Properties

Label 1152.2.r.b.961.1
Level $1152$
Weight $2$
Character 1152.961
Analytic conductor $9.199$
Analytic rank $1$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1152,2,Mod(193,1152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1152, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1152.193");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1152.r (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.19876631285\)
Analytic rank: \(1\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 961.1
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1152.961
Dual form 1152.2.r.b.193.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 1.50000i) q^{3} +(-2.00000 + 3.46410i) q^{7} +(-1.50000 - 2.59808i) q^{9} +(-0.866025 - 0.500000i) q^{11} +(3.46410 - 2.00000i) q^{13} -7.00000 q^{17} +5.00000i q^{19} +(-3.46410 - 6.00000i) q^{21} +(-2.00000 - 3.46410i) q^{23} +(-2.50000 + 4.33013i) q^{25} +5.19615 q^{27} +(3.46410 + 2.00000i) q^{29} +(-4.00000 - 6.92820i) q^{31} +(1.50000 - 0.866025i) q^{33} -8.00000i q^{37} +6.92820i q^{39} +(-1.50000 - 2.59808i) q^{41} +(0.866025 + 0.500000i) q^{43} +(2.00000 - 3.46410i) q^{47} +(-4.50000 - 7.79423i) q^{49} +(6.06218 - 10.5000i) q^{51} -8.00000i q^{53} +(-7.50000 - 4.33013i) q^{57} +(-7.79423 + 4.50000i) q^{59} +12.0000 q^{63} +(2.59808 - 1.50000i) q^{67} +6.92820 q^{69} +8.00000 q^{71} -3.00000 q^{73} +(-4.33013 - 7.50000i) q^{75} +(3.46410 - 2.00000i) q^{77} +(-4.00000 + 6.92820i) q^{79} +(-4.50000 + 7.79423i) q^{81} +(-13.8564 - 8.00000i) q^{83} +(-6.00000 + 3.46410i) q^{87} +6.00000 q^{89} +16.0000i q^{91} +13.8564 q^{93} +(-0.500000 + 0.866025i) q^{97} +3.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{7} - 6 q^{9} - 28 q^{17} - 8 q^{23} - 10 q^{25} - 16 q^{31} + 6 q^{33} - 6 q^{41} + 8 q^{47} - 18 q^{49} - 30 q^{57} + 48 q^{63} + 32 q^{71} - 12 q^{73} - 16 q^{79} - 18 q^{81} - 24 q^{87} + 24 q^{89}+ \cdots - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(641\) \(901\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.866025 + 1.50000i −0.500000 + 0.866025i
\(4\) 0 0
\(5\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(6\) 0 0
\(7\) −2.00000 + 3.46410i −0.755929 + 1.30931i 0.188982 + 0.981981i \(0.439481\pi\)
−0.944911 + 0.327327i \(0.893852\pi\)
\(8\) 0 0
\(9\) −1.50000 2.59808i −0.500000 0.866025i
\(10\) 0 0
\(11\) −0.866025 0.500000i −0.261116 0.150756i 0.363727 0.931505i \(-0.381504\pi\)
−0.624844 + 0.780750i \(0.714837\pi\)
\(12\) 0 0
\(13\) 3.46410 2.00000i 0.960769 0.554700i 0.0643593 0.997927i \(-0.479500\pi\)
0.896410 + 0.443227i \(0.146166\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −7.00000 −1.69775 −0.848875 0.528594i \(-0.822719\pi\)
−0.848875 + 0.528594i \(0.822719\pi\)
\(18\) 0 0
\(19\) 5.00000i 1.14708i 0.819178 + 0.573539i \(0.194430\pi\)
−0.819178 + 0.573539i \(0.805570\pi\)
\(20\) 0 0
\(21\) −3.46410 6.00000i −0.755929 1.30931i
\(22\) 0 0
\(23\) −2.00000 3.46410i −0.417029 0.722315i 0.578610 0.815604i \(-0.303595\pi\)
−0.995639 + 0.0932891i \(0.970262\pi\)
\(24\) 0 0
\(25\) −2.50000 + 4.33013i −0.500000 + 0.866025i
\(26\) 0 0
\(27\) 5.19615 1.00000
\(28\) 0 0
\(29\) 3.46410 + 2.00000i 0.643268 + 0.371391i 0.785872 0.618389i \(-0.212214\pi\)
−0.142605 + 0.989780i \(0.545548\pi\)
\(30\) 0 0
\(31\) −4.00000 6.92820i −0.718421 1.24434i −0.961625 0.274367i \(-0.911532\pi\)
0.243204 0.969975i \(-0.421802\pi\)
\(32\) 0 0
\(33\) 1.50000 0.866025i 0.261116 0.150756i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 8.00000i 1.31519i −0.753371 0.657596i \(-0.771573\pi\)
0.753371 0.657596i \(-0.228427\pi\)
\(38\) 0 0
\(39\) 6.92820i 1.10940i
\(40\) 0 0
\(41\) −1.50000 2.59808i −0.234261 0.405751i 0.724797 0.688963i \(-0.241934\pi\)
−0.959058 + 0.283211i \(0.908600\pi\)
\(42\) 0 0
\(43\) 0.866025 + 0.500000i 0.132068 + 0.0762493i 0.564578 0.825380i \(-0.309039\pi\)
−0.432511 + 0.901629i \(0.642372\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.00000 3.46410i 0.291730 0.505291i −0.682489 0.730896i \(-0.739102\pi\)
0.974219 + 0.225605i \(0.0724358\pi\)
\(48\) 0 0
\(49\) −4.50000 7.79423i −0.642857 1.11346i
\(50\) 0 0
\(51\) 6.06218 10.5000i 0.848875 1.47029i
\(52\) 0 0
\(53\) 8.00000i 1.09888i −0.835532 0.549442i \(-0.814840\pi\)
0.835532 0.549442i \(-0.185160\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −7.50000 4.33013i −0.993399 0.573539i
\(58\) 0 0
\(59\) −7.79423 + 4.50000i −1.01472 + 0.585850i −0.912571 0.408919i \(-0.865906\pi\)
−0.102151 + 0.994769i \(0.532573\pi\)
\(60\) 0 0
\(61\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(62\) 0 0
\(63\) 12.0000 1.51186
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 2.59808 1.50000i 0.317406 0.183254i −0.332830 0.942987i \(-0.608004\pi\)
0.650236 + 0.759733i \(0.274670\pi\)
\(68\) 0 0
\(69\) 6.92820 0.834058
\(70\) 0 0
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 0 0
