Properties

Label 1152.2.k.c.289.4
Level $1152$
Weight $2$
Character 1152.289
Analytic conductor $9.199$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1152,2,Mod(289,1152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1152, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1152.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1152.k (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.19876631285\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.18939904.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 14x^{6} - 28x^{5} + 43x^{4} - 44x^{3} + 30x^{2} - 12x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 289.4
Root \(0.500000 - 0.0297061i\) of defining polynomial
Character \(\chi\) \(=\) 1152.289
Dual form 1152.2.k.c.865.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.74912 - 1.74912i) q^{5} +2.55765i q^{7} +(0.473626 - 0.473626i) q^{11} +(-2.88784 - 2.88784i) q^{13} +6.44549 q^{17} +(4.55765 + 4.55765i) q^{19} -2.82843i q^{23} -1.11882i q^{25} +(-3.07931 - 3.07931i) q^{29} +6.55765 q^{31} +(4.47363 + 4.47363i) q^{35} +(2.72922 - 2.72922i) q^{37} -0.788632i q^{41} +(0.389604 - 0.389604i) q^{43} -2.82843 q^{47} +0.458440 q^{49} +(-2.57754 + 2.57754i) q^{53} -1.65685i q^{55} +(4.00000 - 4.00000i) q^{59} +(4.38607 + 4.38607i) q^{61} -10.1023 q^{65} +(2.11882 + 2.11882i) q^{67} +5.11529i q^{71} -14.7721i q^{73} +(1.21137 + 1.21137i) q^{77} -6.32000 q^{79} +(0.641669 + 0.641669i) q^{83} +(11.2739 - 11.2739i) q^{85} -6.31724i q^{89} +(7.38607 - 7.38607i) q^{91} +15.9437 q^{95} +12.6533 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{11} + 8 q^{19} - 16 q^{29} + 24 q^{31} + 24 q^{35} + 16 q^{37} + 8 q^{43} - 8 q^{49} + 16 q^{53} + 32 q^{59} - 16 q^{61} + 16 q^{65} + 16 q^{67} + 16 q^{77} - 24 q^{79} - 40 q^{83} + 16 q^{85}+ \cdots + 48 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(641\) \(901\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.74912 1.74912i 0.782229 0.782229i −0.197977 0.980207i \(-0.563437\pi\)
0.980207 + 0.197977i \(0.0634373\pi\)
\(6\) 0 0
\(7\) 2.55765i 0.966700i 0.875427 + 0.483350i \(0.160580\pi\)
−0.875427 + 0.483350i \(0.839420\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.473626 0.473626i 0.142804 0.142804i −0.632091 0.774894i \(-0.717803\pi\)
0.774894 + 0.632091i \(0.217803\pi\)
\(12\) 0 0
\(13\) −2.88784 2.88784i −0.800943 0.800943i 0.182300 0.983243i \(-0.441646\pi\)
−0.983243 + 0.182300i \(0.941646\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.44549 1.56326 0.781630 0.623742i \(-0.214389\pi\)
0.781630 + 0.623742i \(0.214389\pi\)
\(18\) 0 0
\(19\) 4.55765 + 4.55765i 1.04560 + 1.04560i 0.998910 + 0.0466864i \(0.0148661\pi\)
0.0466864 + 0.998910i \(0.485134\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.82843i 0.589768i −0.955533 0.294884i \(-0.904719\pi\)
0.955533 0.294884i \(-0.0952810\pi\)
\(24\) 0 0
\(25\) 1.11882i 0.223765i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.07931 3.07931i −0.571813 0.571813i 0.360821 0.932635i \(-0.382496\pi\)
−0.932635 + 0.360821i \(0.882496\pi\)
\(30\) 0 0
\(31\) 6.55765 1.17779 0.588894 0.808210i \(-0.299563\pi\)
0.588894 + 0.808210i \(0.299563\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.47363 + 4.47363i 0.756181 + 0.756181i
\(36\) 0 0
\(37\) 2.72922 2.72922i 0.448681 0.448681i −0.446235 0.894916i \(-0.647235\pi\)
0.894916 + 0.446235i \(0.147235\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.788632i 0.123164i −0.998102 0.0615818i \(-0.980385\pi\)
0.998102 0.0615818i \(-0.0196145\pi\)
\(42\) 0 0
\(43\) 0.389604 0.389604i 0.0594141 0.0594141i −0.676775 0.736190i \(-0.736623\pi\)
0.736190 + 0.676775i \(0.236623\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.82843 −0.412568 −0.206284 0.978492i \(-0.566137\pi\)
−0.206284 + 0.978492i \(0.566137\pi\)
\(48\) 0 0
\(49\) 0.458440 0.0654915
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −2.57754 + 2.57754i −0.354053 + 0.354053i −0.861615 0.507562i \(-0.830547\pi\)
0.507562 + 0.861615i \(0.330547\pi\)
\(54\) 0 0
\(55\) 1.65685i 0.223410i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.00000 4.00000i 0.520756 0.520756i −0.397044 0.917800i \(-0.629964\pi\)
0.917800 + 0.397044i \(0.129964\pi\)
\(60\) 0 0
\(61\) 4.38607 + 4.38607i 0.561579 + 0.561579i 0.929756 0.368177i \(-0.120018\pi\)
−0.368177 + 0.929756i \(0.620018\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −10.1023 −1.25304
\(66\) 0 0
\(67\) 2.11882 + 2.11882i 0.258856 + 0.258856i 0.824589 0.565733i \(-0.191407\pi\)
−0.565733 + 0.824589i \(0.691407\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.11529i 0.607074i 0.952820 + 0.303537i \(0.0981676\pi\)
−0.952820 + 0.303537i \(0.901832\pi\)
