Properties

Label 1152.2.r.d.961.2
Level $1152$
Weight $2$
Character 1152.961
Analytic conductor $9.199$
Analytic rank $0$
Dimension $4$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1152,2,Mod(193,1152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1152, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1152.193");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1152.r (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.19876631285\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

Embedding invariants

Embedding label 961.2
Root \(-1.22474 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1152.961
Dual form 1152.2.r.d.193.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.72474 - 0.158919i) q^{3} +(2.94949 - 0.548188i) q^{9} +(3.27526 + 1.89097i) q^{11} +1.89898 q^{17} -2.51059i q^{19} +(-2.50000 + 4.33013i) q^{25} +(5.00000 - 1.41421i) q^{27} +(5.94949 + 2.74094i) q^{33} +(-6.39898 - 11.0834i) q^{41} +(11.1742 + 6.45145i) q^{43} +(3.50000 + 6.06218i) q^{49} +(3.27526 - 0.301783i) q^{51} +(-0.398979 - 4.33013i) q^{57} +(10.6237 - 6.13361i) q^{59} +(6.82577 - 3.94086i) q^{67} -13.6969 q^{73} +(-3.62372 + 7.86566i) q^{75} +(8.39898 - 3.23375i) q^{81} +(2.44949 + 1.41421i) q^{83} -18.0000 q^{89} +(-9.84847 + 17.0580i) q^{97} +(10.6969 + 3.78194i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} + 2 q^{9} + 18 q^{11} - 12 q^{17} - 10 q^{25} + 20 q^{27} + 14 q^{33} - 6 q^{41} + 30 q^{43} + 14 q^{49} + 18 q^{51} + 18 q^{57} + 18 q^{59} + 42 q^{67} + 4 q^{73} + 10 q^{75} + 14 q^{81}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(641\) \(901\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.72474 0.158919i 0.995782 0.0917517i
\(4\) 0 0
\(5\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(6\) 0 0
\(7\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(8\) 0 0
\(9\) 2.94949 0.548188i 0.983163 0.182729i
\(10\) 0 0
\(11\) 3.27526 + 1.89097i 0.987527 + 0.570149i 0.904534 0.426401i \(-0.140219\pi\)
0.0829925 + 0.996550i \(0.473552\pi\)
\(12\) 0 0
\(13\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.89898 0.460570 0.230285 0.973123i \(-0.426034\pi\)
0.230285 + 0.973123i \(0.426034\pi\)
\(18\) 0 0
\(19\) 2.51059i 0.575969i −0.957635 0.287984i \(-0.907015\pi\)
0.957635 0.287984i \(-0.0929851\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(24\) 0 0
\(25\) −2.50000 + 4.33013i −0.500000 + 0.866025i
\(26\) 0 0
\(27\) 5.00000 1.41421i 0.962250 0.272166i
\(28\) 0 0
\(29\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(30\) 0 0
\(31\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(32\) 0 0
\(33\) 5.94949 + 2.74094i 1.03567 + 0.477137i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −6.39898 11.0834i −0.999353 1.73093i −0.530831 0.847477i \(-0.678120\pi\)
−0.468521 0.883452i \(-0.655213\pi\)
\(42\) 0 0
\(43\) 11.1742 + 6.45145i 1.70405 + 0.983836i 0.941562 + 0.336840i \(0.109358\pi\)
0.762493 + 0.646997i \(0.223975\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(48\) 0 0
\(49\) 3.50000 + 6.06218i 0.500000 + 0.866025i
\(50\) 0 0
\(51\) 3.27526 0.301783i 0.458627 0.0422581i
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −0.398979 4.33013i −0.0528461 0.573539i
\(58\) 0 0
\(59\) 10.6237 6.13361i 1.38309 0.798528i 0.390567 0.920575i \(-0.372279\pi\)
0.992524 + 0.122047i \(0.0389457\pi\)
\(60\) 0 0
\(61\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 6.82577 3.94086i 0.833900 0.481452i −0.0212861 0.999773i \(-0.506776\pi\)
0.855186 + 0.518321i \(0.173443\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −13.6969 −1.60311 −0.801553 0.597924i \(-0.795992\pi\)
−0.801553 + 0.597924i \(0.795992\pi\)
\(74\) 0 0
\(75\) −3.62372 + 7.86566i −0.418432 + 0.908248i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(80\) 0 0
\(81\) 8.39898 3.23375i 0.933220 0.359306i
\(82\) 0 0