\(73\) −3.00000 −0.351123 −0.175562 0.984468i \(-0.556174\pi\)
−0.175562 + 0.984468i \(0.556174\pi\)
\(74\) 0 0
\(75\) −4.33013 7.50000i −0.500000 0.866025i
\(76\) 0 0
\(77\) 3.46410 2.00000i 0.394771 0.227921i
\(78\) 0 0
\(79\) −4.00000 + 6.92820i −0.450035 + 0.779484i −0.998388 0.0567635i \(-0.981922\pi\)
0.548352 + 0.836247i \(0.315255\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) 0 0
\(83\) −13.8564 8.00000i −1.52094 0.878114i −0.999695 0.0247060i \(-0.992135\pi\)
−0.521243 0.853408i \(-0.674532\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −6.00000 + 3.46410i −0.643268 + 0.371391i
\(88\) 0 0
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) 16.0000i 1.67726i
\(92\) 0 0
\(93\) 13.8564 1.43684
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −0.500000 + 0.866025i −0.0507673 + 0.0879316i −0.890292 0.455389i \(-0.849500\pi\)
0.839525 + 0.543321i \(0.182833\pi\)
\(98\) 0 0
\(99\) 3.00000i 0.301511i
\(100\) 0 0
\(101\) −13.8564 8.00000i −1.37876 0.796030i −0.386753 0.922183i \(-0.626403\pi\)
−0.992011 + 0.126153i \(0.959737\pi\)
\(102\) 0 0
\(103\) 2.00000 + 3.46410i 0.197066 + 0.341328i 0.947576 0.319531i \(-0.103525\pi\)
−0.750510 + 0.660859i \(0.770192\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 17.0000i 1.64345i −0.569883 0.821726i \(-0.693011\pi\)
0.569883 0.821726i \(-0.306989\pi\)
\(108\) 0 0
\(109\) 16.0000i 1.53252i 0.642529 + 0.766261i \(0.277885\pi\)
−0.642529 + 0.766261i \(0.722115\pi\)
\(110\) 0 0
\(111\) 12.0000 + 6.92820i 1.13899 + 0.657596i
\(112\) 0 0
\(113\) −1.00000 1.73205i −0.0940721 0.162938i 0.815149 0.579252i \(-0.196655\pi\)
−0.909221 + 0.416314i \(0.863322\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −10.3923 6.00000i −0.960769 0.554700i
\(118\) 0 0
\(119\) 14.0000 24.2487i 1.28338 2.22288i
\(120\) 0 0
\(121\) −5.00000 8.66025i −0.454545 0.787296i
\(122\) 0 0
\(123\) 5.19615 0.468521
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −20.0000 −1.77471 −0.887357 0.461084i \(-0.847461\pi\)
−0.887357 + 0.461084i \(0.847461\pi\)
\(128\) 0 0
\(129\) −1.50000 + 0.866025i −0.132068 + 0.0762493i
\(130\) 0 0
\(131\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(132\) 0 0
\(133\) −17.3205 10.0000i −1.50188 0.867110i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.50000 + 2.59808i −0.128154 + 0.221969i −0.922961 0.384893i \(-0.874238\pi\)
0.794808 + 0.606861i \(0.207572\pi\)
\(138\) 0 0
\(139\) 0.866025 0.500000i 0.0734553 0.0424094i −0.462822 0.886451i \(-0.653163\pi\)
0.536278 + 0.844042i \(0.319830\pi\)
\(140\) 0 0
\(141\) 3.46410 + 6.00000i 0.291730 + 0.505291i
\(142\) 0 0
\(143\) −4.00000 −0.334497
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 15.5885 1.28571
\(148\) 0 0
\(149\) 10.3923 6.00000i 0.851371 0.491539i −0.00974235 0.999953i \(-0.503101\pi\)
0.861113 + 0.508413i \(0.169768\pi\)
\(150\) 0 0
\(151\) −6.00000 + 10.3923i −0.488273 + 0.845714i −0.999909 0.0134886i \(-0.995706\pi\)
0.511636 + 0.859202i \(0.329040\pi\)
\(152\) 0 0
\(153\) 10.5000 + 18.1865i 0.848875 + 1.47029i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 6.92820 4.00000i 0.552931 0.319235i −0.197372 0.980329i \(-0.563241\pi\)
0.750303 + 0.661094i \(0.229907\pi\)
\(158\) 0 0
\(159\) 12.0000 + 6.92820i 0.951662 + 0.549442i
\(160\) 0 0
\(161\) 16.0000 1.26098
\(162\) 0 0
\(163\) 16.0000i 1.25322i 0.779334 + 0.626608i \(0.215557\pi\)
−0.779334 + 0.626608i \(0.784443\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −12.0000 20.7846i −0.928588 1.60836i −0.785687 0.618624i \(-0.787690\pi\)
−0.142901 0.989737i \(-0.545643\pi\)
\(168\) 0 0
\(169\) 1.50000 2.59808i 0.115385 0.199852i
\(170\) 0 0
\(171\) 12.9904 7.50000i 0.993399 0.573539i
\(172\) 0 0
\(173\) 10.3923 + 6.00000i 0.790112 + 0.456172i 0.840002 0.542583i \(-0.182554\pi\)
−0.0498898 + 0.998755i \(0.515887\pi\)
\(174\) 0 0
\(175\) −10.0000 17.3205i −0.755929 1.30931i
\(176\) 0 0
\(177\) 15.5885i 1.17170i
\(178\) 0 0
\(179\) 16.0000i 1.19590i 0.801535 + 0.597948i \(0.204017\pi\)
−0.801535 + 0.597948i \(0.795983\pi\)
\(180\) 0 0
\(181\) 20.0000i 1.48659i 0.668965 + 0.743294i \(0.266738\pi\)
−0.668965 + 0.743294i \(0.733262\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 6.06218 + 3.50000i 0.443310 + 0.255945i
\(188\) 0 0
\(189\) −10.3923 + 18.0000i −0.755929 + 1.30931i
\(190\) 0 0
\(191\) −10.0000 + 17.3205i −0.723575 + 1.25327i 0.235983 + 0.971757i \(0.424169\pi\)
−0.959558 + 0.281511i \(0.909164\pi\)
\(192\) 0 0
\(193\) 7.50000 + 12.9904i 0.539862 + 0.935068i 0.998911 + 0.0466572i \(0.0148568\pi\)
−0.459049 + 0.888411i \(0.651810\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 24.0000i 1.70993i 0.518686 + 0.854965i \(0.326421\pi\)
−0.518686 + 0.854965i \(0.673579\pi\)
\(198\) 0 0
\(199\) −4.00000 −0.283552 −0.141776 0.989899i \(-0.545281\pi\)
−0.141776 + 0.989899i \(0.545281\pi\)
\(200\) 0 0
