Properties

Label 1152.1.b.a
Level $1152$
Weight $1$
Character orbit 1152.b
Self dual yes
Analytic conductor $0.575$
Analytic rank $0$
Dimension $1$
Projective image $D_{2}$
CM/RM discs -4, -8, 8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1152,1,Mod(703,1152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1152, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1152.703");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1152.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.574922894553\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 128)
Projective image: \(D_{2}\)
Projective field: Galois closure of \(\Q(\zeta_{8})\)
Artin image: $D_4$
Artin field: Galois closure of 4.0.4608.1
Stark unit: Root of $x^{4} - 340x^{3} + 102x^{2} - 340x + 1$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 2 q^{17} + q^{25} - 2 q^{41} + q^{49} - 2 q^{73} + 2 q^{89} - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(641\) \(901\)
\(\chi(n)\) \(1\) \(0\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
703.1
0
0 0 0 0 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)
8.b even 2 1 RM by \(\Q(\sqrt{2}) \)
8.d odd 2 1 CM by \(\Q(\sqrt{-2}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1152.1.b.a 1
3.b odd 2 1 128.1.d.a 1
4.b odd 2 1 CM 1152.1.b.a 1
8.b even 2 1 RM 1152.1.b.a 1
8.d odd 2 1 CM 1152.1.b.a 1
12.b even 2 1 128.1.d.a 1
15.d odd 2 1 3200.1.g.a 1
15.e even 4 2 3200.1.e.a 2
16.e even 4 2 2304.1.g.b 1
16.f odd 4 2 2304.1.g.b 1
24.f even 2 1 128.1.d.a 1
24.h odd 2 1 128.1.d.a 1
48.i odd 4 2 256.1.c.a 1
48.k even 4 2 256.1.c.a 1
60.h even 2 1 3200.1.g.a 1
60.l odd 4 2 3200.1.e.a 2
96.o even 8 4 1024.1.f.b 2
96.p odd 8 4 1024.1.f.b 2
120.i odd 2 1 3200.1.g.a 1
120.m even 2 1 3200.1.g.a 1
120.q odd 4 2 3200.1.e.a 2
120.w even 4 2 3200.1.e.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
128.1.d.a 1 3.b odd 2 1
128.1.d.a 1 12.b even 2 1
128.1.d.a 1 24.f even 2 1
128.1.d.a 1 24.h odd 2 1
256.1.c.a 1 48.i odd 4 2
256.1.c.a 1 48.k even 4 2
1024.1.f.b 2 96.o even 8 4
1024.1.f.b 2 96.p odd 8 4
1152.1.b.a 1 1.a even 1 1 trivial
1152.1.b.a 1 4.b odd 2 1 CM
1152.1.b.a 1 8.b even 2 1 RM
1152.1.b.a 1 8.d odd 2 1 CM
2304.1.g.b 1 16.e even 4 2
2304.1.g.b 1 16.f odd 4 2
3200.1.e.a 2 15.e even 4 2
3200.1.e.a 2 60.l odd 4 2
3200.1.e.a 2 120.q odd 4 2
3200.1.e.a 2 120.w even 4 2
3200.1.g.a 1 15.d odd 2 1
3200.1.g.a 1 60.h even 2 1
3200.1.g.a 1 120.i odd 2 1
3200.1.g.a 1 120.m even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} \) acting on \(S_{1}^{\mathrm{new}}(1152, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T - 2 \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T \) Copy content Toggle raw display
$37$ \( T \) Copy content Toggle raw display
$41$ \( T + 2 \) Copy content Toggle raw display
$43$ \( T \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T \) Copy content Toggle raw display
$67$ \( T \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T + 2 \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T - 2 \) Copy content Toggle raw display
$97$ \( T + 2 \) Copy content Toggle raw display
show more
show less