Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [115,5,Mod(47,115)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(115, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([1, 0]))
N = Newforms(chi, 5, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("115.47");
S:= CuspForms(chi, 5);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 115 = 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 115.f (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(11.8875457546\) |
Analytic rank: | \(0\) |
Dimension: | \(88\) |
Relative dimension: | \(44\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
47.1 | −5.45879 | − | 5.45879i | 0.249588 | − | 0.249588i | 43.5967i | 18.7380 | + | 16.5495i | −2.72490 | 19.4401 | + | 19.4401i | 150.645 | − | 150.645i | 80.8754i | −11.9468 | − | 192.627i | ||||||
47.2 | −5.33319 | − | 5.33319i | −7.23554 | + | 7.23554i | 40.8858i | −24.4965 | − | 4.99232i | 77.1770 | 29.3451 | + | 29.3451i | 132.721 | − | 132.721i | − | 23.7062i | 104.019 | + | 157.269i | |||||
47.3 | −4.97771 | − | 4.97771i | 7.01798 | − | 7.01798i | 33.5552i | −23.4643 | + | 8.62722i | −69.8670 | −45.7084 | − | 45.7084i | 87.3849 | − | 87.3849i | − | 17.5042i | 159.742 | + | 73.8545i | |||||
47.4 | −4.97086 | − | 4.97086i | 2.56662 | − | 2.56662i | 33.4190i | 6.66462 | − | 24.0953i | −25.5166 | 17.2314 | + | 17.2314i | 86.5873 | − | 86.5873i | 67.8250i | −152.903 | + | 86.6455i | ||||||
47.5 | −4.73356 | − | 4.73356i | −10.2373 | + | 10.2373i | 28.8132i | 11.3791 | − | 22.2602i | 96.9182 | −46.2071 | − | 46.2071i | 60.6523 | − | 60.6523i | − | 128.606i | −159.234 | + | 51.5063i | |||||
47.6 | −4.33895 | − | 4.33895i | −0.812388 | + | 0.812388i | 21.6530i | 24.9780 | + | 1.04909i | 7.04982 | −60.2203 | − | 60.2203i | 24.5280 | − | 24.5280i | 79.6801i | −103.826 | − | 112.930i | ||||||
47.7 | −4.30136 | − | 4.30136i | 10.0667 | − | 10.0667i | 21.0033i | 7.80587 | + | 23.7501i | −86.6013 | 36.0694 | + | 36.0694i | 21.5211 | − | 21.5211i | − | 121.679i | 68.5819 | − | 135.734i | |||||
47.8 | −4.20795 | − | 4.20795i | 9.21285 | − | 9.21285i | 19.4137i | −8.64878 | − | 23.4563i | −77.5344 | 16.5187 | + | 16.5187i | 14.3646 | − | 14.3646i | − | 88.7533i | −62.3093 | + | 135.097i | |||||
47.9 | −4.08601 | − | 4.08601i | −10.8237 | + | 10.8237i | 17.3909i | 16.5685 | + | 18.7212i | 88.4518 | 35.7857 | + | 35.7857i | 5.68317 | − | 5.68317i | − | 153.307i | 8.79606 | − | 144.194i | |||||
47.10 | −3.82088 | − | 3.82088i | −3.62979 | + | 3.62979i | 13.1983i | −11.2115 | + | 22.3451i | 27.7380 | −9.87428 | − | 9.87428i | −10.7050 | + | 10.7050i | 54.6493i | 128.216 | − | 42.5403i | ||||||
47.11 | −3.55253 | − | 3.55253i | −5.80472 | + | 5.80472i | 9.24088i | −21.4504 | − | 12.8406i | 41.2428 | 2.81474 | + | 2.81474i | −24.0119 | + | 24.0119i | 13.6105i | 30.5864 | + | 121.820i | ||||||
47.12 | −2.95338 | − | 2.95338i | 0.0137449 | − | 0.0137449i | 1.44491i | 21.7668 | − | 12.2965i | −0.0811878 | 52.4860 | + | 52.4860i | −42.9867 | + | 42.9867i | 80.9996i | −100.602 | − | 27.9694i | ||||||
47.13 | −2.86409 | − | 2.86409i | 9.27176 | − | 9.27176i | 0.406037i | 24.7873 | − | 3.25454i | −53.1103 | −31.1339 | − | 31.1339i | −44.6625 | + | 44.6625i | − | 90.9310i | −80.3142 | − | 61.6717i | |||||
47.14 | −2.39187 | − | 2.39187i | 3.09239 | − | 3.09239i | − | 4.55787i | −24.9722 | + | 1.17796i | −14.7932 | 52.6653 | + | 52.6653i | −49.1719 | + | 49.1719i | 61.8743i | 62.5480 | + | 56.9129i | |||||
47.15 | −2.19710 | − | 2.19710i | −7.89548 | + | 7.89548i | − | 6.34549i | 12.9495 | − | 21.3848i | 34.6943 | 18.7701 | + | 18.7701i | −49.0953 | + | 49.0953i | − | 43.6771i | −75.4360 | + | 18.5332i | ||||
47.16 | −2.04029 | − | 2.04029i | 2.48006 | − | 2.48006i | − | 7.67444i | −14.0131 | − | 20.7035i | −10.1201 | −49.5729 | − | 49.5729i | −48.3027 | + | 48.3027i | 68.6986i | −13.6504 | + | 70.8318i | |||||
47.17 | −1.82478 | − | 1.82478i | 3.91359 | − | 3.91359i | − | 9.34035i | −0.467365 | + | 24.9956i | −14.2829 | −5.47905 | − | 5.47905i | −46.2406 | + | 46.2406i | 50.3677i | 46.4644 | − | 44.7587i | |||||
47.18 | −1.60759 | − | 1.60759i | −11.9434 | + | 11.9434i | − | 10.8313i | −22.7256 | + | 10.4187i | 38.4002 | −60.8173 | − | 60.8173i | −43.1337 | + | 43.1337i | − | 204.290i | 53.2823 | + | 19.7844i | ||||
47.19 | −1.05609 | − | 1.05609i | 11.5301 | − | 11.5301i | − | 13.7694i | −24.8276 | + | 2.93067i | −24.3536 | 12.8452 | + | 12.8452i | −31.4390 | + | 31.4390i | − | 184.888i | 29.3151 | + | 23.1251i | ||||
47.20 | −0.148728 | − | 0.148728i | 10.5922 | − | 10.5922i | − | 15.9558i | 9.50761 | − | 23.1215i | −3.15072 | 0.0244290 | + | 0.0244290i | −4.75271 | + | 4.75271i | − | 143.391i | −4.85286 | + | 2.02477i | ||||
See all 88 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 115.5.f.a | ✓ | 88 |
5.c | odd | 4 | 1 | inner | 115.5.f.a | ✓ | 88 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
115.5.f.a | ✓ | 88 | 1.a | even | 1 | 1 | trivial |
115.5.f.a | ✓ | 88 | 5.c | odd | 4 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{5}^{\mathrm{new}}(115, [\chi])\).