\(83\) 2.44949 + 1.41421i 0.268866 + 0.155230i 0.628372 0.777913i \(-0.283721\pi\)
−0.359506 + 0.933143i \(0.617055\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −18.0000 −1.90800 −0.953998 0.299813i \(-0.903076\pi\)
−0.953998 + 0.299813i \(0.903076\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −9.84847 + 17.0580i −0.999961 + 1.73198i −0.492287 + 0.870433i \(0.663839\pi\)
−0.507673 + 0.861550i \(0.669494\pi\)
\(98\) 0 0
\(99\) 10.6969 + 3.78194i 1.07508 + 0.380099i
\(100\) 0 0
\(101\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(102\) 0 0
\(103\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.70334i 0.454689i −0.973814 0.227345i \(-0.926996\pi\)
0.973814 0.227345i \(-0.0730044\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −9.00000 15.5885i −0.846649 1.46644i −0.884182 0.467143i \(-0.845283\pi\)
0.0375328 0.999295i \(-0.488050\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.65153 + 2.86054i 0.150139 + 0.260049i
\(122\) 0 0
\(123\) −12.7980 18.0990i −1.15395 1.63194i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) 20.2980 + 9.35131i 1.78714 + 0.823337i
\(130\) 0 0
\(131\) −12.2474 + 7.07107i −1.07006 + 0.617802i −0.928199 0.372084i \(-0.878643\pi\)
−0.141865 + 0.989886i \(0.545310\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.29796 14.3725i 0.708942 1.22792i −0.256307 0.966595i \(-0.582506\pi\)
0.965250 0.261329i \(-0.0841608\pi\)
\(138\) 0 0
\(139\) −20.1742 + 11.6476i −1.71116 + 0.987937i −0.778148 + 0.628080i \(0.783841\pi\)
−0.933008 + 0.359856i \(0.882826\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 7.00000 + 9.89949i 0.577350 + 0.816497i
\(148\) 0 0
\(149\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(150\) 0 0
\(151\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(152\) 0 0
\(153\) 5.60102 1.04100i 0.452816 0.0841597i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 25.4558i 1.99386i −0.0783260 0.996928i \(-0.524958\pi\)
0.0783260 0.996928i \(-0.475042\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(168\) 0 0
\(169\) −6.50000 + 11.2583i −0.500000 + 0.866025i
\(170\) 0 0
\(171\) −1.37628 7.40496i −0.105246 0.566271i
\(172\) 0 0
\(173\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 17.3485 12.2672i 1.30399 0.922061i
\(178\) 0 0
\(179\) 19.7990i 1.47985i 0.672692 + 0.739923i \(0.265138\pi\)
−0.672692 + 0.739923i \(0.734862\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 6.21964 + 3.59091i 0.454825 + 0.262594i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(192\) 0 0
\(193\) 12.8485 + 22.2542i 0.924853 + 1.60189i 0.791797 + 0.610784i \(0.209146\pi\)
0.133056 + 0.991109i \(0.457521\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 11.1464 7.88171i 0.786208 0.555933i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 4.74745 8.22282i 0.328388 0.568785i
\(210\) 0 0
\(211\) −22.0454 + 12.7279i −1.51767 + 0.876226i −0.517884 + 0.855451i \(0.673280\pi\)
−0.999784 + 0.0207756i \(0.993386\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −23.6237 + 2.17670i −1.59634 + 0.147088i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(224\) 0 0
\(225\) −5.00000 + 14.1421i −0.333333 + 0.942809i
\(226\) 0 0
\(227\) −23.7247 13.6975i −1.57467 0.909134i −0.995585 0.0938647i \(-0.970078\pi\)
−0.579082 0.815270i \(-0.696589\pi\)
\(228\) 0 0
\(229\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −19.8990 −1.30363 −0.651813 0.758380i \(-0.725991\pi\)
−0.651813 + 0.758380i \(0.725991\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(240\) 0 0
\(241\) 0.848469 1.46959i 0.0546547 0.0946647i −0.837404 0.546585i \(-0.815928\pi\)
0.892058 + 0.451920i \(0.149261\pi\)
\(242\) 0 0
\(243\) 13.9722 6.91215i 0.896317 0.443415i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 4.44949 + 2.04989i 0.281975 + 0.129906i
\(250\) 0 0
\(251\) 20.7525i 1.30989i −0.755678 0.654943i \(-0.772693\pi\)