\(72\) 0 0
\(73\) 14.7721i 1.72895i −0.502676 0.864475i \(-0.667651\pi\)
0.502676 0.864475i \(-0.332349\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.21137 + 1.21137i 0.138048 + 0.138048i
\(78\) 0 0
\(79\) −6.32000 −0.711055 −0.355528 0.934666i \(-0.615699\pi\)
−0.355528 + 0.934666i \(0.615699\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0.641669 + 0.641669i 0.0704323 + 0.0704323i 0.741445 0.671013i \(-0.234141\pi\)
−0.671013 + 0.741445i \(0.734141\pi\)
\(84\) 0 0
\(85\) 11.2739 11.2739i 1.22283 1.22283i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.31724i 0.669626i −0.942285 0.334813i \(-0.891327\pi\)
0.942285 0.334813i \(-0.108673\pi\)
\(90\) 0 0
\(91\) 7.38607 7.38607i 0.774271 0.774271i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 15.9437 1.63579
\(96\) 0 0
\(97\) 12.6533 1.28475 0.642375 0.766390i \(-0.277949\pi\)
0.642375 + 0.766390i \(0.277949\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 7.52480 7.52480i 0.748745 0.748745i −0.225498 0.974244i \(-0.572401\pi\)
0.974244 + 0.225498i \(0.0724010\pi\)
\(102\) 0 0
\(103\) 3.33686i 0.328790i −0.986395 0.164395i \(-0.947433\pi\)
0.986395 0.164395i \(-0.0525672\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −14.0625 + 14.0625i −1.35948 + 1.35948i −0.484918 + 0.874560i \(0.661151\pi\)
−0.874560 + 0.484918i \(0.838849\pi\)
\(108\) 0 0
\(109\) −2.76901 2.76901i −0.265224 0.265224i 0.561949 0.827172i \(-0.310052\pi\)
−0.827172 + 0.561949i \(0.810052\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2.23765 −0.210500 −0.105250 0.994446i \(-0.533564\pi\)
−0.105250 + 0.994446i \(0.533564\pi\)
\(114\) 0 0
\(115\) −4.94725 4.94725i −0.461334 0.461334i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 16.4853i 1.51120i
\(120\) 0 0
\(121\) 10.5514i 0.959214i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 6.78863 + 6.78863i 0.607194 + 0.607194i
\(126\) 0 0
\(127\) 12.2145 1.08386 0.541931 0.840423i \(-0.317693\pi\)
0.541931 + 0.840423i \(0.317693\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −3.77568 3.77568i −0.329883 0.329883i 0.522659 0.852542i \(-0.324940\pi\)
−0.852542 + 0.522659i \(0.824940\pi\)
\(132\) 0 0
\(133\) −11.6569 + 11.6569i −1.01078 + 1.01078i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 5.10587i 0.436224i 0.975924 + 0.218112i \(0.0699898\pi\)
−0.975924 + 0.218112i \(0.930010\pi\)
\(138\) 0 0
\(139\) −11.7757 + 11.7757i −0.998800 + 0.998800i −0.999999 0.00119925i \(-0.999618\pi\)
0.00119925 + 0.999999i \(0.499618\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.73551 −0.228755
\(144\) 0 0
\(145\) −10.7721 −0.894578
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −7.90774 + 7.90774i −0.647827 + 0.647827i −0.952467 0.304640i \(-0.901464\pi\)
0.304640 + 0.952467i \(0.401464\pi\)
\(150\) 0 0
\(151\) 14.6506i 1.19225i 0.802893 + 0.596123i \(0.203293\pi\)
−0.802893 + 0.596123i \(0.796707\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 11.4701 11.4701i 0.921300 0.921300i
\(156\) 0 0
\(157\) 3.15196 + 3.15196i 0.251553 + 0.251553i 0.821607 0.570054i \(-0.193078\pi\)
−0.570054 + 0.821607i \(0.693078\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 7.23412 0.570128
\(162\) 0 0
\(163\) −5.50490 5.50490i −0.431177 0.431177i 0.457852 0.889029i \(-0.348619\pi\)
−0.889029 + 0.457852i \(0.848619\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 20.1814i 1.56168i −0.624730 0.780841i \(-0.714791\pi\)
0.624730 0.780841i \(-0.285209\pi\)
\(168\) 0 0
\(169\) 3.67923i 0.283018i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4.35322 + 4.35322i 0.330969 + 0.330969i 0.852955 0.521985i \(-0.174808\pi\)
−0.521985 + 0.852955i \(0.674808\pi\)
\(174\) 0 0
\(175\) 2.86156 0.216313
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −13.2833 13.2833i −0.992843 0.992843i 0.00713130 0.999975i \(-0.497730\pi\)
−0.999975 + 0.00713130i \(0.997730\pi\)
\(180\) 0 0
\(181\) −6.34628 + 6.34628i −0.471715 + 0.471715i −0.902469 0.430754i \(-0.858248\pi\)
0.430754 + 0.902469i \(0.358248\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 9.54745i 0.701943i
\(186\) 0 0
\(187\) 3.05275 3.05275i 0.223239 0.223239i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −5.60058 −0.405243 −0.202622 0.979257i \(-0.564946\pi\)
−0.202622 + 0.979257i \(0.564946\pi\)
\(192\) 0 0
\(193\) −19.4514 −1.40014 −0.700071 0.714074i \(-0.746848\pi\)
−0.700071 + 0.714074i \(0.746848\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.23793 1.23793i 0.0881988 0.0881988i −0.661631 0.749830i \(-0.730135\pi\)
0.749830 + 0.661631i \(0.230135\pi\)
\(198\) 0 0
\(199\) 0.993710i 0.0704422i 0.999380 + 0.0352211i \(0.0112135\pi\)