\(201\) 5.19615i 0.366508i
\(202\) 0 0
\(203\) −13.8564 + 8.00000i −0.972529 + 0.561490i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −6.00000 + 10.3923i −0.417029 + 0.722315i
\(208\) 0 0
\(209\) 2.50000 4.33013i 0.172929 0.299521i
\(210\) 0 0
\(211\) −13.8564 + 8.00000i −0.953914 + 0.550743i −0.894295 0.447478i \(-0.852322\pi\)
−0.0596196 + 0.998221i \(0.518989\pi\)
\(212\) 0 0
\(213\) −6.92820 + 12.0000i −0.474713 + 0.822226i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 32.0000 2.17230
\(218\) 0 0
\(219\) 2.59808 4.50000i 0.175562 0.304082i
\(220\) 0 0
\(221\) −24.2487 + 14.0000i −1.63114 + 0.941742i
\(222\) 0 0
\(223\) 2.00000 3.46410i 0.133930 0.231973i −0.791258 0.611482i \(-0.790574\pi\)
0.925188 + 0.379509i \(0.123907\pi\)
\(224\) 0 0
\(225\) 15.0000 1.00000
\(226\) 0 0
\(227\) −16.4545 9.50000i −1.09212 0.630537i −0.157982 0.987442i \(-0.550499\pi\)
−0.934141 + 0.356905i \(0.883832\pi\)
\(228\) 0 0
\(229\) 17.3205 10.0000i 1.14457 0.660819i 0.197013 0.980401i \(-0.436876\pi\)
0.947559 + 0.319582i \(0.103543\pi\)
\(230\) 0 0
\(231\) 6.92820i 0.455842i
\(232\) 0 0
\(233\) −19.0000 −1.24473 −0.622366 0.782727i \(-0.713828\pi\)
−0.622366 + 0.782727i \(0.713828\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −6.92820 12.0000i −0.450035 0.779484i
\(238\) 0 0
\(239\) 6.00000 + 10.3923i 0.388108 + 0.672222i 0.992195 0.124696i \(-0.0397955\pi\)
−0.604087 + 0.796918i \(0.706462\pi\)
\(240\) 0 0
\(241\) −12.5000 + 21.6506i −0.805196 + 1.39464i 0.110963 + 0.993825i \(0.464606\pi\)
−0.916159 + 0.400815i \(0.868727\pi\)
\(242\) 0 0
\(243\) −7.79423 13.5000i −0.500000 0.866025i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 10.0000 + 17.3205i 0.636285 + 1.10208i
\(248\) 0 0
\(249\) 24.0000 13.8564i 1.52094 0.878114i
\(250\) 0 0
\(251\) 9.00000i 0.568075i 0.958813 + 0.284037i \(0.0916740\pi\)
−0.958813 + 0.284037i \(0.908326\pi\)
\(252\) 0 0
\(253\) 4.00000i 0.251478i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 8.50000 + 14.7224i 0.530215 + 0.918360i 0.999379 + 0.0352486i \(0.0112223\pi\)
−0.469163 + 0.883112i \(0.655444\pi\)
\(258\) 0 0
\(259\) 27.7128 + 16.0000i 1.72199 + 0.994192i
\(260\) 0 0
\(261\) 12.0000i 0.742781i
\(262\) 0 0
\(263\) 14.0000 24.2487i 0.863277 1.49524i −0.00547092 0.999985i \(-0.501741\pi\)
0.868748 0.495255i \(-0.164925\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −5.19615 + 9.00000i −0.317999 + 0.550791i
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) −24.0000 −1.45790 −0.728948 0.684569i \(-0.759990\pi\)
−0.728948 + 0.684569i \(0.759990\pi\)
\(272\) 0 0
\(273\) −24.0000 13.8564i −1.45255 0.838628i
\(274\) 0 0
\(275\) 4.33013 2.50000i 0.261116 0.150756i
\(276\) 0 0
\(277\) −3.46410 2.00000i −0.208138 0.120168i 0.392308 0.919834i \(-0.371677\pi\)
−0.600446 + 0.799666i \(0.705010\pi\)
\(278\) 0 0
\(279\) −12.0000 + 20.7846i −0.718421 + 1.24434i
\(280\) 0 0
\(281\) −3.00000 + 5.19615i −0.178965 + 0.309976i −0.941526 0.336939i \(-0.890608\pi\)
0.762561 + 0.646916i \(0.223942\pi\)
\(282\) 0 0
\(283\) −13.8564 + 8.00000i −0.823678 + 0.475551i −0.851683 0.524057i \(-0.824418\pi\)
0.0280052 + 0.999608i \(0.491084\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 12.0000 0.708338
\(288\) 0 0
\(289\) 32.0000 1.88235
\(290\) 0 0
\(291\) −0.866025 1.50000i −0.0507673 0.0879316i
\(292\) 0 0
\(293\) −10.3923 + 6.00000i −0.607125 + 0.350524i −0.771839 0.635818i \(-0.780663\pi\)
0.164714 + 0.986341i \(0.447330\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −4.50000 2.59808i −0.261116 0.150756i
\(298\) 0 0
\(299\) −13.8564 8.00000i −0.801337 0.462652i
\(300\) 0 0
\(301\) −3.46410 + 2.00000i −0.199667 + 0.115278i
\(302\) 0 0
\(303\) 24.0000 13.8564i 1.37876 0.796030i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 21.0000i 1.19853i −0.800549 0.599267i \(-0.795459\pi\)
0.800549 0.599267i \(-0.204541\pi\)
\(308\) 0 0
\(309\) −6.92820 −0.394132
\(310\) 0 0
\(311\) 2.00000 + 3.46410i 0.113410 + 0.196431i 0.917143 0.398559i \(-0.130489\pi\)
−0.803733 + 0.594990i \(0.797156\pi\)
\(312\) 0 0
\(313\) −5.50000 + 9.52628i −0.310878 + 0.538457i −0.978553 0.205996i \(-0.933957\pi\)
0.667674 + 0.744453i \(0.267290\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 17.3205 + 10.0000i 0.972817 + 0.561656i 0.900094 0.435696i \(-0.143498\pi\)
0.0727229 + 0.997352i \(0.476831\pi\)
\(318\) 0 0
\(319\) −2.00000 3.46410i −0.111979 0.193952i
\(320\) 0 0
\(321\) 25.5000 + 14.7224i 1.42327 + 0.821726i
\(322\) 0 0
\(323\) 35.0000i 1.94745i
\(324\) 0 0
\(325\) 20.0000i 1.10940i
\(326\) 0 0
\(327\) −24.0000 13.8564i −1.32720 0.766261i
\(328\) 0 0
\(329\) 8.00000 + 13.8564i 0.441054 + 0.763928i
\(330\) 0 0
\(331\) 13.8564 + 8.00000i 0.761617 + 0.439720i 0.829876 0.557948i \(-0.188411\pi\)
−0.0682590 + 0.997668i \(0.521744\pi\)
\(332\) 0 0
