Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [115,4,Mod(1,115)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(115, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("115.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 115.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−5.03341 | −4.21852 | 17.3352 | 5.00000 | 21.2335 | −19.9088 | −46.9881 | −9.20409 | −25.1671 | ||||||||||||||||||||||||||||||||||||||||||
1.2 | −3.85207 | 8.45088 | 6.83843 | 5.00000 | −32.5534 | 16.9190 | 4.47444 | 44.4174 | −19.2603 | |||||||||||||||||||||||||||||||||||||||||||
1.3 | −0.769202 | −0.0181662 | −7.40833 | 5.00000 | 0.0139735 | 10.0918 | 11.8521 | −26.9997 | −3.84601 | |||||||||||||||||||||||||||||||||||||||||||
1.4 | 0.0457645 | −10.2193 | −7.99791 | 5.00000 | −0.467681 | −33.8594 | −0.732137 | 77.4338 | 0.228823 | |||||||||||||||||||||||||||||||||||||||||||
1.5 | 2.16661 | 8.59146 | −3.30580 | 5.00000 | 18.6143 | 9.86011 | −24.4953 | 46.8131 | 10.8331 | |||||||||||||||||||||||||||||||||||||||||||
1.6 | 4.05234 | −8.94300 | 8.42146 | 5.00000 | −36.2401 | 32.7645 | 1.70790 | 52.9772 | 20.2617 | |||||||||||||||||||||||||||||||||||||||||||
1.7 | 4.57019 | 4.96142 | 12.8867 | 5.00000 | 22.6746 | −18.4259 | 22.3330 | −2.38431 | 22.8510 | |||||||||||||||||||||||||||||||||||||||||||
1.8 | 4.81977 | 1.39521 | 15.2302 | 5.00000 | 6.72460 | 13.5587 | 34.8481 | −25.0534 | 24.0989 | |||||||||||||||||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 115.4.a.f | ✓ | 8 |
3.b | odd | 2 | 1 | 1035.4.a.r | 8 | ||
4.b | odd | 2 | 1 | 1840.4.a.v | 8 | ||
5.b | even | 2 | 1 | 575.4.a.n | 8 | ||
5.c | odd | 4 | 2 | 575.4.b.k | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
115.4.a.f | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
575.4.a.n | 8 | 5.b | even | 2 | 1 | ||
575.4.b.k | 16 | 5.c | odd | 4 | 2 | ||
1035.4.a.r | 8 | 3.b | odd | 2 | 1 | ||
1840.4.a.v | 8 | 4.b | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .