Properties

Label 115.4.a.f
Level 115115
Weight 44
Character orbit 115.a
Self dual yes
Analytic conductor 6.7856.785
Analytic rank 00
Dimension 88
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [115,4,Mod(1,115)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(115, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("115.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 115=523 115 = 5 \cdot 23
Weight: k k == 4 4
Character orbit: [χ][\chi] == 115.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 6.785219650666.78521965066
Analytic rank: 00
Dimension: 88
Coefficient field: Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x82x749x6+31x5+750x4+249x32892x2620x+2400 x^{8} - 2x^{7} - 49x^{6} + 31x^{5} + 750x^{4} + 249x^{3} - 2892x^{2} - 620x + 2400 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β1+1)q2+β6q3+(β2+5)q4+5q5+(β7+β5+β3++1)q6+(β7+β6β5++1)q7+(β6β5+β4++1)q8++(40β729β6++184)q99+O(q100) q + ( - \beta_1 + 1) q^{2} + \beta_{6} q^{3} + (\beta_{2} + 5) q^{4} + 5 q^{5} + (\beta_{7} + \beta_{5} + \beta_{3} + \cdots + 1) q^{6} + ( - \beta_{7} + \beta_{6} - \beta_{5} + \cdots + 1) q^{7} + (\beta_{6} - \beta_{5} + \beta_{4} + \cdots + 1) q^{8}+ \cdots + ( - 40 \beta_{7} - 29 \beta_{6} + \cdots + 184) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+6q2+42q4+40q5+11q7+3q8+158q9+30q10+41q11+48q12+28q13+161q14+98q16+71q17+84q18+177q19+210q20+292q21++1319q99+O(q100) 8 q + 6 q^{2} + 42 q^{4} + 40 q^{5} + 11 q^{7} + 3 q^{8} + 158 q^{9} + 30 q^{10} + 41 q^{11} + 48 q^{12} + 28 q^{13} + 161 q^{14} + 98 q^{16} + 71 q^{17} + 84 q^{18} + 177 q^{19} + 210 q^{20} + 292 q^{21}+ \cdots + 1319 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x82x749x6+31x5+750x4+249x32892x2620x+2400 x^{8} - 2x^{7} - 49x^{6} + 31x^{5} + 750x^{4} + 249x^{3} - 2892x^{2} - 620x + 2400 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν22ν12 \nu^{2} - 2\nu - 12 Copy content Toggle raw display
β3\beta_{3}== (21ν7+372ν6611ν510501ν4+19940ν3+88331ν277178ν104240)/3680 ( -21\nu^{7} + 372\nu^{6} - 611\nu^{5} - 10501\nu^{4} + 19940\nu^{3} + 88331\nu^{2} - 77178\nu - 104240 ) / 3680 Copy content Toggle raw display
β4\beta_{4}== (43ν7+236ν6+1027ν53803ν410340ν3+373ν2+31226ν+17520)/3680 ( -43\nu^{7} + 236\nu^{6} + 1027\nu^{5} - 3803\nu^{4} - 10340\nu^{3} + 373\nu^{2} + 31226\nu + 17520 ) / 3680 Copy content Toggle raw display
β5\beta_{5}== (57ν7484ν61233ν5+15097ν4+6860ν3135927ν225774ν+211440)/3680 ( 57\nu^{7} - 484\nu^{6} - 1233\nu^{5} + 15097\nu^{4} + 6860\nu^{3} - 135927\nu^{2} - 25774\nu + 211440 ) / 3680 Copy content Toggle raw display
β6\beta_{6}== (79ν7348ν62871ν5+8399ν4+33460ν336929ν271618ν+30800)/3680 ( 79\nu^{7} - 348\nu^{6} - 2871\nu^{5} + 8399\nu^{4} + 33460\nu^{3} - 36929\nu^{2} - 71618\nu + 30800 ) / 3680 Copy content Toggle raw display
β7\beta_{7}== (233ν71236ν66977ν5+29593ν4+63260ν3146183ν244766ν+109520)/3680 ( 233\nu^{7} - 1236\nu^{6} - 6977\nu^{5} + 29593\nu^{4} + 63260\nu^{3} - 146183\nu^{2} - 44766\nu + 109520 ) / 3680 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+2β1+12 \beta_{2} + 2\beta _1 + 12 Copy content Toggle raw display
ν3\nu^{3}== β6+β5β4+β3+3β2+23β1+20 -\beta_{6} + \beta_{5} - \beta_{4} + \beta_{3} + 3\beta_{2} + 23\beta _1 + 20 Copy content Toggle raw display
ν4\nu^{4}== 2β79β6+5β52β4+6β3+30β2+87β1+268 2\beta_{7} - 9\beta_{6} + 5\beta_{5} - 2\beta_{4} + 6\beta_{3} + 30\beta_{2} + 87\beta _1 + 268 Copy content Toggle raw display
ν5\nu^{5}== 14β779β6+45β536β4+54β3+133β2+652β1+956 14\beta_{7} - 79\beta_{6} + 45\beta_{5} - 36\beta_{4} + 54\beta_{3} + 133\beta_{2} + 652\beta _1 + 956 Copy content Toggle raw display
ν6\nu^{6}== 128β7548β6+266β5133β4+353β3+951β2+3189β1+7538 128\beta_{7} - 548\beta_{6} + 266\beta_{5} - 133\beta_{4} + 353\beta_{3} + 951\beta_{2} + 3189\beta _1 + 7538 Copy content Toggle raw display
