Properties

Label 1152.3.b.e.703.3
Level $1152$
Weight $3$
Character 1152.703
Analytic conductor $31.390$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1152,3,Mod(703,1152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1152, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1152.703");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1152.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.3897264543\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{8}\cdot 3 \)
Twist minimal: no (minimal twist has level 384)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 703.3
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1152.703
Dual form 1152.3.b.e.703.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+6.92820i q^{5} -12.0000i q^{7} +6.92820 q^{11} +13.8564i q^{13} -14.0000 q^{17} -34.6410 q^{19} -24.0000i q^{23} -23.0000 q^{25} +34.6410i q^{29} +12.0000i q^{31} +83.1384 q^{35} -27.7128i q^{37} +14.0000 q^{41} -6.92820 q^{43} +72.0000i q^{47} -95.0000 q^{49} -62.3538i q^{53} +48.0000i q^{55} -48.4974 q^{59} +55.4256i q^{61} -96.0000 q^{65} -90.0666 q^{67} +24.0000i q^{71} -50.0000 q^{73} -83.1384i q^{77} +12.0000i q^{79} -20.7846 q^{83} -96.9948i q^{85} -62.0000 q^{89} +166.277 q^{91} -240.000i q^{95} -146.000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 56 q^{17} - 92 q^{25} + 56 q^{41} - 380 q^{49} - 384 q^{65} - 200 q^{73} - 248 q^{89} - 584 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(641\) \(901\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 6.92820i 1.38564i 0.721110 + 0.692820i \(0.243632\pi\)
−0.721110 + 0.692820i \(0.756368\pi\)
\(6\) 0 0
\(7\) − 12.0000i − 1.71429i −0.515079 0.857143i \(-0.672237\pi\)
0.515079 0.857143i \(-0.327763\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 6.92820 0.629837 0.314918 0.949119i \(-0.398023\pi\)
0.314918 + 0.949119i \(0.398023\pi\)
\(12\) 0 0
\(13\) 13.8564i 1.06588i 0.846154 + 0.532939i \(0.178912\pi\)
−0.846154 + 0.532939i \(0.821088\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −14.0000 −0.823529 −0.411765 0.911290i \(-0.635087\pi\)
−0.411765 + 0.911290i \(0.635087\pi\)
\(18\) 0 0
\(19\) −34.6410 −1.82321 −0.911606 0.411066i \(-0.865157\pi\)
−0.911606 + 0.411066i \(0.865157\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 24.0000i − 1.04348i −0.853105 0.521739i \(-0.825283\pi\)
0.853105 0.521739i \(-0.174717\pi\)
\(24\) 0 0
\(25\) −23.0000 −0.920000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 34.6410i 1.19452i 0.802049 + 0.597259i \(0.203744\pi\)
−0.802049 + 0.597259i \(0.796256\pi\)
\(30\) 0 0
\(31\) 12.0000i 0.387097i 0.981091 + 0.193548i \(0.0619996\pi\)
−0.981091 + 0.193548i \(0.938000\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 83.1384 2.37538
\(36\) 0 0
\(37\) − 27.7128i − 0.748995i −0.927228 0.374497i \(-0.877815\pi\)
0.927228 0.374497i \(-0.122185\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 14.0000 0.341463 0.170732 0.985318i \(-0.445387\pi\)
0.170732 + 0.985318i \(0.445387\pi\)
\(42\) 0 0
\(43\) −6.92820 −0.161121 −0.0805605 0.996750i \(-0.525671\pi\)
−0.0805605 + 0.996750i \(0.525671\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 72.0000i 1.53191i 0.642891 + 0.765957i \(0.277735\pi\)
−0.642891 + 0.765957i \(0.722265\pi\)
\(48\) 0 0
\(49\) −95.0000 −1.93878
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 62.3538i − 1.17649i −0.808684 0.588244i \(-0.799820\pi\)
0.808684 0.588244i \(-0.200180\pi\)
\(54\) 0 0
\(55\) 48.0000i 0.872727i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −48.4974 −0.821990 −0.410995 0.911638i \(-0.634819\pi\)
−0.410995 + 0.911638i \(0.634819\pi\)
\(60\) 0 0
\(61\) 55.4256i 0.908617i 0.890844 + 0.454308i \(0.150114\pi\)
