352
\(729\) 17644.9 0.896456
\(730\) 4299.74 0.218001
\(731\) −21461.7 −1.08590
\(732\) 1093.91 0.0552349
\(733\) 27739.6 1.39780 0.698898 0.715221i \(-0.253674\pi\)
0.698898 + 0.715221i \(0.253674\pi\)
\(734\) 4135.67 0.207970
\(735\) 5810.87 0.291615
\(736\) −1035.00 −0.0518351
\(737\) 5377.15 0.268751
\(738\) −9439.14 −0.470812
\(739\) −3140.78 −0.156340 −0.0781701 0.996940i \(-0.524908\pi\)
−0.0781701 + 0.996940i \(0.524908\pi\)
\(740\) 560.821 0.0278597
\(741\) −3137.88 −0.155564
\(742\) −177.663 −0.00879007
\(743\) −35881.5 −1.77169 −0.885844 0.463984i \(-0.846420\pi\)
−0.885844 + 0.463984i \(0.846420\pi\)
\(744\) −4980.93 −0.245443
\(745\) −6770.80 −0.332970
\(746\) −33546.9 −1.64643
\(747\) −285.609 −0.0139891
\(748\) −958.176 −0.0468374
\(749\) −33527.3 −1.63559
\(750\) −1395.06 −0.0679204
\(751\) −7009.03 −0.340563 −0.170282 0.985395i \(-0.554468\pi\)
−0.170282 + 0.985395i \(0.554468\pi\)
\(752\) −40987.7 −1.98759
\(753\) −2728.52 −0.132049
\(754\) 6541.46 0.315950
\(755\) 813.261 0.0392021
\(756\) 3824.83 0.184005
\(757\) 29998.3 1.44030 0.720150 0.693818i \(-0.244073\pi\)
0.720150 + 0.693818i \(0.244073\pi\)
\(758\) −36065.8 −1.72819
\(759\) −1078.17 −0.0515612
\(760\) −10853.0 −0.518000
\(761\) 5283.49 0.251677 0.125839 0.992051i \(-0.459838\pi\)
0.125839 + 0.992051i \(0.459838\pi\)
\(762\) 15270.8 0.725987
\(763\) −44192.2 −2.09681
\(764\) −3058.98 −0.144856
\(765\) 5003.68 0.236481
\(766\) 39823.9 1.87845
\(767\) 2226.89 0.104835
\(768\) 5628.59 0.264459
\(769\) −15216.2 −0.713538 −0.356769 0.934193i \(-0.616122\pi\)
−0.356769 + 0.934193i \(0.616122\pi\)
\(770\) 4838.84 0.226467
\(771\) 8808.69 0.411462
\(772\) −1336.93 −0.0623281
\(773\) 15651.3 0.728250 0.364125 0.931350i \(-0.381368\pi\)
0.364125 + 0.931350i \(0.381368\pi\)
\(774\) 11143.2 0.517485
\(775\) −1593.93 −0.0738785
\(776\) 36313.0 1.67985
\(777\) −10682.4 −0.493216
\(778\) −33049.1 −1.52297
\(779\) 24711.6 1.13657
\(780\) 151.791 0.00696793
\(781\) −12863.6 −0.589365
\(782\) −5246.83 −0.239931
\(783\) 39920.7 1.82203
\(784\) −22180.3 −1.01040
\(785\) −11824.1 −0.537607
\(786\) −22145.0 −1.00494
\(787\) 9401.09 0.425810 0.212905 0.977073i \(-0.431707\pi\)
0.212905 + 0.977073i \(0.431707\pi\)
\(788\) −2449.21 −0.110723
\(789\) 24674.9 1.11337
\(790\) 8278.00 0.372807
\(791\) 38202.5 1.71722
\(792\) −3482.47 −0.156243
\(793\) 2399.57 0.107454
\(794\) 5679.55 0.253854
\(795\) −43.0283 −0.00191957
\(796\) 1138.66 0.0507018
\(797\) 37388.5 1.66169 0.830845 0.556504i \(-0.187857\pi\)
0.830845 + 0.556504i \(0.187857\pi\)
\(798\) −29532.2 −1.31006
\(799\) −43897.9 −1.94367