−0.999380 + 0.0352211i \(0.988786\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 7.87579 7.87579i 0.552772 0.552772i
\(204\) 0 0
\(205\) −1.37941 1.37941i −0.0963422 0.0963422i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 4.31724 0.298630
\(210\) 0 0
\(211\) −4.22432 4.22432i −0.290814 0.290814i 0.546588 0.837402i \(-0.315927\pi\)
−0.837402 + 0.546588i \(0.815927\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.36293i 0.0929509i
\(216\) 0 0
\(217\) 16.7721i 1.13857i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −18.6135 18.6135i −1.25208 1.25208i
\(222\) 0 0
\(223\) −23.7659 −1.59148 −0.795740 0.605639i \(-0.792918\pi\)
−0.795740 + 0.605639i \(0.792918\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −0.641669 0.641669i −0.0425891 0.0425891i 0.685492 0.728081i \(-0.259587\pi\)
−0.728081 + 0.685492i \(0.759587\pi\)
\(228\) 0 0
\(229\) −5.34275 + 5.34275i −0.353059 + 0.353059i −0.861246 0.508188i \(-0.830316\pi\)
0.508188 + 0.861246i \(0.330316\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 23.2271i 1.52166i 0.648954 + 0.760828i \(0.275207\pi\)
−0.648954 + 0.760828i \(0.724793\pi\)
\(234\) 0 0
\(235\) −4.94725 + 4.94725i −0.322723 + 0.322723i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −26.9213 −1.74140 −0.870698 0.491817i \(-0.836333\pi\)
−0.870698 + 0.491817i \(0.836333\pi\)
\(240\) 0 0
\(241\) −10.3494 −0.666664 −0.333332 0.942809i \(-0.608173\pi\)
−0.333332 + 0.942809i \(0.608173\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0.801866 0.801866i 0.0512293 0.0512293i
\(246\) 0 0
\(247\) 26.3235i 1.67492i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −9.75696 + 9.75696i −0.615854 + 0.615854i −0.944465 0.328611i \(-0.893419\pi\)
0.328611 + 0.944465i \(0.393419\pi\)
\(252\) 0 0
\(253\) −1.33962 1.33962i −0.0842209 0.0842209i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −16.9965 −1.06021 −0.530105 0.847932i \(-0.677848\pi\)
−0.530105 + 0.847932i \(0.677848\pi\)
\(258\) 0 0
\(259\) 6.98038 + 6.98038i 0.433740 + 0.433740i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 29.9929i 1.84944i −0.380643 0.924722i \(-0.624297\pi\)
0.380643 0.924722i \(-0.375703\pi\)
\(264\) 0 0
\(265\) 9.01686i 0.553901i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 20.6003 + 20.6003i 1.25602 + 1.25602i 0.952976 + 0.303046i \(0.0980037\pi\)
0.303046 + 0.952976i \(0.401996\pi\)
\(270\) 0 0
\(271\) −26.6506 −1.61891 −0.809453 0.587184i \(-0.800236\pi\)
−0.809453 + 0.587184i \(0.800236\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.529904 0.529904i −0.0319544 0.0319544i
\(276\) 0 0
\(277\) −12.1220 + 12.1220i −0.728338 + 0.728338i −0.970289 0.241951i \(-0.922213\pi\)
0.241951 + 0.970289i \(0.422213\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.76588i 0.164999i 0.996591 + 0.0824993i \(0.0262902\pi\)
−0.996591 + 0.0824993i \(0.973710\pi\)
\(282\) 0 0
\(283\) −4.48528 + 4.48528i −0.266622 + 0.266622i −0.827738 0.561115i \(-0.810372\pi\)
0.561115 + 0.827738i \(0.310372\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.01704 0.119062
\(288\) 0 0
\(289\) 24.5443 1.44378
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −8.20793 + 8.20793i −0.479512 + 0.479512i −0.904976 0.425463i \(-0.860111\pi\)
0.425463 + 0.904976i \(0.360111\pi\)
\(294\) 0 0
\(295\) 13.9929i 0.814700i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −8.16804 + 8.16804i −0.472370 + 0.472370i
\(300\) 0 0
\(301\) 0.996470 + 0.996470i 0.0574356 + 0.0574356i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 15.3435 0.878567
\(306\) 0 0
\(307\) −10.4549 10.4549i −0.596693 0.596693i 0.342738 0.939431i \(-0.388646\pi\)
−0.939431 + 0.342738i \(0.888646\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 15.0761i 0.854885i 0.904043 + 0.427442i \(0.140585\pi\)
−0.904043 + 0.427442i \(0.859415\pi\)
\(312\) 0 0
\(313\) 23.0027i 1.30019i −0.759852 0.650096i \(-0.774729\pi\)
0.759852 0.650096i \(-0.225271\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6.75892 6.75892i −0.379618 0.379618i 0.491346 0.870964i \(-0.336505\pi\)
−0.870964 + 0.491346i \(0.836505\pi\)
\(318\) 0 0
\(319\) −2.91688 −0.163314
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 29.3763 + 29.3763i 1.63454 + 1.63454i
\(324\) 0 0
\(325\) −3.23099 + 3.23099i −0.179223 + 0.179223i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 7.23412i 0.398830i
\(330\) 0 0
\(331\) 19.6631 19.6631i 1.08078 1.08078i 0.0843464 0.996436i \(-0.473120\pi\)
0.996436 0.0843464i \(-0.0268802\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 7.41215 0.404969
\(336\) 0 0
\(337\) 3.00980 0.163954 0.0819771 0.996634i \(-0.473877\pi\)
0.0819771 + 0.996634i \(0.473877\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 3.10587 3.10587i 0.168192 0.168192i