−0.890844 + 0.454308i \(0.849886\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −96.0000 −1.47692
\(66\) 0 0
\(67\) −90.0666 −1.34428 −0.672139 0.740425i \(-0.734624\pi\)
−0.672139 + 0.740425i \(0.734624\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 24.0000i 0.338028i 0.985614 + 0.169014i \(0.0540583\pi\)
−0.985614 + 0.169014i \(0.945942\pi\)
\(72\) 0 0
\(73\) −50.0000 −0.684932 −0.342466 0.939530i \(-0.611262\pi\)
−0.342466 + 0.939530i \(0.611262\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 83.1384i − 1.07972i
\(78\) 0 0
\(79\) 12.0000i 0.151899i 0.997112 + 0.0759494i \(0.0241987\pi\)
−0.997112 + 0.0759494i \(0.975801\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −20.7846 −0.250417 −0.125208 0.992130i \(-0.539960\pi\)
−0.125208 + 0.992130i \(0.539960\pi\)
\(84\) 0 0
\(85\) − 96.9948i − 1.14112i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −62.0000 −0.696629 −0.348315 0.937378i \(-0.613246\pi\)
−0.348315 + 0.937378i \(0.613246\pi\)
\(90\) 0 0
\(91\) 166.277 1.82722
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 240.000i − 2.52632i
\(96\) 0 0
\(97\) −146.000 −1.50515 −0.752577 0.658504i \(-0.771190\pi\)
−0.752577 + 0.658504i \(0.771190\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 20.7846i 0.205788i 0.994692 + 0.102894i \(0.0328103\pi\)
−0.994692 + 0.102894i \(0.967190\pi\)
\(102\) 0 0
\(103\) − 84.0000i − 0.815534i −0.913086 0.407767i \(-0.866308\pi\)
0.913086 0.407767i \(-0.133692\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −131.636 −1.23024 −0.615121 0.788433i \(-0.710893\pi\)
−0.615121 + 0.788433i \(0.710893\pi\)
\(108\) 0 0
\(109\) − 180.133i − 1.65260i −0.563231 0.826299i \(-0.690442\pi\)
0.563231 0.826299i \(-0.309558\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −130.000 −1.15044 −0.575221 0.817998i \(-0.695084\pi\)
−0.575221 + 0.817998i \(0.695084\pi\)
\(114\) 0 0
\(115\) 166.277 1.44589
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 168.000i 1.41176i
\(120\) 0 0
\(121\) −73.0000 −0.603306
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 13.8564i 0.110851i
\(126\) 0 0
\(127\) − 204.000i − 1.60630i −0.595777 0.803150i \(-0.703156\pi\)
0.595777 0.803150i \(-0.296844\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −20.7846 −0.158661 −0.0793306 0.996848i \(-0.525278\pi\)
−0.0793306 + 0.996848i \(0.525278\pi\)
\(132\) 0 0
\(133\) 415.692i 3.12551i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 206.000 1.50365 0.751825 0.659363i \(-0.229174\pi\)
0.751825 + 0.659363i \(0.229174\pi\)
\(138\) 0 0
\(139\) 48.4974 0.348902 0.174451 0.984666i \(-0.444185\pi\)
0.174451 + 0.984666i \(0.444185\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 96.0000i 0.671329i
\(144\) 0 0
\(145\) −240.000 −1.65517
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 200.918i 1.34844i 0.738530 + 0.674221i \(0.235521\pi\)
−0.738530 + 0.674221i \(0.764479\pi\)
\(150\) 0 0
\(151\) 36.0000i 0.238411i 0.992870 + 0.119205i \(0.0380347\pi\)
−0.992870 + 0.119205i \(0.961965\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −83.1384 −0.536377
\(156\) 0 0
\(157\) 27.7128i 0.176515i 0.996098 + 0.0882574i \(0.0281298\pi\)
−0.996098 + 0.0882574i \(0.971870\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −288.000 −1.78882
\(162\) 0 0
\(163\) −62.3538 −0.382539 −0.191269 0.981538i \(-0.561260\pi\)
−0.191269 + 0.981538i \(0.561260\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 240.000i − 1.43713i −0.695462 0.718563i \(-0.744800\pi\)
0.695462 0.718563i \(-0.255200\pi\)
\(168\) 0 0
\(169\) −23.0000 −0.136095
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 131.636i 0.760901i 0.924801 + 0.380450i \(0.124231\pi\)
−0.924801 + 0.380450i \(0.875769\pi\)
\(174\) 0 0