\(800\) 1125.00 0.0497184
\(801\) 13813.6 0.609337
\(802\) −33845.3 −1.49017
\(803\) −3612.00 −0.158736
\(804\) 1587.51 0.0696356
\(805\) 2944.09 0.128901
\(806\) 1560.87 0.0682125
\(807\) −22666.8 −0.988734
\(808\) 17973.4 0.782550
\(809\) 24390.6 1.05999 0.529993 0.848002i \(-0.322195\pi\)
0.529993 + 0.848002i \(0.322195\pi\)
\(810\) 3007.05 0.130441
\(811\) 23750.8 1.02836 0.514181 0.857682i \(-0.328096\pi\)
0.514181 + 0.857682i \(0.328096\pi\)
\(812\) 6840.56 0.295636
\(813\) −7370.73 −0.317962
\(814\) −4240.07 −0.182573
\(815\) 2355.81 0.101252
\(816\) 20084.8 0.861653
\(817\) −29172.8 −1.24924
\(818\) 44032.7 1.88211
\(819\) 2749.40 0.117304
\(820\) −1195.39 −0.0509084
\(821\) 3041.59 0.129296 0.0646481 0.997908i \(-0.479408\pi\)
0.0646481 + 0.997908i \(0.479408\pi\)
\(822\) −3050.50 −0.129439
\(823\) 28411.6 1.20336 0.601681 0.798737i \(-0.294498\pi\)
0.601681 + 0.798737i \(0.294498\pi\)
\(824\) −13283.2 −0.561581
\(825\) 1171.92 0.0494558
\(826\) 20958.4 0.882854
\(827\) −24351.5 −1.02392 −0.511962 0.859008i \(-0.671081\pi\)
−0.511962 + 0.859008i \(0.671081\pi\)
\(828\) 302.691 0.0127044
\(829\) −47240.8 −1.97918 −0.989590 0.143914i \(-0.954031\pi\)
−0.989590 + 0.143914i \(0.954031\pi\)
\(830\) −325.531 −0.0136137
\(831\) −15243.0 −0.636311
\(832\) 3533.48 0.147237
\(833\) −23755.2 −0.988077
\(834\) 6226.30 0.258512
\(835\) −18678.7 −0.774134
\(836\) −1302.44 −0.0538826
\(837\) 9525.55 0.393371
\(838\) −6589.49 −0.271635
\(839\) 2646.33 0.108893 0.0544466 0.998517i \(-0.482661\pi\)
0.0544466 + 0.998517i \(0.482661\pi\)
\(840\) −10000.1 −0.410756
\(841\) 47007.7 1.92741
\(842\) 19713.8 0.806869
\(843\) −14383.6 −0.587660
\(844\) 5596.81 0.228258
\(845\) −10652.0 −0.433658
\(846\) 22792.3 0.926258
\(847\) 30009.7 1.21741
\(848\) 164.241 0.00665102
\(849\) 14813.7 0.598827
\(850\) 5703.08 0.230134
\(851\) −2579.78 −0.103917
\(852\) −3797.74 −0.152709
\(853\) −40826.4 −1.63877 −0.819385 0.573244i \(-0.805685\pi\)
−0.819385 + 0.573244i \(0.805685\pi\)
\(854\) 22583.6 0.904913
\(855\) 6801.46 0.272053
\(856\) 27502.0 1.09813
\(857\) 1516.61 0.0604510 0.0302255 0.999543i \(-0.490377\pi\)
0.0302255 + 0.999543i \(0.490377\pi\)
\(858\) −1147.61 −0.0456628
\(859\) 6514.74 0.258766 0.129383 0.991595i \(-0.458700\pi\)
0.129383 + 0.991595i \(0.458700\pi\)
\(860\) 1411.19 0.0559550
\(861\) 22769.5 0.901258
\(862\) 1750.82 0.0691800
\(863\) −7120.18 −0.280850 −0.140425 0.990091i \(-0.544847\pi\)
−0.140425 + 0.990091i \(0.544847\pi\)
\(864\) −6723.14 −0.264729
\(865\) −13546.6 −0.532485
\(866\) 8032.79 0.315202
\(867\) 3233.72 0.126670
\(868\) 1632.24 0.0638269