\(342\) 0 0
\(343\) 19.0761i 1.03001i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6.27521 6.27521i 0.336871 0.336871i −0.518317 0.855188i \(-0.673441\pi\)
0.855188 + 0.518317i \(0.173441\pi\)
\(348\) 0 0
\(349\) 4.74255 + 4.74255i 0.253863 + 0.253863i 0.822552 0.568690i \(-0.192549\pi\)
−0.568690 + 0.822552i \(0.692549\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 8.75882 0.466185 0.233093 0.972455i \(-0.425116\pi\)
0.233093 + 0.972455i \(0.425116\pi\)
\(354\) 0 0
\(355\) 8.94725 + 8.94725i 0.474871 + 0.474871i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 32.7917i 1.73068i 0.501184 + 0.865341i \(0.332898\pi\)
−0.501184 + 0.865341i \(0.667102\pi\)
\(360\) 0 0
\(361\) 22.5443i 1.18654i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −25.8382 25.8382i −1.35243 1.35243i
\(366\) 0 0
\(367\) 20.6435 1.07758 0.538791 0.842439i \(-0.318881\pi\)
0.538791 + 0.842439i \(0.318881\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −6.59245 6.59245i −0.342263 0.342263i
\(372\) 0 0
\(373\) 16.6167 16.6167i 0.860378 0.860378i −0.131004 0.991382i \(-0.541820\pi\)
0.991382 + 0.131004i \(0.0418200\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 17.7851i 0.915979i
\(378\) 0 0
\(379\) −7.77844 + 7.77844i −0.399552 + 0.399552i −0.878075 0.478523i \(-0.841172\pi\)
0.478523 + 0.878075i \(0.341172\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 17.2037 0.879070 0.439535 0.898225i \(-0.355143\pi\)
0.439535 + 0.898225i \(0.355143\pi\)
\(384\) 0 0
\(385\) 4.23765 0.215971
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −23.8515 + 23.8515i −1.20932 + 1.20932i −0.238069 + 0.971248i \(0.576514\pi\)
−0.971248 + 0.238069i \(0.923486\pi\)
\(390\) 0 0
\(391\) 18.2306i 0.921961i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −11.0544 + 11.0544i −0.556208 + 0.556208i
\(396\) 0 0
\(397\) 10.2673 + 10.2673i 0.515299 + 0.515299i 0.916145 0.400847i \(-0.131284\pi\)
−0.400847 + 0.916145i \(0.631284\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −32.2274 −1.60936 −0.804681 0.593708i \(-0.797663\pi\)
−0.804681 + 0.593708i \(0.797663\pi\)
\(402\) 0 0
\(403\) −18.9374 18.9374i −0.943341 0.943341i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.58526i 0.128146i
\(408\) 0 0
\(409\) 11.5702i 0.572110i 0.958213 + 0.286055i \(0.0923440\pi\)
−0.958213 + 0.286055i \(0.907656\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 10.2306 + 10.2306i 0.503414 + 0.503414i
\(414\) 0 0
\(415\) 2.24471 0.110188
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 6.74717 + 6.74717i 0.329621 + 0.329621i 0.852442 0.522822i \(-0.175121\pi\)
−0.522822 + 0.852442i \(0.675121\pi\)
\(420\) 0 0
\(421\) 17.2239 17.2239i 0.839443 0.839443i −0.149343 0.988785i \(-0.547716\pi\)
0.988785 + 0.149343i \(0.0477158\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 7.21137i 0.349803i
\(426\) 0 0
\(427\) −11.2180 + 11.2180i −0.542879 + 0.542879i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −40.7088 −1.96087 −0.980437 0.196832i \(-0.936935\pi\)
−0.980437 + 0.196832i \(0.936935\pi\)
\(432\) 0 0
\(433\) 7.31371 0.351474 0.175737 0.984437i \(-0.443769\pi\)
0.175737 + 0.984437i \(0.443769\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 12.8910 12.8910i 0.616659 0.616659i
\(438\) 0 0
\(439\) 17.7122i 0.845356i 0.906280 + 0.422678i \(0.138910\pi\)
−0.906280 + 0.422678i \(0.861090\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 15.6944 15.6944i 0.745664 0.745664i −0.227997 0.973662i \(-0.573218\pi\)
0.973662 + 0.227997i \(0.0732178\pi\)
\(444\) 0 0
\(445\) −11.0496 11.0496i −0.523801 0.523801i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 28.3400 1.33745 0.668723 0.743511i \(-0.266841\pi\)
0.668723 + 0.743511i \(0.266841\pi\)
\(450\) 0 0
\(451\) −0.373517 0.373517i −0.0175882 0.0175882i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 25.8382i 1.21131i
\(456\) 0 0
\(457\) 17.3396i 0.811113i −0.914070 0.405557i \(-0.867078\pi\)
0.914070 0.405557i \(-0.132922\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1.69284 1.69284i −0.0788434 0.0788434i 0.666585 0.745429i \(-0.267755\pi\)
−0.745429 + 0.666585i \(0.767755\pi\)
\(462\) 0 0
\(463\) 2.70238 0.125590 0.0627951 0.998026i \(-0.479999\pi\)
0.0627951 + 0.998026i \(0.479999\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −17.1136 17.1136i −0.791924 0.791924i 0.189883 0.981807i \(-0.439189\pi\)
−0.981807 + 0.189883i \(0.939189\pi\)
\(468\) 0 0
\(469\) −5.41921 + 5.41921i −0.250236 + 0.250236i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0.369053i 0.0169691i
\(474\) 0 0
\(475\) 5.09921 5.09921i 0.233968 0.233968i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 22.2251 1.01549 0.507745 0.861508i \(-0.330479\pi\)