\(333\) −20.7846 + 12.0000i −1.13899 + 0.657596i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −11.5000 19.9186i −0.626445 1.08503i −0.988260 0.152784i \(-0.951176\pi\)
0.361815 0.932250i \(-0.382157\pi\)
\(338\) 0 0
\(339\) 3.46410 0.188144
\(340\) 0 0
\(341\) 8.00000i 0.433224i
\(342\) 0 0
\(343\) 8.00000 0.431959
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7.79423 4.50000i 0.418416 0.241573i −0.275983 0.961162i \(-0.589003\pi\)
0.694399 + 0.719590i \(0.255670\pi\)
\(348\) 0 0
\(349\) −13.8564 8.00000i −0.741716 0.428230i 0.0809766 0.996716i \(-0.474196\pi\)
−0.822693 + 0.568486i \(0.807529\pi\)
\(350\) 0 0
\(351\) 18.0000 10.3923i 0.960769 0.554700i
\(352\) 0 0
\(353\) 0.500000 0.866025i 0.0266123 0.0460939i −0.852413 0.522870i \(-0.824861\pi\)
0.879025 + 0.476776i \(0.158195\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 24.2487 + 42.0000i 1.28338 + 2.22288i
\(358\) 0 0
\(359\) 12.0000 0.633336 0.316668 0.948536i \(-0.397436\pi\)
0.316668 + 0.948536i \(0.397436\pi\)
\(360\) 0 0
\(361\) −6.00000 −0.315789
\(362\) 0 0
\(363\) 17.3205 0.909091
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 12.0000 20.7846i 0.626395 1.08495i −0.361874 0.932227i \(-0.617863\pi\)
0.988269 0.152721i \(-0.0488036\pi\)
\(368\) 0 0
\(369\) −4.50000 + 7.79423i −0.234261 + 0.405751i
\(370\) 0 0
\(371\) 27.7128 + 16.0000i 1.43878 + 0.830679i
\(372\) 0 0
\(373\) 3.46410 2.00000i 0.179364 0.103556i −0.407630 0.913147i \(-0.633645\pi\)
0.586994 + 0.809591i \(0.300311\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 16.0000 0.824042
\(378\) 0 0
\(379\) 25.0000i 1.28416i −0.766636 0.642082i \(-0.778071\pi\)
0.766636 0.642082i \(-0.221929\pi\)
\(380\) 0 0
\(381\) 17.3205 30.0000i 0.887357 1.53695i
\(382\) 0 0
\(383\) −8.00000 13.8564i −0.408781 0.708029i 0.585973 0.810331i \(-0.300713\pi\)
−0.994753 + 0.102302i \(0.967379\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 3.00000i 0.152499i
\(388\) 0 0
\(389\) 3.46410 + 2.00000i 0.175637 + 0.101404i 0.585241 0.810859i \(-0.301000\pi\)
−0.409604 + 0.912263i \(0.634333\pi\)
\(390\) 0 0
\(391\) 14.0000 + 24.2487i 0.708010 + 1.22631i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 8.00000i 0.401508i −0.979642 0.200754i \(-0.935661\pi\)
0.979642 0.200754i \(-0.0643393\pi\)
\(398\) 0 0
\(399\) 30.0000 17.3205i 1.50188 0.867110i
\(400\) 0 0
\(401\) −12.5000 21.6506i −0.624220 1.08118i −0.988691 0.149966i \(-0.952083\pi\)
0.364471 0.931215i \(-0.381250\pi\)
\(402\) 0 0
\(403\) −27.7128 16.0000i −1.38047 0.797017i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4.00000 + 6.92820i −0.198273 + 0.343418i
\(408\) 0 0
\(409\) −5.50000 9.52628i −0.271957 0.471044i 0.697406 0.716677i \(-0.254338\pi\)
−0.969363 + 0.245633i \(0.921004\pi\)
\(410\) 0 0
\(411\) −2.59808 4.50000i −0.128154 0.221969i
\(412\) 0 0
\(413\) 36.0000i 1.77144i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1.73205i 0.0848189i
\(418\) 0 0
\(419\) −13.8564 + 8.00000i −0.676930 + 0.390826i −0.798697 0.601733i \(-0.794477\pi\)
0.121768 + 0.992559i \(0.461144\pi\)
\(420\) 0 0
\(421\) 6.92820 + 4.00000i 0.337660 + 0.194948i 0.659237 0.751935i \(-0.270879\pi\)
−0.321577 + 0.946883i \(0.604213\pi\)
\(422\) 0 0
\(423\) −12.0000 −0.583460
\(424\) 0 0
\(425\) 17.5000 30.3109i 0.848875 1.47029i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 3.46410 6.00000i 0.167248 0.289683i
\(430\) 0 0
\(431\) −36.0000 −1.73406 −0.867029 0.498257i \(-0.833974\pi\)
−0.867029 + 0.498257i \(0.833974\pi\)
\(432\) 0 0
\(433\) −7.00000 −0.336399 −0.168199 0.985753i \(-0.553795\pi\)
−0.168199 + 0.985753i \(0.553795\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 17.3205 10.0000i 0.828552 0.478365i
\(438\) 0 0
\(439\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(440\) 0 0
\(441\) −13.5000 + 23.3827i −0.642857 + 1.11346i
\(442\) 0 0
\(443\) 7.79423 + 4.50000i 0.370315 + 0.213801i 0.673596 0.739100i \(-0.264749\pi\)
−0.303281 + 0.952901i \(0.598082\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 20.7846i 0.983078i
\(448\) 0 0
\(449\) 1.00000 0.0471929 0.0235965 0.999722i \(-0.492488\pi\)
0.0235965 + 0.999722i \(0.492488\pi\)
\(450\) 0 0
\(451\) 3.00000i 0.141264i
\(452\) 0 0
\(453\) −10.3923 18.0000i −0.488273 0.845714i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −9.50000 + 16.4545i −0.444391 + 0.769708i −0.998010 0.0630623i \(-0.979913\pi\)
0.553618 + 0.832771i \(0.313247\pi\)
\(458\) 0 0
\(459\) −36.3731 −1.69775
\(460\) 0 0
\(461\) −31.1769 18.0000i −1.45205 0.838344i −0.453456 0.891279i \(-0.649809\pi\)
−0.998598 + 0.0529352i \(0.983142\pi\)
\(462\) 0 0
\(463\) −4.00000 6.92820i −0.185896 0.321981i 0.757982 0.652275i \(-0.226185\pi\)
−0.943878 + 0.330294i \(0.892852\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 27.0000i 1.24941i 0.780860 + 0.624705i \(0.214781\pi\)
−0.780860 + 0.624705i \(0.785219\pi\)
\(468\) 0 0
\(469\) 12.0000i 0.554109i
\(470\) 0 0