ν7\nu^{7}== 860β73858β6+1852β51258β4+2456β3+5030β2++36204 860 \beta_{7} - 3858 \beta_{6} + 1852 \beta_{5} - 1258 \beta_{4} + 2456 \beta_{3} + 5030 \beta_{2} + \cdots + 36204 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
6.03341
4.85207
1.76920
0.954235
−1.16661
−3.05234
−3.57019
−3.81977
−5.03341 −4.21852 17.3352 5.00000 21.2335 −19.9088 −46.9881 −9.20409 −25.1671
1.2 −3.85207 8.45088 6.83843 5.00000 −32.5534 16.9190 4.47444 44.4174 −19.2603
1.3 −0.769202 −0.0181662 −7.40833 5.00000 0.0139735 10.0918 11.8521 −26.9997 −3.84601
1.4 0.0457645 −10.2193 −7.99791 5.00000 −0.467681 −33.8594 −0.732137 77.4338 0.228823
1.5 2.16661 8.59146 −3.30580 5.00000 18.6143 9.86011 −24.4953 46.8131 10.8331
1.6 4.05234 −8.94300 8.42146 5.00000 −36.2401 32.7645 1.70790 52.9772 20.2617
1.7 4.57019 4.96142 12.8867 5.00000 22.6746 −18.4259 22.3330 −2.38431 22.8510
1.8 4.81977 1.39521 15.2302 5.00000 6.72460 13.5587 34.8481 −25.0534 24.0989
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
55 1 -1
2323 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 115.4.a.f 8
3.b odd 2 1 1035.4.a.r 8
4.b odd 2 1 1840.4.a.v 8
5.b even 2 1 575.4.a.n 8
5.c odd 4 2 575.4.b.k 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
115.4.a.f 8 1.a even 1 1 trivial
575.4.a.n 8 5.b even 2 1
575.4.b.k 16 5.c odd 4 2
1035.4.a.r 8 3.b odd 2 1
1840.4.a.v 8 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T286T2735T26+249T25+170T242565T23+1916T22+2802T2132 T_{2}^{8} - 6T_{2}^{7} - 35T_{2}^{6} + 249T_{2}^{5} + 170T_{2}^{4} - 2565T_{2}^{3} + 1916T_{2}^{2} + 2802T_{2} - 132 acting on S4new(Γ0(115))S_{4}^{\mathrm{new}}(\Gamma_0(115)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T86T7+132 T^{8} - 6 T^{7} + \cdots - 132 Copy content Toggle raw display
33 T8187T6++3520 T^{8} - 187 T^{6} + \cdots + 3520 Copy content Toggle raw display
55 (T5)8 (T - 5)^{8} Copy content Toggle raw display
77 T8+9289584128 T^{8} + \cdots - 9289584128 Copy content Toggle raw display
1111 T8+11345758080 T^{8} + \cdots - 11345758080 Copy content Toggle raw display
1313 T8+5251923133176 T^{8} + \cdots - 5251923133176 Copy content Toggle raw display
1717 T8++52834929586560 T^{8} + \cdots + 52834929586560 Copy content Toggle raw display
1919 T8+54772847726720 T^{8} + \cdots - 54772847726720 Copy content Toggle raw display
2323 (T23)8 (T - 23)^{8} Copy content Toggle raw display
2929 T8++12 ⁣ ⁣00 T^{8} + \cdots + 12\!\cdots\!00 Copy content Toggle raw display
3131 T8++74 ⁣ ⁣00 T^{8} + \cdots + 74\!\cdots\!00 Copy content Toggle raw display
3737 T8+15 ⁣ ⁣64 T^{8} + \cdots - 15\!\cdots\!64 Copy content Toggle raw display
4141 T8+18 ⁣ ⁣22 T^{8} + \cdots - 18\!\cdots\!22 Copy content Toggle raw display
4343 T8++10 ⁣ ⁣00 T^{8} + \cdots + 10\!\cdots\!00 Copy content Toggle raw display
4747 T8+30 ⁣ ⁣80 T^{8} + \cdots - 30\!\cdots\!80 Copy content Toggle raw display
5353 T8+62 ⁣ ⁣56 T^{8} + \cdots - 62\!\cdots\!56 Copy content Toggle raw display
5959 T8++10 ⁣ ⁣00 T^{8} + \cdots + 10\!\cdots\!00 Copy content Toggle raw display
6161 T8+94 ⁣ ⁣32 T^{8} + \cdots - 94\!\cdots\!32 Copy content Toggle raw display
6767 T8+27 ⁣ ⁣80 T^{8} + \cdots - 27\!\cdots\!80 Copy content Toggle raw display
7171 T8++30 ⁣ ⁣20 T^{8} + \cdots + 30\!\cdots\!20 Copy content Toggle raw display
7373 T8+59 ⁣ ⁣16 T^{8} + \cdots - 59\!\cdots\!16 Copy content Toggle raw display
7979 T8++11 ⁣ ⁣40 T^{8} + \cdots + 11\!\cdots\!40 Copy content Toggle raw display
8383 T8++84 ⁣ ⁣48 T^{8} + \cdots + 84\!\cdots\!48 Copy content Toggle raw display
8989 T8++13 ⁣ ⁣20 T^{8} + \cdots + 13\!\cdots\!20 Copy content Toggle raw display
9797 T8++12 ⁣ ⁣44 T^{8} + \cdots + 12\!\cdots\!44 Copy content Toggle raw display
show more
show less