0.507745 + 0.861508i \(0.330479\pi\)
\(480\) 0 0
\(481\) −15.7631 −0.718735
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 22.1322 22.1322i 1.00497 1.00497i
\(486\) 0 0
\(487\) 13.9839i 0.633672i −0.948480 0.316836i \(-0.897380\pi\)
0.948480 0.316836i \(-0.102620\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 7.23412 7.23412i 0.326471 0.326471i −0.524772 0.851243i \(-0.675849\pi\)
0.851243 + 0.524772i \(0.175849\pi\)
\(492\) 0 0
\(493\) −19.8476 19.8476i −0.893893 0.893893i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −13.0831 −0.586858
\(498\) 0 0
\(499\) −2.59078 2.59078i −0.115979 0.115979i 0.646735 0.762715i \(-0.276134\pi\)
−0.762715 + 0.646735i \(0.776134\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 39.6443i 1.76765i 0.467817 + 0.883825i \(0.345041\pi\)
−0.467817 + 0.883825i \(0.654959\pi\)
\(504\) 0 0
\(505\) 26.3235i 1.17138i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 20.2875 + 20.2875i 0.899229 + 0.899229i 0.995368 0.0961393i \(-0.0306494\pi\)
−0.0961393 + 0.995368i \(0.530649\pi\)
\(510\) 0 0
\(511\) 37.7819 1.67137
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −5.83655 5.83655i −0.257189 0.257189i
\(516\) 0 0
\(517\) −1.33962 + 1.33962i −0.0589162 + 0.0589162i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 23.1784i 1.01546i −0.861515 0.507732i \(-0.830484\pi\)
0.861515 0.507732i \(-0.169516\pi\)
\(522\) 0 0
\(523\) 5.78550 5.78550i 0.252982 0.252982i −0.569210 0.822192i \(-0.692751\pi\)
0.822192 + 0.569210i \(0.192751\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 42.2672 1.84119
\(528\) 0 0
\(529\) 15.0000 0.652174
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −2.27744 + 2.27744i −0.0986470 + 0.0986470i
\(534\) 0 0
\(535\) 49.1941i 2.12685i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.217129 0.217129i 0.00935241 0.00935241i
\(540\) 0 0
\(541\) −4.55175 4.55175i −0.195695 0.195695i 0.602457 0.798152i \(-0.294189\pi\)
−0.798152 + 0.602457i \(0.794189\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −9.68667 −0.414931
\(546\) 0 0
\(547\) 27.7355 + 27.7355i 1.18588 + 1.18588i 0.978195 + 0.207689i \(0.0665942\pi\)
0.207689 + 0.978195i \(0.433406\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 28.0688i 1.19577i
\(552\) 0 0
\(553\) 16.1643i 0.687377i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −1.17538 1.17538i −0.0498026 0.0498026i 0.681767 0.731569i \(-0.261212\pi\)
−0.731569 + 0.681767i \(0.761212\pi\)
\(558\) 0 0
\(559\) −2.25023 −0.0951745
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −28.7346 28.7346i −1.21102 1.21102i −0.970692 0.240326i \(-0.922746\pi\)
−0.240326 0.970692i \(-0.577254\pi\)
\(564\) 0 0
\(565\) −3.91391 + 3.91391i −0.164659 + 0.164659i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 27.0004i 1.13191i −0.824435 0.565957i \(-0.808507\pi\)
0.824435 0.565957i \(-0.191493\pi\)
\(570\) 0 0
\(571\) 14.8284 14.8284i 0.620550 0.620550i −0.325122 0.945672i \(-0.605405\pi\)
0.945672 + 0.325122i \(0.105405\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −3.16451 −0.131969
\(576\) 0 0
\(577\) −37.6372 −1.56686 −0.783429 0.621481i \(-0.786531\pi\)
−0.783429 + 0.621481i \(0.786531\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1.64116 + 1.64116i −0.0680869 + 0.0680869i
\(582\) 0 0
\(583\) 2.44158i 0.101120i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −31.2574 + 31.2574i −1.29013 + 1.29013i −0.355429 + 0.934703i \(0.615665\pi\)
−0.934703 + 0.355429i \(0.884335\pi\)
\(588\) 0 0
\(589\) 29.8874 + 29.8874i 1.23149 + 1.23149i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 3.59611 0.147675 0.0738373 0.997270i \(-0.476475\pi\)
0.0738373 + 0.997270i \(0.476475\pi\)
\(594\) 0 0
\(595\) 28.8347 + 28.8347i 1.18211 + 1.18211i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 22.0296i 0.900104i −0.893002 0.450052i \(-0.851405\pi\)
0.893002 0.450052i \(-0.148595\pi\)
\(600\) 0 0
\(601\) 10.7721i 0.439405i −0.975567 0.219703i \(-0.929491\pi\)
0.975567 0.219703i \(-0.0705087\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 18.4556 + 18.4556i 0.750325 + 0.750325i
\(606\) 0 0
\(607\) 5.47453 0.222204 0.111102 0.993809i \(-0.464562\pi\)
0.111102 + 0.993809i \(0.464562\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 8.16804 + 8.16804i 0.330444 + 0.330444i
\(612\) 0 0
\(613\) 10.5049 10.5049i 0.424289 0.424289i −0.462389 0.886677i \(-0.653007\pi\)
0.886677 + 0.462389i \(0.153007\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 22.2235i 0.894686i −0.894363 0.447343i \(-0.852370\pi\)
0.894363 0.447343i \(-0.147630\pi\)
\(618\) 0 0
\(619\) −11.6398 + 11.6398i −0.467843 + 0.467843i −0.901215 0.433372i \(-0.857324\pi\)