0.755678 0.654943i \(-0.227307\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2.60102 4.50510i −0.162247 0.281020i 0.773427 0.633885i \(-0.218541\pi\)
−0.935674 + 0.352865i \(0.885208\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −31.0454 + 2.86054i −1.89995 + 0.175062i
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −16.3763 + 9.45485i −0.987527 + 0.570149i
\(276\) 0 0
\(277\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 9.00000 15.5885i 0.536895 0.929929i −0.462174 0.886789i \(-0.652930\pi\)
0.999069 0.0431402i \(-0.0137362\pi\)
\(282\) 0 0
\(283\) −22.0454 + 12.7279i −1.31046 + 0.756596i −0.982173 0.187980i \(-0.939806\pi\)
−0.328291 + 0.944577i \(0.606473\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −13.3939 −0.787875
\(290\) 0 0
\(291\) −14.2753 + 30.9859i −0.836830 + 1.81642i
\(292\) 0 0
\(293\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 19.0505 + 4.82294i 1.10542 + 0.279855i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 33.6875i 1.92265i −0.275421 0.961324i \(-0.588817\pi\)
0.275421 0.961324i \(-0.411183\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(312\) 0 0
\(313\) −12.1969 + 21.1257i −0.689412 + 1.19410i 0.282617 + 0.959233i \(0.408798\pi\)
−0.972028 + 0.234863i \(0.924536\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −0.747449 8.11207i −0.0417185 0.452771i
\(322\) 0 0
\(323\) 4.76756i 0.265274i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 22.0454 + 12.7279i 1.21173 + 0.699590i 0.963135 0.269019i \(-0.0866994\pi\)
0.248590 + 0.968609i \(0.420033\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −18.1969 31.5180i −0.991250 1.71690i −0.609936 0.792451i \(-0.708805\pi\)
−0.381314 0.924445i \(-0.624528\pi\)
\(338\) 0 0
\(339\) −18.0000 25.4558i −0.977626 1.38257i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 11.4217 6.59431i 0.613148 0.354001i −0.161048 0.986947i \(-0.551488\pi\)
0.774197 + 0.632945i \(0.218154\pi\)
\(348\) 0 0
\(349\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −17.2980 + 29.9609i −0.920677 + 1.59466i −0.122308 + 0.992492i \(0.539030\pi\)
−0.798369 + 0.602168i \(0.794304\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 12.6969 0.668260
\(362\) 0 0
\(363\) 3.30306 + 4.67123i 0.173366 + 0.245176i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(368\) 0 0
\(369\) −24.9495 29.1824i −1.29882 1.51918i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 28.6663i 1.47249i 0.676715 + 0.736245i \(0.263403\pi\)
−0.676715 + 0.736245i \(0.736597\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 36.4949 + 12.9029i 1.85514 + 0.655891i
\(388\) 0 0
\(389\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −20.0000 + 14.1421i −1.00887 + 0.713376i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −15.6464 27.1004i −0.781345 1.35333i −0.931158 0.364615i \(-0.881200\pi\)
0.149813 0.988714i \(-0.452133\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 9.19694 + 15.9296i 0.454759 + 0.787666i 0.998674 0.0514740i \(-0.0163919\pi\)
−0.543915 + 0.839140i \(0.683059\pi\)
\(410\) 0 0
\(411\) 12.0278 26.1076i 0.593288 1.28779i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −32.9444 + 23.2952i −1.61329 + 1.14077i
\(418\) 0 0
\(419\) −31.8434 + 18.3848i −1.55565 + 0.898155i −0.557986 + 0.829851i \(0.688426\pi\)
−0.997665 + 0.0683046i \(0.978241\pi\)
\(420\) 0 0
\(421\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −4.74745 + 8.22282i −0.230285 + 0.398865i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −4.30306 −0.206792 −0.103396 0.994640i \(-0.532971\pi\)
−0.103396 + 0.994640i \(0.532971\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(440\) 0 0
\(441\) 13.6464 + 15.9617i 0.649830 + 0.760080i
\(442\) 0 0
\(443\) 30.2753 + 17.4794i 1.43842 + 0.830473i 0.997740 0.0671913i \(-0.0214038\pi\)