\(869\) −6953.94 −0.271457
\(870\) 14910.5 0.581048
\(871\) 3482.33 0.135470
\(872\) 36250.3 1.40779
\(873\) −22757.0 −0.882252
\(874\) −7131.98 −0.276021
\(875\) −3200.10 −0.123638
\(876\) −1066.38 −0.0411297
\(877\) −34013.4 −1.30964 −0.654818 0.755787i \(-0.727255\pi\)
−0.654818 + 0.755787i \(0.727255\pi\)
\(878\) 16527.5 0.635282
\(879\) −27870.3 −1.06944
\(880\) −4473.27 −0.171357
\(881\) 6704.11 0.256376 0.128188 0.991750i \(-0.459084\pi\)
0.128188 + 0.991750i \(0.459084\pi\)
\(882\) 12334.0 0.470868
\(883\) 47808.5 1.82207 0.911033 0.412333i \(-0.135286\pi\)
0.911033 + 0.412333i \(0.135286\pi\)
\(884\) −620.530 −0.0236094
\(885\) 5075.93 0.192797
\(886\) 39163.7 1.48502
\(887\) −38955.7 −1.47464 −0.737320 0.675544i \(-0.763909\pi\)
−0.737320 + 0.675544i \(0.763909\pi\)
\(888\) 8762.64 0.331143
\(889\) 35029.3 1.32154
\(890\) 15744.4 0.592982
\(891\) −2526.07 −0.0949794
\(892\) 5580.60 0.209476
\(893\) −59670.0 −2.23604
\(894\) 15113.1 0.565387
\(895\) 16502.1 0.616319
\(896\) 42471.7 1.58357
\(897\) −698.238 −0.0259905
\(898\) 35457.4 1.31763
\(899\) 17036.1 0.632019
\(900\) −329.011 −0.0121856
\(901\) 175.903 0.00650407
\(902\) 9037.71 0.333617
\(903\) −26880.1 −0.990601
\(904\) −31337.0 −1.15294
\(905\) −2919.34 −0.107229
\(906\) −1815.27 −0.0665656
\(907\) 7725.66 0.282830 0.141415 0.989950i \(-0.454835\pi\)
0.141415 + 0.989950i \(0.454835\pi\)
\(908\) −566.323 −0.0206983
\(909\) −11263.7 −0.410994
\(910\) 3133.71 0.114155
\(911\) −13150.7 −0.478269 −0.239135 0.970986i \(-0.576864\pi\)
−0.239135 + 0.970986i \(0.576864\pi\)
\(912\) 27301.1 0.991260
\(913\) 273.463 0.00991270
\(914\) 12434.6 0.450000
\(915\) 5469.53 0.197614
\(916\) −693.702 −0.0250224
\(917\) −50798.0 −1.82933
\(918\) −34082.3 −1.22536
\(919\) 33083.7 1.18752 0.593759 0.804643i \(-0.297643\pi\)
0.593759 + 0.804643i \(0.297643\pi\)
\(920\) −2415.00 −0.0865437
\(921\) −21625.3 −0.773699
\(922\) 18184.1 0.649526
\(923\) −8330.65 −0.297082
\(924\) −1200.08 −0.0427270
\(925\) 2804.11 0.0996740
\(926\) 17187.4 0.609949
\(927\) 8324.44 0.294941
\(928\) −12024.1 −0.425333
\(929\) −1310.12 −0.0462686 −0.0231343 0.999732i \(-0.507365\pi\)
−0.0231343 + 0.999732i \(0.507365\pi\)
\(930\) 3557.81 0.125446
\(931\) −32290.2 −1.13670
\(932\) −2208.68 −0.0776264
\(933\) 17743.0 0.622594
\(934\) −26874.1 −0.941487
\(935\) −4790.88 −0.167571
\(936\) −2255.30 −0.0787574
\(937\) 40623.1 1.41633 0.708163 0.706049i \(-0.249524\pi\)
0.708163 + 0.706049i \(0.249524\pi\)
\(938\) 32774.0 1.14084
\(939\) 26239.8 0.911933
\(940\) 2886.46 0.100155
\(941\) −10434.0 −0.361466 −0.180733 0.983532i \(-0.557847\pi\)