\(175\) 276.000i 1.57714i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −270.200 −1.50950 −0.754748 0.656014i \(-0.772241\pi\)
−0.754748 + 0.656014i \(0.772241\pi\)
\(180\) 0 0
\(181\) − 207.846i − 1.14832i −0.818743 0.574160i \(-0.805329\pi\)
0.818743 0.574160i \(-0.194671\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 192.000 1.03784
\(186\) 0 0
\(187\) −96.9948 −0.518689
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 240.000i 1.25654i 0.777994 + 0.628272i \(0.216238\pi\)
−0.777994 + 0.628272i \(0.783762\pi\)
\(192\) 0 0
\(193\) −2.00000 −0.0103627 −0.00518135 0.999987i \(-0.501649\pi\)
−0.00518135 + 0.999987i \(0.501649\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 131.636i 0.668202i 0.942537 + 0.334101i \(0.108433\pi\)
−0.942537 + 0.334101i \(0.891567\pi\)
\(198\) 0 0
\(199\) 300.000i 1.50754i 0.657140 + 0.753769i \(0.271766\pi\)
−0.657140 + 0.753769i \(0.728234\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 415.692 2.04774
\(204\) 0 0
\(205\) 96.9948i 0.473146i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −240.000 −1.14833
\(210\) 0 0
\(211\) 270.200 1.28057 0.640284 0.768138i \(-0.278817\pi\)
0.640284 + 0.768138i \(0.278817\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 48.0000i − 0.223256i
\(216\) 0 0
\(217\) 144.000 0.663594
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 193.990i − 0.877781i
\(222\) 0 0
\(223\) 132.000i 0.591928i 0.955199 + 0.295964i \(0.0956409\pi\)
−0.955199 + 0.295964i \(0.904359\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 200.918 0.885101 0.442550 0.896744i \(-0.354074\pi\)
0.442550 + 0.896744i \(0.354074\pi\)
\(228\) 0 0
\(229\) − 69.2820i − 0.302542i −0.988492 0.151271i \(-0.951663\pi\)
0.988492 0.151271i \(-0.0483366\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 130.000 0.557940 0.278970 0.960300i \(-0.410007\pi\)
0.278970 + 0.960300i \(0.410007\pi\)
\(234\) 0 0
\(235\) −498.831 −2.12268
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 96.0000i 0.401674i 0.979625 + 0.200837i \(0.0643661\pi\)
−0.979625 + 0.200837i \(0.935634\pi\)
\(240\) 0 0
\(241\) 190.000 0.788382 0.394191 0.919029i \(-0.371025\pi\)
0.394191 + 0.919029i \(0.371025\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 658.179i − 2.68645i
\(246\) 0 0
\(247\) − 480.000i − 1.94332i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 256.344 1.02129 0.510644 0.859792i \(-0.329407\pi\)
0.510644 + 0.859792i \(0.329407\pi\)
\(252\) 0 0
\(253\) − 166.277i − 0.657221i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 254.000 0.988327 0.494163 0.869369i \(-0.335474\pi\)
0.494163 + 0.869369i \(0.335474\pi\)
\(258\) 0 0
\(259\) −332.554 −1.28399
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 432.000 1.63019
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 6.92820i 0.0257554i 0.999917 + 0.0128777i \(0.00409921\pi\)
−0.999917 + 0.0128777i \(0.995901\pi\)
\(270\) 0 0
\(271\) − 348.000i − 1.28413i −0.766649 0.642066i \(-0.778077\pi\)
0.766649 0.642066i \(-0.221923\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −159.349 −0.579450
\(276\) 0 0
\(277\) − 41.5692i − 0.150069i −0.997181 0.0750347i \(-0.976093\pi\)
0.997181 0.0750347i \(-0.0239068\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 34.0000 0.120996 0.0604982 0.998168i \(-0.480731\pi\)
0.0604982 + 0.998168i \(0.480731\pi\)
\(282\) 0 0
\(283\) −311.769 −1.10166 −0.550829 0.834618i \(-0.685688\pi\)
−0.550829 + 0.834618i \(0.685688\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 168.000i − 0.585366i
\(288\) 0 0
\(289\) −93.0000 −0.321799
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 159.349i 0.543852i 0.962318 + 0.271926i \(0.0876606\pi\)
−0.962318 + 0.271926i \(0.912339\pi\)
\(294\) 0 0