\(471\) 13.8564i 0.638470i
\(472\) 0 0
\(473\) −0.500000 0.866025i −0.0229900 0.0398199i
\(474\) 0 0
\(475\) −21.6506 12.5000i −0.993399 0.573539i
\(476\) 0 0
\(477\) −20.7846 + 12.0000i −0.951662 + 0.549442i
\(478\) 0 0
\(479\) −10.0000 + 17.3205i −0.456912 + 0.791394i −0.998796 0.0490589i \(-0.984378\pi\)
0.541884 + 0.840453i \(0.317711\pi\)
\(480\) 0 0
\(481\) −16.0000 27.7128i −0.729537 1.26360i
\(482\) 0 0
\(483\) −13.8564 + 24.0000i −0.630488 + 1.09204i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 20.0000 0.906287 0.453143 0.891438i \(-0.350303\pi\)
0.453143 + 0.891438i \(0.350303\pi\)
\(488\) 0 0
\(489\) −24.0000 13.8564i −1.08532 0.626608i
\(490\) 0 0
\(491\) 28.5788 16.5000i 1.28974 0.744635i 0.311136 0.950365i \(-0.399290\pi\)
0.978609 + 0.205731i \(0.0659571\pi\)
\(492\) 0 0
\(493\) −24.2487 14.0000i −1.09211 0.630528i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −16.0000 + 27.7128i −0.717698 + 1.24309i
\(498\) 0 0
\(499\) 4.33013 2.50000i 0.193843 0.111915i −0.399937 0.916542i \(-0.630968\pi\)
0.593780 + 0.804627i \(0.297635\pi\)
\(500\) 0 0
\(501\) 41.5692 1.85718
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 2.59808 + 4.50000i 0.115385 + 0.199852i
\(508\) 0 0
\(509\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(510\) 0 0
\(511\) 6.00000 10.3923i 0.265424 0.459728i
\(512\) 0 0
\(513\) 25.9808i 1.14708i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −3.46410 + 2.00000i −0.152351 + 0.0879599i
\(518\) 0 0
\(519\) −18.0000 + 10.3923i −0.790112 + 0.456172i
\(520\) 0 0
\(521\) 3.00000 0.131432 0.0657162 0.997838i \(-0.479067\pi\)
0.0657162 + 0.997838i \(0.479067\pi\)
\(522\) 0 0
\(523\) 16.0000i 0.699631i 0.936819 + 0.349816i \(0.113756\pi\)
−0.936819 + 0.349816i \(0.886244\pi\)
\(524\) 0 0
\(525\) 34.6410 1.51186
\(526\) 0 0
\(527\) 28.0000 + 48.4974i 1.21970 + 2.11258i
\(528\) 0 0
\(529\) 3.50000 6.06218i 0.152174 0.263573i
\(530\) 0 0
\(531\) 23.3827 + 13.5000i 1.01472 + 0.585850i
\(532\) 0 0
\(533\) −10.3923 6.00000i −0.450141 0.259889i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −24.0000 13.8564i −1.03568 0.597948i
\(538\) 0 0
\(539\) 9.00000i 0.387657i
\(540\) 0 0
\(541\) 8.00000i 0.343947i 0.985102 + 0.171973i \(0.0550143\pi\)
−0.985102 + 0.171973i \(0.944986\pi\)
\(542\) 0 0
\(543\) −30.0000 17.3205i −1.28742 0.743294i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 2.59808 + 1.50000i 0.111086 + 0.0641354i 0.554513 0.832175i \(-0.312904\pi\)
−0.443428 + 0.896310i \(0.646238\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −10.0000 + 17.3205i −0.426014 + 0.737878i
\(552\) 0 0
\(553\) −16.0000 27.7128i −0.680389 1.17847i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 28.0000i 1.18640i −0.805056 0.593199i \(-0.797865\pi\)
0.805056 0.593199i \(-0.202135\pi\)
\(558\) 0 0
\(559\) 4.00000 0.169182
\(560\) 0 0
\(561\) −10.5000 + 6.06218i −0.443310 + 0.255945i
\(562\) 0 0
\(563\) −18.1865 + 10.5000i −0.766471 + 0.442522i −0.831614 0.555354i \(-0.812583\pi\)
0.0651433 + 0.997876i \(0.479250\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −18.0000 31.1769i −0.755929 1.30931i
\(568\) 0 0
\(569\) −5.50000 + 9.52628i −0.230572 + 0.399362i −0.957977 0.286846i \(-0.907393\pi\)
0.727405 + 0.686209i \(0.240726\pi\)
\(570\) 0 0
\(571\) 19.9186 11.5000i 0.833567 0.481260i −0.0215055 0.999769i \(-0.506846\pi\)
0.855072 + 0.518509i \(0.173513\pi\)
\(572\) 0 0
\(573\) −17.3205 30.0000i −0.723575 1.25327i
\(574\) 0 0
\(575\) 20.0000 0.834058
\(576\) 0 0
\(577\) 15.0000 0.624458 0.312229 0.950007i \(-0.398924\pi\)
0.312229 + 0.950007i \(0.398924\pi\)
\(578\) 0 0
\(579\) −25.9808 −1.07972
\(580\) 0 0
\(581\) 55.4256 32.0000i 2.29944 1.32758i
\(582\) 0 0
\(583\) −4.00000 + 6.92820i −0.165663 + 0.286937i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 14.7224 + 8.50000i 0.607660 + 0.350833i 0.772049 0.635563i \(-0.219232\pi\)
−0.164389 + 0.986396i \(0.552565\pi\)
\(588\) 0 0
\(589\) 34.6410 20.0000i 1.42736 0.824086i
\(590\) 0 0
\(591\) −36.0000 20.7846i −1.48084 0.854965i
\(592\) 0 0
\(593\) −30.0000 −1.23195 −0.615976 0.787765i \(-0.711238\pi\)
−0.615976 + 0.787765i \(0.711238\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 3.46410 6.00000i 0.141776 0.245564i
\(598\) 0 0
\(599\) −12.0000 20.7846i −0.490307 0.849236i 0.509631 0.860393i \(-0.329782\pi\)
−0.999938 + 0.0111569i \(0.996449\pi\)
\(600\) 0 0
\(601\) −18.5000 + 32.0429i −0.754631 + 1.30706i 0.190927 + 0.981604i \(0.438851\pi\)
−0.945558 + 0.325455i \(0.894483\pi\)
\(602\) 0 0
\(603\) −7.79423 4.50000i −0.317406 0.183254i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −4.00000 6.92820i −0.162355 0.281207i 0.773358 0.633970i \(-0.218576\pi\)
−0.935713 + 0.352763i \(0.885242\pi\)
\(608\) 0 0
\(609\) 27.7128i 1.12298i
\(610\) 0 0
\(611\) 16.0000i 0.647291i