0.440681 + 0.897664i \(0.354737\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 16.1010 0.759854 0.379927 0.925016i \(-0.375949\pi\)
0.379927 + 0.925016i \(0.375949\pi\)
\(450\) 0 0
\(451\) 48.4011i 2.27912i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 21.1969 36.7142i 0.991551 1.71742i 0.383437 0.923567i \(-0.374740\pi\)
0.608114 0.793849i \(-0.291926\pi\)
\(458\) 0 0
\(459\) 9.49490 2.68556i 0.443184 0.125351i
\(460\) 0 0
\(461\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(462\) 0 0
\(463\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 10.4244i 0.482384i 0.970477 + 0.241192i \(0.0775384\pi\)
−0.970477 + 0.241192i \(0.922462\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 24.3990 + 42.2603i 1.12187 + 1.94313i
\(474\) 0 0
\(475\) 10.8712 + 6.27647i 0.498804 + 0.287984i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) 0 0
\(489\) −4.04541 43.9048i −0.182940 1.98545i
\(490\) 0 0
\(491\) 37.6237 21.7221i 1.69793 0.980303i 0.750218 0.661190i \(-0.229948\pi\)
0.947717 0.319113i \(-0.103385\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −28.8712 + 16.6688i −1.29245 + 0.746197i −0.979088 0.203436i \(-0.934789\pi\)
−0.313363 + 0.949633i \(0.601456\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −9.42168 + 20.4507i −0.418432 + 0.908248i
\(508\) 0 0
\(509\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −3.55051 12.5529i −0.156759 0.554226i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 42.1918 1.84846 0.924229 0.381839i \(-0.124709\pi\)
0.924229 + 0.381839i \(0.124709\pi\)
\(522\) 0 0
\(523\) 25.4558i 1.11311i −0.830812 0.556553i \(-0.812124\pi\)
0.830812 0.556553i \(-0.187876\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 11.5000 19.9186i 0.500000 0.866025i
\(530\) 0 0
\(531\) 27.9722 23.9148i 1.21389 1.03781i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 3.14643 + 34.1482i 0.135778 + 1.47360i
\(538\) 0 0
\(539\) 26.4736i 1.14030i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 38.1742 + 22.0399i 1.63221 + 0.942358i 0.983409 + 0.181402i \(0.0580636\pi\)
0.648803 + 0.760956i \(0.275270\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 11.2980 + 5.20499i 0.477000 + 0.219755i
\(562\) 0 0
\(563\) 38.4217 22.1828i 1.61928 0.934892i 0.632175 0.774826i \(-0.282163\pi\)
0.987106 0.160066i \(-0.0511708\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0.702041 1.21597i 0.0294311 0.0509761i −0.850935 0.525271i \(-0.823964\pi\)
0.880366 + 0.474295i \(0.157297\pi\)
\(570\) 0 0
\(571\) −1.87117 + 1.08032i −0.0783062 + 0.0452101i −0.538642 0.842535i \(-0.681062\pi\)
0.460336 + 0.887745i \(0.347729\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 12.3939 0.515964 0.257982 0.966150i \(-0.416942\pi\)
0.257982 + 0.966150i \(0.416942\pi\)
\(578\) 0 0
\(579\) 25.6969 + 36.3410i 1.06793 + 1.51028i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −25.3207 14.6189i −1.04510 0.603386i −0.123823 0.992304i \(-0.539516\pi\)
−0.921272 + 0.388918i \(0.872849\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 18.0000 0.739171 0.369586 0.929197i \(-0.379500\pi\)
0.369586 + 0.929197i \(0.379500\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(600\) 0 0
\(601\) 18.8485 32.6465i 0.768845 1.33168i −0.169344 0.985557i \(-0.554165\pi\)
0.938190 0.346122i \(-0.112502\pi\)
\(602\) 0 0
\(603\) 17.9722 15.3653i 0.731884 0.625724i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 24.6464 + 42.6889i 0.992228 + 1.71859i 0.603877 + 0.797077i \(0.293622\pi\)
0.388351 + 0.921512i \(0.373045\pi\)
\(618\) 0 0
\(619\) 37.8712 + 21.8649i 1.52217 + 0.878826i 0.999657 + 0.0261952i \(0.00833914\pi\)
0.522514 + 0.852631i \(0.324994\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −12.5000 21.6506i −0.500000 0.866025i
\(626\) 0 0