\(295\) − 336.000i − 1.13898i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 332.554 1.11222
\(300\) 0 0
\(301\) 83.1384i 0.276207i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −384.000 −1.25902
\(306\) 0 0
\(307\) 408.764 1.33148 0.665739 0.746184i \(-0.268116\pi\)
0.665739 + 0.746184i \(0.268116\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 48.0000i − 0.154341i −0.997018 0.0771704i \(-0.975411\pi\)
0.997018 0.0771704i \(-0.0245886\pi\)
\(312\) 0 0
\(313\) 98.0000 0.313099 0.156550 0.987670i \(-0.449963\pi\)
0.156550 + 0.987670i \(0.449963\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 173.205i 0.546388i 0.961959 + 0.273194i \(0.0880801\pi\)
−0.961959 + 0.273194i \(0.911920\pi\)
\(318\) 0 0
\(319\) 240.000i 0.752351i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 484.974 1.50147
\(324\) 0 0
\(325\) − 318.697i − 0.980607i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 864.000 2.62614
\(330\) 0 0
\(331\) 20.7846 0.0627934 0.0313967 0.999507i \(-0.490004\pi\)
0.0313967 + 0.999507i \(0.490004\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 624.000i − 1.86269i
\(336\) 0 0
\(337\) 50.0000 0.148368 0.0741840 0.997245i \(-0.476365\pi\)
0.0741840 + 0.997245i \(0.476365\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 83.1384i 0.243808i
\(342\) 0 0
\(343\) 552.000i 1.60933i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −408.764 −1.17799 −0.588997 0.808135i \(-0.700477\pi\)
−0.588997 + 0.808135i \(0.700477\pi\)
\(348\) 0 0
\(349\) 498.831i 1.42931i 0.699475 + 0.714657i \(0.253417\pi\)
−0.699475 + 0.714657i \(0.746583\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 542.000 1.53541 0.767705 0.640803i \(-0.221398\pi\)
0.767705 + 0.640803i \(0.221398\pi\)
\(354\) 0 0
\(355\) −166.277 −0.468386
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 312.000i 0.869081i 0.900652 + 0.434540i \(0.143089\pi\)
−0.900652 + 0.434540i \(0.856911\pi\)
\(360\) 0 0
\(361\) 839.000 2.32410
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 346.410i − 0.949069i
\(366\) 0 0
\(367\) − 276.000i − 0.752044i −0.926611 0.376022i \(-0.877292\pi\)
0.926611 0.376022i \(-0.122708\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −748.246 −2.01684
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −480.000 −1.27321
\(378\) 0 0
\(379\) 325.626 0.859170 0.429585 0.903026i \(-0.358660\pi\)
0.429585 + 0.903026i \(0.358660\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 720.000i 1.87990i 0.341318 + 0.939948i \(0.389127\pi\)
−0.341318 + 0.939948i \(0.610873\pi\)
\(384\) 0 0
\(385\) 576.000 1.49610
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 20.7846i − 0.0534309i −0.999643 0.0267154i \(-0.991495\pi\)
0.999643 0.0267154i \(-0.00850480\pi\)
\(390\) 0 0
\(391\) 336.000i 0.859335i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −83.1384 −0.210477
\(396\) 0 0
\(397\) 221.703i 0.558445i 0.960226 + 0.279222i \(0.0900766\pi\)
−0.960226 + 0.279222i \(0.909923\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 178.000 0.443890 0.221945 0.975059i \(-0.428759\pi\)
0.221945 + 0.975059i \(0.428759\pi\)
\(402\) 0 0
\(403\) −166.277 −0.412598
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 192.000i − 0.471744i
\(408\) 0 0
\(409\) −142.000 −0.347188 −0.173594 0.984817i \(-0.555538\pi\)
−0.173594 + 0.984817i \(0.555538\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 581.969i 1.40913i
\(414\) 0 0
\(415\) − 144.000i − 0.346988i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −103.923 −0.248026 −0.124013 0.992281i \(-0.539577\pi\)
−0.124013 + 0.992281i \(0.539577\pi\)
\(420\) 0 0
\(421\) − 263.272i − 0.625349i −0.949860 0.312674i \(-0.898775\pi\)
0.949860 0.312674i \(-0.101225\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 322.000 0.757647