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −6.50000 11.2583i −0.261680 0.453243i 0.705008 0.709199i \(-0.250943\pi\)
−0.966689 + 0.255956i \(0.917610\pi\)
\(618\) 0 0
\(619\) 14.7224 + 8.50000i 0.591744 + 0.341644i 0.765787 0.643094i \(-0.222350\pi\)
−0.174042 + 0.984738i \(0.555683\pi\)
\(620\) 0 0
\(621\) −10.3923 18.0000i −0.417029 0.722315i
\(622\) 0 0
\(623\) −12.0000 + 20.7846i −0.480770 + 0.832718i
\(624\) 0 0
\(625\) −12.5000 21.6506i −0.500000 0.866025i
\(626\) 0 0
\(627\) 4.33013 + 7.50000i 0.172929 + 0.299521i
\(628\) 0 0
\(629\) 56.0000i 2.23287i
\(630\) 0 0
\(631\) 16.0000 0.636950 0.318475 0.947931i \(-0.396829\pi\)
0.318475 + 0.947931i \(0.396829\pi\)
\(632\) 0 0
\(633\) 27.7128i 1.10149i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −31.1769 18.0000i −1.23527 0.713186i
\(638\) 0 0
\(639\) −12.0000 20.7846i −0.474713 0.822226i
\(640\) 0 0
\(641\) 7.50000 12.9904i 0.296232 0.513089i −0.679039 0.734103i \(-0.737603\pi\)
0.975271 + 0.221013i \(0.0709364\pi\)
\(642\) 0 0
\(643\) 38.9711 22.5000i 1.53687 0.887313i 0.537852 0.843039i \(-0.319236\pi\)
0.999019 0.0442744i \(-0.0140976\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −12.0000 −0.471769 −0.235884 0.971781i \(-0.575799\pi\)
−0.235884 + 0.971781i \(0.575799\pi\)
\(648\) 0 0
\(649\) 9.00000 0.353281
\(650\) 0 0
\(651\) −27.7128 + 48.0000i −1.08615 + 1.88127i
\(652\) 0 0
\(653\) −24.2487 + 14.0000i −0.948925 + 0.547862i −0.892747 0.450558i \(-0.851225\pi\)
−0.0561784 + 0.998421i \(0.517892\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 4.50000 + 7.79423i 0.175562 + 0.304082i
\(658\) 0 0
\(659\) 41.5692 + 24.0000i 1.61931 + 0.934907i 0.987099 + 0.160108i \(0.0511843\pi\)
0.632207 + 0.774799i \(0.282149\pi\)
\(660\) 0 0
\(661\) 34.6410 20.0000i 1.34738 0.777910i 0.359502 0.933144i \(-0.382947\pi\)
0.987878 + 0.155235i \(0.0496133\pi\)
\(662\) 0 0
\(663\) 48.4974i 1.88348i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 16.0000i 0.619522i
\(668\) 0 0
\(669\) 3.46410 + 6.00000i 0.133930 + 0.231973i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −7.00000 + 12.1244i −0.269830 + 0.467360i −0.968818 0.247774i \(-0.920301\pi\)
0.698988 + 0.715134i \(0.253634\pi\)
\(674\) 0 0
\(675\) −12.9904 + 22.5000i −0.500000 + 0.866025i
\(676\) 0 0
\(677\) −6.92820 4.00000i −0.266272 0.153732i 0.360920 0.932597i \(-0.382463\pi\)
−0.627192 + 0.778864i \(0.715796\pi\)
\(678\) 0 0
\(679\) −2.00000 3.46410i −0.0767530 0.132940i
\(680\) 0 0
\(681\) 28.5000 16.4545i 1.09212 0.630537i
\(682\) 0 0
\(683\) 31.0000i 1.18618i 0.805135 + 0.593091i \(0.202093\pi\)
−0.805135 + 0.593091i \(0.797907\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 34.6410i 1.32164i
\(688\) 0 0
\(689\) −16.0000 27.7128i −0.609551 1.05577i
\(690\) 0 0
\(691\) −27.7128 16.0000i −1.05425 0.608669i −0.130410 0.991460i \(-0.541629\pi\)
−0.923835 + 0.382791i \(0.874963\pi\)
\(692\) 0 0
\(693\) −10.3923 6.00000i −0.394771 0.227921i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 10.5000 + 18.1865i 0.397716 + 0.688864i
\(698\) 0 0
\(699\) 16.4545 28.5000i 0.622366 1.07797i
\(700\) 0 0
\(701\) 20.0000i 0.755390i −0.925930 0.377695i \(-0.876717\pi\)
0.925930 0.377695i \(-0.123283\pi\)
\(702\) 0 0
\(703\) 40.0000 1.50863
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 55.4256 32.0000i 2.08450 1.20348i
\(708\) 0 0
\(709\) 6.92820 + 4.00000i 0.260194 + 0.150223i 0.624423 0.781086i \(-0.285334\pi\)
−0.364229 + 0.931309i \(0.618667\pi\)
\(710\) 0 0
\(711\) 24.0000 0.900070
\(712\) 0 0
\(713\) −16.0000 + 27.7128i −0.599205 + 1.03785i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −20.7846 −0.776215
\(718\) 0 0
\(719\) −24.0000 −0.895049 −0.447524 0.894272i \(-0.647694\pi\)
−0.447524 + 0.894272i \(0.647694\pi\)
\(720\) 0 0
\(721\) −16.0000 −0.595871
\(722\) 0 0
\(723\) −21.6506 37.5000i −0.805196 1.39464i
\(724\) 0 0
\(725\) −17.3205 + 10.0000i −0.643268 + 0.371391i
\(726\) 0 0
\(727\) 14.0000 24.2487i 0.519231 0.899335i −0.480519 0.876984i \(-0.659552\pi\)
0.999750 0.0223506i \(-0.00711500\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) 0 0
\(731\) −6.06218 3.50000i −0.224218 0.129452i
\(732\) 0 0
\(733\) 38.1051 22.0000i 1.40744 0.812589i 0.412303 0.911047i \(-0.364724\pi\)
0.995141 + 0.0984580i \(0.0313910\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −3.00000 −0.110506
\(738\) 0 0
\(739\) 35.0000i 1.28750i −0.765238 0.643748i \(-0.777379\pi\)
0.765238 0.643748i \(-0.222621\pi\)
\(740\) 0 0
\(741\) −34.6410 −1.27257
\(742\) 0 0
\(743\) 10.0000 + 17.3205i 0.366864 + 0.635428i 0.989073 0.147423i \(-0.0470980\pi\)
−0.622209 + 0.782851i \(0.713765\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 48.0000i 1.75623i
\(748\) 0 0
\(749\) 58.8897 + 34.0000i 2.15178 + 1.24233i
\(750\) 0 0
\(751\) 8.00000 + 13.8564i 0.291924 + 0.505627i 0.974265 0.225407i \(-0.0723712\pi\)
−0.682341 + 0.731034i \(0.739038\pi\)
\(752\) 0 0