\(627\) 6.88138 14.9367i 0.274816 0.596515i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) −36.0000 + 25.4558i −1.43087 + 1.01178i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −22.7474 + 39.3997i −0.898470 + 1.55620i −0.0690201 + 0.997615i \(0.521987\pi\)
−0.829450 + 0.558581i \(0.811346\pi\)
\(642\) 0 0
\(643\) 33.8258 19.5293i 1.33396 0.770161i 0.348054 0.937474i \(-0.386843\pi\)
0.985904 + 0.167313i \(0.0535092\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 46.3939 1.82112
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −40.3990 + 7.50850i −1.57611 + 0.292934i
\(658\) 0 0
\(659\) 41.6413 + 24.0416i 1.62212 + 0.936529i 0.986353 + 0.164644i \(0.0526477\pi\)
0.635763 + 0.771885i \(0.280686\pi\)
\(660\) 0 0
\(661\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 5.00000 8.66025i 0.192736 0.333828i −0.753420 0.657539i \(-0.771597\pi\)
0.946156 + 0.323711i \(0.104931\pi\)
\(674\) 0 0
\(675\) −6.37628 + 25.1862i −0.245423 + 0.969416i
\(676\) 0 0
\(677\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −43.0959 19.8544i −1.65144 0.760821i
\(682\) 0 0
\(683\) 51.9294i 1.98702i −0.113728 0.993512i \(-0.536279\pi\)
0.113728 0.993512i \(-0.463721\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 22.0454 + 12.7279i 0.838647 + 0.484193i 0.856804 0.515642i \(-0.172447\pi\)
−0.0181572 + 0.999835i \(0.505780\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −12.1515 21.0471i −0.460272 0.797215i
\(698\) 0 0
\(699\) −34.3207 + 3.16232i −1.29813 + 0.119610i
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 1.22985 2.66951i 0.0457385 0.0992801i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(728\) 0 0
\(729\) 23.0000 14.1421i 0.851852 0.523783i
\(730\) 0 0
\(731\) 21.2196 + 12.2512i 0.784837 + 0.453126i
\(732\) 0 0
\(733\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 29.8082 1.09800
\(738\) 0 0
\(739\) 8.23166i 0.302807i 0.988472 + 0.151403i \(0.0483792\pi\)
−0.988472 + 0.151403i \(0.951621\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 8.00000 + 2.82843i 0.292705 + 0.103487i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(752\) 0 0
\(753\) −3.29796 35.7928i −0.120184 1.30436i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 27.0000 + 46.7654i 0.978749 + 1.69524i 0.666962 + 0.745091i \(0.267594\pi\)
0.311787 + 0.950152i \(0.399073\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −11.0000 19.0526i −0.396670 0.687053i 0.596643 0.802507i \(-0.296501\pi\)
−0.993313 + 0.115454i \(0.963168\pi\)
\(770\) 0 0
\(771\) −5.20204 7.35680i −0.187347 0.264949i
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −27.8258 + 16.0652i −0.996962 + 0.575596i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −22.0454 + 12.7279i −0.785834 + 0.453701i −0.838494 0.544911i \(-0.816563\pi\)
0.0526599 + 0.998613i \(0.483230\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −53.0908 + 9.86739i −1.87587 + 0.348647i
\(802\) 0 0
\(803\) −44.8610 25.9005i −1.58311 0.914009i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −45.9898 −1.61692 −0.808458 0.588555i \(-0.799697\pi\)
−0.808458 + 0.588555i \(0.799697\pi\)
\(810\) 0 0
\(811\) 54.1222i 1.90049i −0.311509 0.950243i \(-0.600834\pi\)
0.311509 0.950243i \(-0.399166\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 16.1969 28.0539i 0.566659 0.981482i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(822\) 0 0
\(823\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(824\) 0 0
\(825\) −26.7423 + 18.9097i −0.931049 + 0.658351i
\(826\) 0 0
\(827\) 19.7990i 0.688478i 0.938882 + 0.344239i \(0.111863\pi\)
−0.938882 + 0.344239i \(0.888137\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 6.64643 + 11.5120i 0.230285 + 0.398865i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(840\) 0 0
\(841\) −14.5000 25.1147i −0.500000 0.866025i
\(842\) 0 0