\(426\) 0 0
\(427\) 665.108 1.55763
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 168.000i − 0.389791i −0.980824 0.194896i \(-0.937563\pi\)
0.980824 0.194896i \(-0.0624368\pi\)
\(432\) 0 0
\(433\) 526.000 1.21478 0.607390 0.794404i \(-0.292216\pi\)
0.607390 + 0.794404i \(0.292216\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 831.384i 1.90248i
\(438\) 0 0
\(439\) 444.000i 1.01139i 0.862712 + 0.505695i \(0.168764\pi\)
−0.862712 + 0.505695i \(0.831236\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −214.774 −0.484818 −0.242409 0.970174i \(-0.577938\pi\)
−0.242409 + 0.970174i \(0.577938\pi\)
\(444\) 0 0
\(445\) − 429.549i − 0.965278i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −494.000 −1.10022 −0.550111 0.835091i \(-0.685415\pi\)
−0.550111 + 0.835091i \(0.685415\pi\)
\(450\) 0 0
\(451\) 96.9948 0.215066
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1152.00i 2.53187i
\(456\) 0 0
\(457\) −46.0000 −0.100656 −0.0503282 0.998733i \(-0.516027\pi\)
−0.0503282 + 0.998733i \(0.516027\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 769.031i 1.66818i 0.551629 + 0.834090i \(0.314006\pi\)
−0.551629 + 0.834090i \(0.685994\pi\)
\(462\) 0 0
\(463\) 132.000i 0.285097i 0.989788 + 0.142549i \(0.0455297\pi\)
−0.989788 + 0.142549i \(0.954470\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 117.779 0.252204 0.126102 0.992017i \(-0.459753\pi\)
0.126102 + 0.992017i \(0.459753\pi\)
\(468\) 0 0
\(469\) 1080.80i 2.30448i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −48.0000 −0.101480
\(474\) 0 0
\(475\) 796.743 1.67735
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 408.000i − 0.851775i −0.904776 0.425887i \(-0.859962\pi\)
0.904776 0.425887i \(-0.140038\pi\)
\(480\) 0 0
\(481\) 384.000 0.798337
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 1011.52i − 2.08560i
\(486\) 0 0
\(487\) − 444.000i − 0.911704i −0.890056 0.455852i \(-0.849335\pi\)
0.890056 0.455852i \(-0.150665\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −824.456 −1.67914 −0.839568 0.543254i \(-0.817192\pi\)
−0.839568 + 0.543254i \(0.817192\pi\)
\(492\) 0 0
\(493\) − 484.974i − 0.983721i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 288.000 0.579477
\(498\) 0 0
\(499\) 381.051 0.763630 0.381815 0.924239i \(-0.375299\pi\)
0.381815 + 0.924239i \(0.375299\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 744.000i − 1.47913i −0.673088 0.739563i \(-0.735032\pi\)
0.673088 0.739563i \(-0.264968\pi\)
\(504\) 0 0
\(505\) −144.000 −0.285149
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 852.169i − 1.67420i −0.547048 0.837101i \(-0.684249\pi\)
0.547048 0.837101i \(-0.315751\pi\)
\(510\) 0 0
\(511\) 600.000i 1.17417i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 581.969 1.13004
\(516\) 0 0
\(517\) 498.831i 0.964856i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −82.0000 −0.157390 −0.0786948 0.996899i \(-0.525075\pi\)
−0.0786948 + 0.996899i \(0.525075\pi\)
\(522\) 0 0
\(523\) −311.769 −0.596117 −0.298058 0.954548i \(-0.596339\pi\)
−0.298058 + 0.954548i \(0.596339\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 168.000i − 0.318786i
\(528\) 0 0
\(529\) −47.0000 −0.0888469
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 193.990i 0.363958i
\(534\) 0 0
\(535\) − 912.000i − 1.70467i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −658.179 −1.22111
\(540\) 0 0
\(541\) 96.9948i 0.179288i 0.995974 + 0.0896440i \(0.0285729\pi\)
−0.995974 + 0.0896440i \(0.971427\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1248.00 2.28991
\(546\) 0 0
\(547\) −34.6410 −0.0633291 −0.0316645 0.999499i \(-0.510081\pi\)
−0.0316645 + 0.999499i \(0.510081\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 1200.00i − 2.17786i