\(753\) −13.5000 7.79423i −0.491967 0.284037i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 36.0000i 1.30844i −0.756303 0.654221i \(-0.772997\pi\)
0.756303 0.654221i \(-0.227003\pi\)
\(758\) 0 0
\(759\) −6.00000 3.46410i −0.217786 0.125739i
\(760\) 0 0
\(761\) −13.0000 22.5167i −0.471250 0.816228i 0.528209 0.849114i \(-0.322864\pi\)
−0.999459 + 0.0328858i \(0.989530\pi\)
\(762\) 0 0
\(763\) −55.4256 32.0000i −2.00654 1.15848i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −18.0000 + 31.1769i −0.649942 + 1.12573i
\(768\) 0 0
\(769\) 25.0000 + 43.3013i 0.901523 + 1.56148i 0.825518 + 0.564376i \(0.190883\pi\)
0.0760054 + 0.997107i \(0.475783\pi\)
\(770\) 0 0
\(771\) −29.4449 −1.06043
\(772\) 0 0
\(773\) 4.00000i 0.143870i −0.997409 0.0719350i \(-0.977083\pi\)
0.997409 0.0719350i \(-0.0229174\pi\)
\(774\) 0 0
\(775\) 40.0000 1.43684
\(776\) 0 0
\(777\) −48.0000 + 27.7128i −1.72199 + 0.994192i
\(778\) 0 0
\(779\) 12.9904 7.50000i 0.465429 0.268715i
\(780\) 0 0
\(781\) −6.92820 4.00000i −0.247911 0.143131i
\(782\) 0 0
\(783\) 18.0000 + 10.3923i 0.643268 + 0.371391i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −41.5692 + 24.0000i −1.48178 + 0.855508i −0.999786 0.0206657i \(-0.993421\pi\)
−0.481996 + 0.876173i \(0.660088\pi\)
\(788\) 0 0
\(789\) 24.2487 + 42.0000i 0.863277 + 1.49524i
\(790\) 0 0
\(791\) 8.00000 0.284447
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −6.92820 + 4.00000i −0.245410 + 0.141687i −0.617661 0.786445i \(-0.711919\pi\)
0.372251 + 0.928132i \(0.378586\pi\)
\(798\) 0 0
\(799\) −14.0000 + 24.2487i −0.495284 + 0.857858i
\(800\) 0 0
\(801\) −9.00000 15.5885i −0.317999 0.550791i
\(802\) 0 0
\(803\) 2.59808 + 1.50000i 0.0916841 + 0.0529339i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −29.0000 −1.01959 −0.509793 0.860297i \(-0.670278\pi\)
−0.509793 + 0.860297i \(0.670278\pi\)
\(810\) 0 0
\(811\) 31.0000i 1.08856i −0.838905 0.544279i \(-0.816803\pi\)
0.838905 0.544279i \(-0.183197\pi\)
\(812\) 0 0
\(813\) 20.7846 36.0000i 0.728948 1.26258i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −2.50000 + 4.33013i −0.0874639 + 0.151492i
\(818\) 0 0
\(819\) 41.5692 24.0000i 1.45255 0.838628i
\(820\) 0 0
\(821\) −31.1769 18.0000i −1.08808 0.628204i −0.155017 0.987912i \(-0.549543\pi\)
−0.933065 + 0.359708i \(0.882876\pi\)
\(822\) 0 0
\(823\) −8.00000 13.8564i −0.278862 0.483004i 0.692240 0.721668i \(-0.256624\pi\)
−0.971102 + 0.238664i \(0.923291\pi\)
\(824\) 0 0
\(825\) 8.66025i 0.301511i
\(826\) 0 0
\(827\) 16.0000i 0.556375i 0.960527 + 0.278187i \(0.0897336\pi\)
−0.960527 + 0.278187i \(0.910266\pi\)
\(828\) 0 0
\(829\) 28.0000i 0.972480i 0.873825 + 0.486240i \(0.161632\pi\)
−0.873825 + 0.486240i \(0.838368\pi\)
\(830\) 0 0
\(831\) 6.00000 3.46410i 0.208138 0.120168i
\(832\) 0 0
\(833\) 31.5000 + 54.5596i 1.09141 + 1.89038i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −20.7846 36.0000i −0.718421 1.24434i
\(838\) 0 0
\(839\) −12.0000 + 20.7846i −0.414286 + 0.717564i −0.995353 0.0962912i \(-0.969302\pi\)
0.581067 + 0.813856i \(0.302635\pi\)
\(840\) 0 0
\(841\) −6.50000 11.2583i −0.224138 0.388218i
\(842\) 0 0
\(843\) −5.19615 9.00000i −0.178965 0.309976i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 40.0000 1.37442
\(848\) 0 0
\(849\) 27.7128i 0.951101i
\(850\) 0 0
\(851\) −27.7128 + 16.0000i −0.949983 + 0.548473i
\(852\) 0 0
\(853\) −24.2487 14.0000i −0.830260 0.479351i 0.0236816 0.999720i \(-0.492461\pi\)
−0.853942 + 0.520369i \(0.825795\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −5.00000 + 8.66025i −0.170797 + 0.295829i −0.938699 0.344739i \(-0.887967\pi\)
0.767902 + 0.640567i \(0.221301\pi\)
\(858\) 0 0
\(859\) 6.06218 3.50000i 0.206839 0.119418i −0.393003 0.919537i \(-0.628564\pi\)
0.599841 + 0.800119i \(0.295230\pi\)
\(860\) 0 0
\(861\) −10.3923 + 18.0000i −0.354169 + 0.613438i
\(862\) 0 0
\(863\) −16.0000 −0.544646 −0.272323 0.962206i \(-0.587792\pi\)
−0.272323 + 0.962206i \(0.587792\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −27.7128 + 48.0000i −0.941176 + 1.63017i
\(868\) 0 0
\(869\) 6.92820 4.00000i 0.235023 0.135691i
\(870\) 0 0
\(871\) 6.00000 10.3923i 0.203302 0.352130i
\(872\) 0 0
\(873\) 3.00000 0.101535
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −27.7128 + 16.0000i −0.935795 + 0.540282i −0.888640 0.458606i \(-0.848349\pi\)
−0.0471555 + 0.998888i \(0.515016\pi\)
\(878\) 0 0
\(879\) 20.7846i 0.701047i
\(880\) 0 0
\(881\) 2.00000 0.0673817 0.0336909 0.999432i \(-0.489274\pi\)
0.0336909 + 0.999432i \(0.489274\pi\)
\(882\) 0 0
\(883\) 5.00000i 0.168263i −0.996455 0.0841317i \(-0.973188\pi\)
0.996455 0.0841317i \(-0.0268116\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 24.0000 + 41.5692i 0.805841 + 1.39576i 0.915722 + 0.401813i \(0.131620\pi\)
−0.109881 + 0.993945i \(0.535047\pi\)
\(888\) 0 0
\(889\) 40.0000 69.2820i 1.34156 2.32364i