0.433372 + 0.901215i \(0.357324\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 16.1573 0.647327
\(624\) 0 0
\(625\) 29.3424 1.17369
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 17.5912 17.5912i 0.701405 0.701405i
\(630\) 0 0
\(631\) 4.06977i 0.162015i −0.996713 0.0810075i \(-0.974186\pi\)
0.996713 0.0810075i \(-0.0258138\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 21.3646 21.3646i 0.847828 0.847828i
\(636\) 0 0
\(637\) −1.32390 1.32390i −0.0524549 0.0524549i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 8.41958 0.332553 0.166277 0.986079i \(-0.446826\pi\)
0.166277 + 0.986079i \(0.446826\pi\)
\(642\) 0 0
\(643\) 7.37275 + 7.37275i 0.290753 + 0.290753i 0.837378 0.546625i \(-0.184088\pi\)
−0.546625 + 0.837378i \(0.684088\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 11.6132i 0.456560i 0.973595 + 0.228280i \(0.0733102\pi\)
−0.973595 + 0.228280i \(0.926690\pi\)
\(648\) 0 0
\(649\) 3.78901i 0.148731i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.93049 1.93049i −0.0755458 0.0755458i 0.668324 0.743870i \(-0.267012\pi\)
−0.743870 + 0.668324i \(0.767012\pi\)
\(654\) 0 0
\(655\) −13.2082 −0.516088
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 22.3102 + 22.3102i 0.869081 + 0.869081i 0.992371 0.123290i \(-0.0393444\pi\)
−0.123290 + 0.992371i \(0.539344\pi\)
\(660\) 0 0
\(661\) −10.7033 + 10.7033i −0.416311 + 0.416311i −0.883930 0.467619i \(-0.845112\pi\)
0.467619 + 0.883930i \(0.345112\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 40.7784i 1.58132i
\(666\) 0 0
\(667\) −8.70960 + 8.70960i −0.337237 + 0.337237i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 4.15472 0.160391
\(672\) 0 0
\(673\) −20.6345 −0.795401 −0.397700 0.917515i \(-0.630192\pi\)
−0.397700 + 0.917515i \(0.630192\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 26.8246 26.8246i 1.03095 1.03095i 0.0314484 0.999505i \(-0.489988\pi\)
0.999505 0.0314484i \(-0.0100120\pi\)
\(678\) 0 0
\(679\) 32.3627i 1.24197i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 12.9026 12.9026i 0.493705 0.493705i −0.415766 0.909472i \(-0.636487\pi\)
0.909472 + 0.415766i \(0.136487\pi\)
\(684\) 0 0
\(685\) 8.93077 + 8.93077i 0.341227 + 0.341227i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 14.8871 0.567152
\(690\) 0 0
\(691\) 21.3923 + 21.3923i 0.813803 + 0.813803i 0.985202 0.171399i \(-0.0548286\pi\)
−0.171399 + 0.985202i \(0.554829\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 41.1941i 1.56258i
\(696\) 0 0
\(697\) 5.08312i 0.192537i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 14.2040 + 14.2040i 0.536479 + 0.536479i 0.922493 0.386014i \(-0.126148\pi\)
−0.386014 + 0.922493i \(0.626148\pi\)
\(702\) 0 0
\(703\) 24.8776 0.938278
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 19.2458 + 19.2458i 0.723812 + 0.723812i
\(708\) 0 0
\(709\) 29.5474 29.5474i 1.10968 1.10968i 0.116485 0.993192i \(-0.462837\pi\)
0.993192 0.116485i \(-0.0371626\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 18.5478i 0.694622i
\(714\) 0 0
\(715\) −4.78473 + 4.78473i −0.178939 + 0.178939i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −28.3683 −1.05796 −0.528979 0.848635i \(-0.677425\pi\)
−0.528979 + 0.848635i \(0.677425\pi\)
\(720\) 0 0
\(721\) 8.53450 0.317841
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −3.44521 + 3.44521i −0.127952 + 0.127952i
\(726\) 0 0
\(727\) 20.4843i 0.759722i −0.925044 0.379861i \(-0.875972\pi\)
0.925044 0.379861i \(-0.124028\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 2.51119 2.51119i 0.0928797 0.0928797i
\(732\) 0 0
\(733\) −33.9961 33.9961i −1.25567 1.25567i −0.953138 0.302536i \(-0.902167\pi\)
−0.302536 0.953138i \(-0.597833\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.00706 0.0739310
\(738\) 0 0
\(739\) −15.1645 15.1645i −0.557836 0.557836i 0.370855 0.928691i \(-0.379065\pi\)
−0.928691 + 0.370855i \(0.879065\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 2.17431i 0.0797677i 0.999204 + 0.0398839i \(0.0126988\pi\)
−0.999204 + 0.0398839i \(0.987301\pi\)
\(744\) 0 0
\(745\) 27.6631i 1.01350i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −35.9670 35.9670i −1.31421 1.31421i
\(750\) 0 0
\(751\) 29.8980 1.09099 0.545497 0.838113i \(-0.316341\pi\)
0.545497 + 0.838113i \(0.316341\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 25.6256 + 25.6256i 0.932610 + 0.932610i
\(756\) 0 0
\(757\) 15.3294 15.3294i 0.557157 0.557157i −0.371340 0.928497i \(-0.621101\pi\)
0.928497 + 0.371340i \(0.121101\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 4.29449i 0.155675i 0.996966 + 0.0778375i \(0.0248015\pi\)
−0.996966 + 0.0778375i \(0.975198\pi\)
\(762\) 0 0
\(763\) 7.08216 7.08216i 0.256392 0.256392i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −23.1027 −0.834191
\(768\) 0 0
\(769\) 33.8819 1.22181 0.610907 0.791703i \(-0.290805\pi\)
0.610907 + 0.791703i \(0.290805\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −35.0230 + 35.0230i −1.25969 + 1.25969i −0.308450 + 0.951240i \(0.599810\pi\)
−0.951240 + 0.308450i \(0.900190\pi\)
\(774\) 0 0
\(775\) 7.33686i 0.263548i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.59431 3.59431i 0.128779 0.128779i
\(780\) 0 0
\(781\) 2.42274 + 2.42274i 0.0866923 + 0.0866923i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 11.0263 0.393545
\(786\) 0 0
\(787\) −24.1090 24.1090i −0.859393 0.859393i 0.131873 0.991267i \(-0.457901\pi\)
−0.991267 + 0.131873i \(0.957901\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 5.72312i 0.203491i
\(792\) 0 0
\(793\) 25.3326i 0.899585i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −28.7722 28.7722i −1.01917 1.01917i −0.999813 0.0193524i \(-0.993840\pi\)
−0.0193524 0.999813i \(-0.506160\pi\)
\(798\) 0 0
\(799\) −18.2306 −0.644952
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −6.99647 6.99647i −0.246900 0.246900i
\(804\) 0 0
\(805\) 12.6533 12.6533i 0.445971 0.445971i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 10.9926i 0.386478i 0.981152 + 0.193239i \(0.0618993\pi\)
−0.981152 + 0.193239i \(0.938101\pi\)
\(810\) 0 0
\(811\) 15.0259 15.0259i 0.527630 0.527630i −0.392235 0.919865i \(-0.628298\pi\)
0.919865 + 0.392235i \(0.128298\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −19.2574 −0.674558
\(816\) 0 0
\(817\) 3.55136 0.124246
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −21.2536 + 21.2536i −0.741756 + 0.741756i −0.972916 0.231159i \(-0.925748\pi\)
0.231159 + 0.972916i \(0.425748\pi\)
\(822\) 0 0
\(823\) 55.0851i 1.92015i −0.279751 0.960073i \(-0.590252\pi\)
0.279751 0.960073i \(-0.409748\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −24.4290 + 24.4290i −0.849480 + 0.849480i −0.990068 0.140588i \(-0.955101\pi\)
0.140588 + 0.990068i \(0.455101\pi\)
\(828\) 0 0
\(829\) 21.9235 + 21.9235i 0.761436 + 0.761436i 0.976582 0.215146i \(-0.0690227\pi\)
−0.215146 + 0.976582i \(0.569023\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 2.95487 0.102380
\(834\) 0 0
\(835\) −35.2996 35.2996i −1.22159 1.22159i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 5.14195i 0.177520i 0.996053 + 0.0887599i \(0.0282904\pi\)
−0.996053 + 0.0887599i \(0.971710\pi\)
\(840\) 0 0
\(841\) 10.0357i 0.346059i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 6.43541 + 6.43541i 0.221385 + 0.221385i
\(846\) 0 0
\(847\) −26.9867 −0.927272
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −7.71940 7.71940i −0.264618 0.264618i
\(852\) 0 0
\(853\) −13.0857 + 13.0857i −0.448046 + 0.448046i −0.894704 0.446659i \(-0.852614\pi\)
0.446659 + 0.894704i \(0.352614\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 22.8878i 0.781833i 0.920426 + 0.390916i \(0.127842\pi\)
−0.920426 + 0.390916i \(0.872158\pi\)
\(858\) 0 0
\(859\) 25.1225 25.1225i 0.857169 0.857169i −0.133834 0.991004i \(-0.542729\pi\)
0.991004 + 0.133834i \(0.0427290\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 43.9296 1.49538 0.747691 0.664047i \(-0.231163\pi\)
0.747691 + 0.664047i \(0.231163\pi\)
\(864\) 0 0
\(865\) 15.2286 0.517788
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −2.99331 + 2.99331i −0.101541 + 0.101541i
\(870\) 0 0
\(871\) 12.2376i 0.414657i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −17.3629 + 17.3629i −0.586974 + 0.586974i
\(876\) 0 0
\(877\) −15.2575 15.2575i −0.515208 0.515208i 0.400910 0.916117i \(-0.368694\pi\)
−0.916117 + 0.400910i \(0.868694\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −21.6686 −0.730035 −0.365018 0.931001i \(-0.618937\pi\)
−0.365018 + 0.931001i \(0.618937\pi\)
\(882\) 0 0
\(883\) 0.0590385 + 0.0590385i 0.00198680 + 0.00198680i 0.708099 0.706113i \(-0.249553\pi\)
−0.706113 + 0.708099i \(0.749553\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 30.8043i 1.03431i −0.855892 0.517154i \(-0.826991\pi\)
0.855892 0.517154i \(-0.173009\pi\)
\(888\) 0 0
\(889\) 31.2404i 1.04777i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −12.8910 12.8910i −0.431380 0.431380i
\(894\) 0 0
\(895\) −46.4682 −1.55326
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −20.1930 20.1930i −0.673475 0.673475i
\(900\) 0 0
\(901\) −16.6135 + 16.6135i −0.553477 + 0.553477i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 22.2008i 0.737979i
\(906\) 0 0
\(907\) −35.0170 + 35.0170i −1.16272 + 1.16272i −0.178844 + 0.983878i \(0.557236\pi\)
−0.983878 + 0.178844i \(0.942764\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −0.0829331 −0.00274770 −0.00137385 0.999999i \(-0.500437\pi\)