\(552\) 0 0
\(553\) 144.000 0.260398
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 949.164i − 1.70406i −0.523489 0.852032i \(-0.675370\pi\)
0.523489 0.852032i \(-0.324630\pi\)
\(558\) 0 0
\(559\) − 96.0000i − 0.171735i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 949.164 1.68590 0.842952 0.537989i \(-0.180816\pi\)
0.842952 + 0.537989i \(0.180816\pi\)
\(564\) 0 0
\(565\) − 900.666i − 1.59410i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −658.000 −1.15641 −0.578207 0.815890i \(-0.696248\pi\)
−0.578207 + 0.815890i \(0.696248\pi\)
\(570\) 0 0
\(571\) −256.344 −0.448938 −0.224469 0.974481i \(-0.572065\pi\)
−0.224469 + 0.974481i \(0.572065\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 552.000i 0.960000i
\(576\) 0 0
\(577\) −526.000 −0.911612 −0.455806 0.890079i \(-0.650649\pi\)
−0.455806 + 0.890079i \(0.650649\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 249.415i 0.429286i
\(582\) 0 0
\(583\) − 432.000i − 0.740995i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −464.190 −0.790783 −0.395391 0.918513i \(-0.629391\pi\)
−0.395391 + 0.918513i \(0.629391\pi\)
\(588\) 0 0
\(589\) − 415.692i − 0.705759i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −514.000 −0.866779 −0.433390 0.901207i \(-0.642683\pi\)
−0.433390 + 0.901207i \(0.642683\pi\)
\(594\) 0 0
\(595\) −1163.94 −1.95620
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 408.000i 0.681135i 0.940220 + 0.340568i \(0.110619\pi\)
−0.940220 + 0.340568i \(0.889381\pi\)
\(600\) 0 0
\(601\) −818.000 −1.36106 −0.680532 0.732718i \(-0.738251\pi\)
−0.680532 + 0.732718i \(0.738251\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 505.759i − 0.835965i
\(606\) 0 0
\(607\) − 684.000i − 1.12685i −0.826166 0.563427i \(-0.809483\pi\)
0.826166 0.563427i \(-0.190517\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −997.661 −1.63283
\(612\) 0 0
\(613\) − 498.831i − 0.813753i −0.913483 0.406877i \(-0.866618\pi\)
0.913483 0.406877i \(-0.133382\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 322.000 0.521880 0.260940 0.965355i \(-0.415968\pi\)
0.260940 + 0.965355i \(0.415968\pi\)
\(618\) 0 0
\(619\) −90.0666 −0.145503 −0.0727517 0.997350i \(-0.523178\pi\)
−0.0727517 + 0.997350i \(0.523178\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 744.000i 1.19422i
\(624\) 0 0
\(625\) −671.000 −1.07360
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 387.979i 0.616819i
\(630\) 0 0
\(631\) − 252.000i − 0.399366i −0.979861 0.199683i \(-0.936009\pi\)
0.979861 0.199683i \(-0.0639912\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1413.35 2.22575
\(636\) 0 0
\(637\) − 1316.36i − 2.06650i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 370.000 0.577223 0.288612 0.957446i \(-0.406806\pi\)
0.288612 + 0.957446i \(0.406806\pi\)
\(642\) 0 0
\(643\) −1032.30 −1.60545 −0.802723 0.596352i \(-0.796616\pi\)
−0.802723 + 0.596352i \(0.796616\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 216.000i − 0.333849i −0.985970 0.166924i \(-0.946616\pi\)
0.985970 0.166924i \(-0.0533835\pi\)
\(648\) 0 0
\(649\) −336.000 −0.517720
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 145.492i − 0.222806i −0.993775 0.111403i \(-0.964466\pi\)
0.993775 0.111403i \(-0.0355344\pi\)
\(654\) 0 0
\(655\) − 144.000i − 0.219847i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1060.02 1.60852 0.804260 0.594277i \(-0.202562\pi\)
0.804260 + 0.594277i \(0.202562\pi\)
\(660\) 0 0
\(661\) 1302.50i 1.97050i 0.171114 + 0.985251i \(0.445263\pi\)
−0.171114 + 0.985251i \(0.554737\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −2880.00 −4.33083
\(666\) 0 0
\(667\) 831.384 1.24645
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 384.000i 0.572280i
\(672\) 0 0
\(673\) 1006.00 1.49480 0.747400 0.664375i \(-0.231302\pi\)
0.747400 + 0.664375i \(0.231302\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 270.200i − 0.399114i −0.979886 0.199557i \(-0.936050\pi\)
0.979886 0.199557i \(-0.0639502\pi\)
\(678\) 0 0
\(679\) 1752.00i 2.58027i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1198.58 1.75487 0.877437 0.479692i \(-0.159251\pi\)
0.877437 + 0.479692i \(0.159251\pi\)
\(684\) 0 0
\(685\) 1427.21i 2.08352i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 864.000 1.25399
\(690\) 0 0
\(691\) 436.477 0.631660 0.315830 0.948816i \(-0.397717\pi\)
0.315830 + 0.948816i \(0.397717\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 336.000i 0.483453i
\(696\) 0 0
\(697\) −196.000 −0.281205
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 588.897i 0.840082i 0.907505 + 0.420041i \(0.137984\pi\)
−0.907505 + 0.420041i \(0.862016\pi\)
\(702\) 0 0
\(703\) 960.000i 1.36558i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 249.415 0.352780
\(708\) 0 0
\(709\) − 568.113i − 0.801287i −0.916234 0.400644i \(-0.868787\pi\)
0.916234 0.400644i \(-0.131213\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 288.000 0.403927
\(714\) 0 0
\(715\) −665.108 −0.930220
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 360.000i − 0.500695i −0.968156 0.250348i \(-0.919455\pi\)
0.968156 0.250348i \(-0.0805449\pi\)
\(720\) 0 0
\(721\) −1008.00 −1.39806
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 796.743i − 1.09896i
\(726\) 0 0
\(727\) 660.000i 0.907840i 0.891042 + 0.453920i \(0.149975\pi\)
−0.891042 + 0.453920i \(0.850025\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 96.9948 0.132688
\(732\) 0 0
\(733\) 956.092i 1.30435i 0.758066 + 0.652177i \(0.226144\pi\)
−0.758066 + 0.652177i \(0.773856\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −624.000 −0.846676
\(738\) 0 0
\(739\) 547.328 0.740633 0.370317 0.928906i \(-0.379249\pi\)
0.370317 + 0.928906i \(0.379249\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 864.000i − 1.16285i −0.813599 0.581427i \(-0.802495\pi\)
0.813599 0.581427i \(-0.197505\pi\)
\(744\) 0 0
\(745\) −1392.00 −1.86846
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1579.63i 2.10899i
\(750\) 0 0
\(751\) 444.000i 0.591212i 0.955310 + 0.295606i \(0.0955215\pi\)
−0.955310 + 0.295606i \(0.904478\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −249.415 −0.330351
\(756\) 0 0
\(757\) 872.954i 1.15318i 0.817035 + 0.576588i \(0.195616\pi\)
−0.817035 + 0.576588i \(0.804384\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 14.0000 0.0183968 0.00919842 0.999958i \(-0.497072\pi\)
0.00919842 + 0.999958i \(0.497072\pi\)
\(762\) 0 0
\(763\) −2161.60 −2.83303
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 672.000i − 0.876141i
\(768\) 0 0
\(769\) −194.000 −0.252276 −0.126138 0.992013i \(-0.540258\pi\)
−0.126138 + 0.992013i \(0.540258\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 713.605i 0.923163i 0.887098 + 0.461581i \(0.152718\pi\)
−0.887098 + 0.461581i \(0.847282\pi\)
\(774\) 0 0
\(775\) − 276.000i − 0.356129i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −484.974 −0.622560
\(780\) 0 0
\(781\) 166.277i 0.212903i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −192.000 −0.244586
\(786\) 0 0
\(787\) −1060.02 −1.34691 −0.673453 0.739230i \(-0.735190\pi\)
−0.673453 + 0.739230i \(0.735190\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1560.00i 1.97219i
\(792\) 0 0
\(793\) −768.000 −0.968474
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1461.85i 1.83419i 0.398667 + 0.917096i \(0.369473\pi\)
−0.398667 + 0.917096i \(0.630527\pi\)
\(798\) 0 0
\(799\) − 1008.00i − 1.26158i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −346.410 −0.431395