−0.180733 + 0.983532i \(0.557847\pi\)
\(942\) 26392.6 0.912863
\(943\) 5498.80 0.189889
\(944\) −19375.1 −0.668013
\(945\) 19124.2 0.658317
\(946\) −10669.3 −0.366689
\(947\) −51333.4 −1.76147 −0.880734 0.473612i \(-0.842950\pi\)
−0.880734 + 0.473612i \(0.842950\pi\)
\(948\) −2053.03 −0.0703367
\(949\) −2339.19 −0.0800141
\(950\) 7752.15 0.264750
\(951\) 32906.1 1.12203
\(952\) 40880.9 1.39176
\(953\) 40263.6 1.36859 0.684294 0.729206i \(-0.260110\pi\)
0.684294 + 0.729206i \(0.260110\pi\)
\(954\) −91.3306 −0.00309951
\(955\) −15294.9 −0.518252
\(956\) −3876.79 −0.131155
\(957\) −12525.5 −0.423086
\(958\) −19069.8 −0.643128
\(959\) −6997.49 −0.235621
\(960\) 8054.13 0.270777
\(961\) −25726.0 −0.863549
\(962\) −2745.94 −0.0920297
\(963\) −17235.2 −0.576736
\(964\) −2024.57 −0.0676420
\(965\) −6684.67 −0.222992
\(966\) −6571.48 −0.218876
\(967\) −8353.12 −0.277785 −0.138893 0.990307i \(-0.544354\pi\)
−0.138893 + 0.990307i \(0.544354\pi\)
\(968\) −24616.6 −0.817364
\(969\) 29239.5 0.969358
\(970\) −25937.9 −0.858572
\(971\) −28020.1 −0.926063 −0.463032 0.886342i \(-0.653238\pi\)
−0.463032 + 0.886342i \(0.653238\pi\)
\(972\) 3288.10 0.108504
\(973\) 14282.4 0.470578
\(974\) −41973.6 −1.38082
\(975\) 758.954 0.0249292
\(976\) −20877.5 −0.684704
\(977\) −50115.3 −1.64107 −0.820537 0.571593i \(-0.806326\pi\)
−0.820537 + 0.571593i \(0.806326\pi\)
\(978\) −5258.38 −0.171927
\(979\) −13226.1 −0.431776
\(980\) 1562.00 0.0509144
\(981\) −22717.7 −0.739367
\(982\) 15905.9 0.516881
\(983\) −38113.0 −1.23664 −0.618320 0.785926i \(-0.712186\pi\)
−0.618320 + 0.785926i \(0.712186\pi\)
\(984\) −18677.6 −0.605101
\(985\) −12246.1 −0.396134
\(986\) −60954.9 −1.96876
\(987\) −54980.5 −1.77310
\(988\) −843.481 −0.0271606
\(989\) −6491.49 −0.208713
\(990\) 2487.48 0.0798558
\(991\) −5245.02 −0.168127 −0.0840634 0.996460i \(-0.526790\pi\)
−0.0840634 + 0.996460i \(0.526790\pi\)
\(992\) −2869.08 −0.0918281
\(993\) 15863.0 0.506945
\(994\) −78404.0 −2.50183
\(995\) 5693.29 0.181396
\(996\) 80.7350 0.00256846
\(997\) 21896.1 0.695544 0.347772 0.937579i \(-0.386938\pi\)
0.347772 + 0.937579i \(0.386938\pi\)
\(998\) 24040.3 0.762509
\(999\) −16757.7 −0.530721
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 115.4.a.c.1.2 2
3.2 odd 2 1035.4.a.g.1.1 2
4.3 odd 2 1840.4.a.h.1.1 2
5.2 odd 4 575.4.b.f.24.1 4
5.3 odd 4 575.4.b.f.24.4 4
5.4 even 2 575.4.a.h.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
115.4.a.c.1.2 2 1.1 even 1 trivial
575.4.a.h.1.1 2 5.4 even 2
575.4.b.f.24.1 4 5.2 odd 4
575.4.b.f.24.4 4 5.3 odd 4
1035.4.a.g.1.1 2 3.2 odd 2
1840.4.a.h.1.1 2 4.3 odd 2