\(843\) 13.0454 28.3164i 0.449308 0.975268i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −36.0000 + 25.4558i −1.23552 + 0.873642i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 27.0000 46.7654i 0.922302 1.59747i 0.126459 0.991972i \(-0.459639\pi\)
0.795843 0.605503i \(-0.207028\pi\)
\(858\) 0 0
\(859\) −47.1742 + 27.2361i −1.60956 + 0.929282i −0.620097 + 0.784525i \(0.712907\pi\)
−0.989467 + 0.144757i \(0.953760\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −23.1010 + 2.12854i −0.784552 + 0.0722889i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −19.6969 + 55.7114i −0.666640 + 1.88554i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 18.0000 0.606435 0.303218 0.952921i \(-0.401939\pi\)
0.303218 + 0.952921i \(0.401939\pi\)
\(882\) 0 0
\(883\) 27.9664i 0.941145i 0.882361 + 0.470573i \(0.155953\pi\)
−0.882361 + 0.470573i \(0.844047\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 33.6237 + 5.29085i 1.12644 + 0.177250i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −33.2196 19.1794i −1.10304 0.636841i −0.166022 0.986122i \(-0.553092\pi\)
−0.937018 + 0.349281i \(0.886426\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(912\) 0 0
\(913\) 5.34847 + 9.26382i 0.177008 + 0.306588i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) −5.35357 58.1024i −0.176406 1.91454i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −27.0000 + 46.7654i −0.885841 + 1.53432i −0.0410949 + 0.999155i \(0.513085\pi\)
−0.844746 + 0.535167i \(0.820249\pi\)
\(930\) 0 0
\(931\) 15.2196 8.78706i 0.498804 0.287984i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −34.0000 −1.11073 −0.555366 0.831606i \(-0.687422\pi\)
−0.555366 + 0.831606i \(0.687422\pi\)
\(938\) 0 0
\(939\) −17.6793 + 38.3748i −0.576943 + 1.25231i
\(940\) 0 0
\(941\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 45.7702 + 26.4254i 1.48733 + 0.858710i 0.999896 0.0144491i \(-0.00459946\pi\)
0.487435 + 0.873160i \(0.337933\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −60.1918 −1.94980 −0.974902 0.222633i \(-0.928535\pi\)
−0.974902 + 0.222633i \(0.928535\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 15.5000 26.8468i 0.500000 0.866025i
\(962\) 0 0
\(963\) −2.57832 13.8725i −0.0830851 0.447034i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(968\) 0 0
\(969\) −0.757654 8.22282i −0.0243393 0.264155i
\(970\) 0 0
\(971\) 31.1127i 0.998454i 0.866471 + 0.499227i \(0.166383\pi\)
−0.866471 + 0.499227i \(0.833617\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 28.4444 + 49.2671i 0.910017 + 1.57619i 0.814038 + 0.580812i \(0.197265\pi\)
0.0959785 + 0.995383i \(0.469402\pi\)
\(978\) 0 0
\(979\) −58.9546 34.0374i −1.88420 1.08784i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 40.0454 + 18.4490i 1.27080 + 0.585461i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1152.2.r.d.961.2 yes 4
3.2 odd 2 3456.2.r.b.2881.2 4
4.3 odd 2 1152.2.r.a.961.1 yes 4
8.3 odd 2 CM 1152.2.r.d.961.2 yes 4
8.5 even 2 1152.2.r.a.961.1 yes 4
9.4 even 3 1152.2.r.a.193.1 4
9.5 odd 6 3456.2.r.c.577.1 4
12.11 even 2 3456.2.r.c.2881.1 4
24.5 odd 2 3456.2.r.c.2881.1 4
24.11 even 2 3456.2.r.b.2881.2 4
36.23 even 6 3456.2.r.b.577.2 4
36.31 odd 6 inner 1152.2.r.d.193.2 yes 4
72.5 odd 6 3456.2.r.b.577.2 4
72.13 even 6 inner 1152.2.r.d.193.2 yes 4
72.59 even 6 3456.2.r.c.577.1 4
72.67 odd 6 1152.2.r.a.193.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1152.2.r.a.193.1 4 9.4 even 3
1152.2.r.a.193.1 4 72.67 odd 6
1152.2.r.a.961.1 yes 4 4.3 odd 2
1152.2.r.a.961.1 yes 4 8.5 even 2
1152.2.r.d.193.2 yes 4 36.31 odd 6 inner
1152.2.r.d.193.2 yes 4 72.13 even 6 inner
1152.2.r.d.961.2 yes 4 1.1 even 1 trivial
1152.2.r.d.961.2 yes 4 8.3 odd 2 CM
3456.2.r.b.577.2 4 36.23 even 6
3456.2.r.b.577.2 4 72.5 odd 6
3456.2.r.b.2881.2 4 3.2 odd 2
3456.2.r.b.2881.2 4 24.11 even 2
3456.2.r.c.577.1 4 9.5 odd 6
3456.2.r.c.577.1 4 72.59 even 6
3456.2.r.c.2881.1 4 12.11 even 2
3456.2.r.c.2881.1 4 24.5 odd 2