−0.00137385 + 0.999999i \(0.500437\pi\)
\(912\) 0 0
\(913\) 0.607822 0.0201160
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 9.65685 9.65685i 0.318897 0.318897i
\(918\) 0 0
\(919\) 20.1161i 0.663568i 0.943355 + 0.331784i \(0.107650\pi\)
−0.943355 + 0.331784i \(0.892350\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 14.7721 14.7721i 0.486231 0.486231i
\(924\) 0 0
\(925\) −3.05352 3.05352i −0.100399 0.100399i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −8.55098 −0.280549 −0.140274 0.990113i \(-0.544798\pi\)
−0.140274 + 0.990113i \(0.544798\pi\)
\(930\) 0 0
\(931\) 2.08941 + 2.08941i 0.0684776 + 0.0684776i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 10.6792i 0.349248i
\(936\) 0 0
\(937\) 33.5780i 1.09695i 0.836168 + 0.548473i \(0.184791\pi\)
−0.836168 + 0.548473i \(0.815209\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −8.48463 8.48463i −0.276591 0.276591i 0.555156 0.831747i \(-0.312659\pi\)
−0.831747 + 0.555156i \(0.812659\pi\)
\(942\) 0 0
\(943\) −2.23059 −0.0726380
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 17.8571 + 17.8571i 0.580277 + 0.580277i 0.934979 0.354702i \(-0.115418\pi\)
−0.354702 + 0.934979i \(0.615418\pi\)
\(948\) 0 0
\(949\) −42.6596 + 42.6596i −1.38479 + 1.38479i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 3.86469i 0.125190i 0.998039 + 0.0625948i \(0.0199376\pi\)
−0.998039 + 0.0625948i \(0.980062\pi\)
\(954\) 0 0
\(955\) −9.79607 + 9.79607i −0.316993 + 0.316993i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −13.0590 −0.421698
\(960\) 0 0
\(961\) 12.0027 0.387185
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −34.0228 + 34.0228i −1.09523 + 1.09523i
\(966\) 0 0
\(967\) 37.8714i 1.21786i 0.793224 + 0.608930i \(0.208401\pi\)
−0.793224 + 0.608930i \(0.791599\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 2.64873 2.64873i 0.0850017 0.0850017i −0.663327 0.748329i \(-0.730856\pi\)
0.748329 + 0.663327i \(0.230856\pi\)
\(972\) 0 0
\(973\) −30.1180 30.1180i −0.965540 0.965540i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −17.6530 −0.564768 −0.282384 0.959301i \(-0.591125\pi\)
−0.282384 + 0.959301i \(0.591125\pi\)
\(978\) 0 0
\(979\) −2.99201 2.99201i −0.0956250 0.0956250i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 22.3557i 0.713035i −0.934289 0.356518i \(-0.883964\pi\)
0.934289 0.356518i \(-0.116036\pi\)
\(984\) 0 0
\(985\) 4.33057i 0.137983i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.10197 1.10197i −0.0350405 0.0350405i
\(990\) 0 0
\(991\) 17.8769 0.567878 0.283939 0.958842i \(-0.408359\pi\)
0.283939 + 0.958842i \(0.408359\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1.73812 + 1.73812i 0.0551020 + 0.0551020i
\(996\) 0 0
\(997\) −4.28610 + 4.28610i −0.135742 + 0.135742i −0.771713 0.635971i \(-0.780600\pi\)
0.635971 + 0.771713i \(0.280600\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1152.2.k.c.289.4 8
3.2 odd 2 384.2.j.b.289.3 8
4.3 odd 2 1152.2.k.f.289.4 8
8.3 odd 2 576.2.k.b.145.1 8
8.5 even 2 144.2.k.b.109.3 8
12.11 even 2 384.2.j.a.289.1 8
16.3 odd 4 576.2.k.b.433.1 8
16.5 even 4 inner 1152.2.k.c.865.4 8
16.11 odd 4 1152.2.k.f.865.4 8
16.13 even 4 144.2.k.b.37.3 8
24.5 odd 2 48.2.j.a.13.2 8
24.11 even 2 192.2.j.a.145.4 8
32.5 even 8 9216.2.a.bo.1.3 4
32.11 odd 8 9216.2.a.x.1.2 4
32.21 even 8 9216.2.a.y.1.2 4
32.27 odd 8 9216.2.a.bn.1.3 4
48.5 odd 4 384.2.j.b.97.3 8
48.11 even 4 384.2.j.a.97.1 8
48.29 odd 4 48.2.j.a.37.2 yes 8
48.35 even 4 192.2.j.a.49.4 8
96.5 odd 8 3072.2.a.i.1.2 4
96.11 even 8 3072.2.a.n.1.3 4
96.29 odd 8 3072.2.d.f.1537.6 8
96.35 even 8 3072.2.d.i.1537.2 8
96.53 odd 8 3072.2.a.t.1.3 4
96.59 even 8 3072.2.a.o.1.2 4
96.77 odd 8 3072.2.d.f.1537.3 8
96.83 even 8 3072.2.d.i.1537.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
48.2.j.a.13.2 8 24.5 odd 2
48.2.j.a.37.2 yes 8 48.29 odd 4
144.2.k.b.37.3 8 16.13 even 4
144.2.k.b.109.3 8 8.5 even 2
192.2.j.a.49.4 8 48.35 even 4
192.2.j.a.145.4 8 24.11 even 2
384.2.j.a.97.1 8 48.11 even 4
384.2.j.a.289.1 8 12.11 even 2
384.2.j.b.97.3 8 48.5 odd 4
384.2.j.b.289.3 8 3.2 odd 2
576.2.k.b.145.1 8 8.3 odd 2
576.2.k.b.433.1 8 16.3 odd 4
1152.2.k.c.289.4 8 1.1 even 1 trivial
1152.2.k.c.865.4 8 16.5 even 4 inner
1152.2.k.f.289.4 8 4.3 odd 2
1152.2.k.f.865.4 8 16.11 odd 4
3072.2.a.i.1.2 4 96.5 odd 8
3072.2.a.n.1.3 4 96.11 even 8
3072.2.a.o.1.2 4 96.59 even 8
3072.2.a.t.1.3 4 96.53 odd 8
3072.2.d.f.1537.3 8 96.77 odd 8
3072.2.d.f.1537.6 8 96.29 odd 8
3072.2.d.i.1537.2 8 96.35 even 8
3072.2.d.i.1537.7 8 96.83 even 8
9216.2.a.x.1.2 4 32.11 odd 8
9216.2.a.y.1.2 4 32.21 even 8
9216.2.a.bn.1.3 4 32.27 odd 8
9216.2.a.bo.1.3 4 32.5 even 8