\(890\) 0 0
\(891\) 7.79423 4.50000i 0.261116 0.150756i
\(892\) 0 0
\(893\) 17.3205 + 10.0000i 0.579609 + 0.334637i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 24.0000 13.8564i 0.801337 0.462652i
\(898\) 0 0
\(899\) 32.0000i 1.06726i
\(900\) 0 0
\(901\) 56.0000i 1.86563i
\(902\) 0 0
\(903\) 6.92820i 0.230556i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −14.7224 8.50000i −0.488850 0.282238i 0.235247 0.971936i \(-0.424410\pi\)
−0.724097 + 0.689698i \(0.757743\pi\)
\(908\) 0 0
\(909\) 48.0000i 1.59206i
\(910\) 0 0
\(911\) 24.0000 41.5692i 0.795155 1.37725i −0.127585 0.991828i \(-0.540723\pi\)
0.922740 0.385422i \(-0.125944\pi\)
\(912\) 0 0
\(913\) 8.00000 + 13.8564i 0.264761 + 0.458580i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 12.0000 0.395843 0.197922 0.980218i \(-0.436581\pi\)
0.197922 + 0.980218i \(0.436581\pi\)
\(920\) 0 0
\(921\) 31.5000 + 18.1865i 1.03796 + 0.599267i
\(922\) 0 0
\(923\) 27.7128 16.0000i 0.912178 0.526646i
\(924\) 0 0
\(925\) 34.6410 + 20.0000i 1.13899 + 0.657596i
\(926\) 0 0
\(927\) 6.00000 10.3923i 0.197066 0.341328i
\(928\) 0 0
\(929\) 25.0000 43.3013i 0.820223 1.42067i −0.0852924 0.996356i \(-0.527182\pi\)
0.905516 0.424313i \(-0.139484\pi\)
\(930\) 0 0
\(931\) 38.9711 22.5000i 1.27723 0.737408i
\(932\) 0 0
\(933\) −6.92820 −0.226819
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 22.0000 0.718709 0.359354 0.933201i \(-0.382997\pi\)
0.359354 + 0.933201i \(0.382997\pi\)
\(938\) 0 0
\(939\) −9.52628 16.5000i −0.310878 0.538457i
\(940\) 0 0
\(941\) −34.6410 + 20.0000i −1.12926 + 0.651981i −0.943750 0.330660i \(-0.892729\pi\)
−0.185515 + 0.982641i \(0.559395\pi\)
\(942\) 0 0
\(943\) −6.00000 + 10.3923i −0.195387 + 0.338420i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 23.3827 + 13.5000i 0.759835 + 0.438691i 0.829237 0.558898i \(-0.188776\pi\)
−0.0694014 + 0.997589i \(0.522109\pi\)
\(948\) 0 0
\(949\) −10.3923 + 6.00000i −0.337348 + 0.194768i
\(950\) 0 0
\(951\) −30.0000 + 17.3205i −0.972817 + 0.561656i
\(952\) 0 0
\(953\) 27.0000 0.874616 0.437308 0.899312i \(-0.355932\pi\)
0.437308 + 0.899312i \(0.355932\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 6.92820 0.223957
\(958\) 0 0
\(959\) −6.00000 10.3923i −0.193750 0.335585i
\(960\) 0 0
\(961\) −16.5000 + 28.5788i −0.532258 + 0.921898i
\(962\) 0 0
\(963\) −44.1673 + 25.5000i −1.42327 + 0.821726i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −18.0000 31.1769i −0.578841 1.00258i −0.995613 0.0935708i \(-0.970172\pi\)
0.416772 0.909011i \(-0.363161\pi\)
\(968\) 0 0
\(969\) 52.5000 + 30.3109i 1.68654 + 0.973726i
\(970\) 0 0
\(971\) 16.0000i 0.513464i −0.966483 0.256732i \(-0.917354\pi\)
0.966483 0.256732i \(-0.0826458\pi\)
\(972\) 0 0
\(973\) 4.00000i 0.128234i
\(974\) 0 0
\(975\) −30.0000 17.3205i −0.960769 0.554700i
\(976\) 0 0
\(977\) 19.5000 + 33.7750i 0.623860 + 1.08056i 0.988760 + 0.149511i \(0.0477699\pi\)
−0.364900 + 0.931047i \(0.618897\pi\)
\(978\) 0 0
\(979\) −5.19615 3.00000i −0.166070 0.0958804i
\(980\) 0 0
\(981\) 41.5692 24.0000i 1.32720 0.766261i
\(982\) 0 0
\(983\) −8.00000 + 13.8564i −0.255160 + 0.441951i −0.964939 0.262474i \(-0.915462\pi\)
0.709779 + 0.704425i \(0.248795\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −27.7128 −0.882109
\(988\) 0 0
\(989\) 4.00000i 0.127193i
\(990\) 0 0
\(991\) 16.0000 0.508257 0.254128 0.967170i \(-0.418211\pi\)
0.254128 + 0.967170i \(0.418211\pi\)
\(992\) 0 0
\(993\) −24.0000 + 13.8564i −0.761617 + 0.439720i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 6.92820 + 4.00000i 0.219418 + 0.126681i 0.605681 0.795708i \(-0.292901\pi\)
−0.386263 + 0.922389i \(0.626234\pi\)
\(998\) 0 0
\(999\) 41.5692i 1.31519i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1152.2.r.b.961.1 yes 4
3.2 odd 2 3456.2.r.a.2881.2 4
4.3 odd 2 1152.2.r.c.961.2 yes 4
8.3 odd 2 1152.2.r.c.961.1 yes 4
8.5 even 2 inner 1152.2.r.b.961.2 yes 4
9.4 even 3 inner 1152.2.r.b.193.2 yes 4
9.5 odd 6 3456.2.r.a.577.1 4
12.11 even 2 3456.2.r.d.2881.1 4
24.5 odd 2 3456.2.r.a.2881.1 4
24.11 even 2 3456.2.r.d.2881.2 4
36.23 even 6 3456.2.r.d.577.2 4
36.31 odd 6 1152.2.r.c.193.1 yes 4
72.5 odd 6 3456.2.r.a.577.2 4
72.13 even 6 inner 1152.2.r.b.193.1 4
72.59 even 6 3456.2.r.d.577.1 4
72.67 odd 6 1152.2.r.c.193.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1152.2.r.b.193.1 4 72.13 even 6 inner
1152.2.r.b.193.2 yes 4 9.4 even 3 inner
1152.2.r.b.961.1 yes 4 1.1 even 1 trivial
1152.2.r.b.961.2 yes 4 8.5 even 2 inner
1152.2.r.c.193.1 yes 4 36.31 odd 6
1152.2.r.c.193.2 yes 4 72.67 odd 6
1152.2.r.c.961.1 yes 4 8.3 odd 2
1152.2.r.c.961.2 yes 4 4.3 odd 2
3456.2.r.a.577.1 4 9.5 odd 6
3456.2.r.a.577.2 4 72.5 odd 6
3456.2.r.a.2881.1 4 24.5 odd 2
3456.2.r.a.2881.2 4 3.2 odd 2
3456.2.r.d.577.1 4 72.59 even 6
3456.2.r.d.577.2 4 36.23 even 6
3456.2.r.d.2881.1 4 12.11 even 2
3456.2.r.d.2881.2 4 24.11 even 2