\(804\) 0 0
\(805\) − 1995.32i − 2.47866i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1138.00 −1.40667 −0.703337 0.710856i \(-0.748308\pi\)
−0.703337 + 0.710856i \(0.748308\pi\)
\(810\) 0 0
\(811\) 630.466 0.777394 0.388697 0.921366i \(-0.372925\pi\)
0.388697 + 0.921366i \(0.372925\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 432.000i − 0.530061i
\(816\) 0 0
\(817\) 240.000 0.293758
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 256.344i − 0.312233i −0.987739 0.156117i \(-0.950102\pi\)
0.987739 0.156117i \(-0.0498976\pi\)
\(822\) 0 0
\(823\) − 396.000i − 0.481166i −0.970629 0.240583i \(-0.922661\pi\)
0.970629 0.240583i \(-0.0773387\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 145.492 0.175928 0.0879639 0.996124i \(-0.471964\pi\)
0.0879639 + 0.996124i \(0.471964\pi\)
\(828\) 0 0
\(829\) 41.5692i 0.0501438i 0.999686 + 0.0250719i \(0.00798147\pi\)
−0.999686 + 0.0250719i \(0.992019\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1330.00 1.59664
\(834\) 0 0
\(835\) 1662.77 1.99134
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1512.00i 1.80215i 0.433668 + 0.901073i \(0.357219\pi\)
−0.433668 + 0.901073i \(0.642781\pi\)
\(840\) 0 0
\(841\) −359.000 −0.426873
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 159.349i − 0.188578i
\(846\) 0 0
\(847\) 876.000i 1.03424i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −665.108 −0.781560
\(852\) 0 0
\(853\) − 748.246i − 0.877193i −0.898684 0.438597i \(-0.855476\pi\)
0.898684 0.438597i \(-0.144524\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1042.00 −1.21587 −0.607935 0.793987i \(-0.708002\pi\)
−0.607935 + 0.793987i \(0.708002\pi\)
\(858\) 0 0
\(859\) 159.349 0.185505 0.0927524 0.995689i \(-0.470433\pi\)
0.0927524 + 0.995689i \(0.470433\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 1104.00i − 1.27926i −0.768684 0.639629i \(-0.779088\pi\)
0.768684 0.639629i \(-0.220912\pi\)
\(864\) 0 0
\(865\) −912.000 −1.05434
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 83.1384i 0.0956714i
\(870\) 0 0
\(871\) − 1248.00i − 1.43284i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 166.277 0.190031
\(876\) 0 0
\(877\) 554.256i 0.631991i 0.948761 + 0.315996i \(0.102338\pi\)
−0.948761 + 0.315996i \(0.897662\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −610.000 −0.692395 −0.346198 0.938162i \(-0.612527\pi\)
−0.346198 + 0.938162i \(0.612527\pi\)
\(882\) 0 0
\(883\) 76.2102 0.0863083 0.0431542 0.999068i \(-0.486259\pi\)
0.0431542 + 0.999068i \(0.486259\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 384.000i − 0.432920i −0.976291 0.216460i \(-0.930549\pi\)
0.976291 0.216460i \(-0.0694511\pi\)
\(888\) 0 0
\(889\) −2448.00 −2.75366
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 2494.15i − 2.79300i
\(894\) 0 0
\(895\) − 1872.00i − 2.09162i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −415.692 −0.462394
\(900\) 0 0
\(901\) 872.954i 0.968872i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1440.00 1.59116
\(906\) 0 0
\(907\) 713.605 0.786775 0.393388 0.919373i \(-0.371303\pi\)
0.393388 + 0.919373i \(0.371303\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 864.000i 0.948408i 0.880415 + 0.474204i \(0.157264\pi\)
−0.880415 + 0.474204i \(0.842736\pi\)
\(912\) 0 0
\(913\) −144.000 −0.157722
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 249.415i 0.271991i
\(918\) 0 0
\(919\) − 1068.00i − 1.16213i −0.813856 0.581066i \(-0.802636\pi\)
0.813856 0.581066i \(-0.197364\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −332.554 −0.360297
\(924\) 0 0
\(925\) 637.395i 0.689075i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −110.000 −0.118407 −0.0592034 0.998246i \(-0.518856\pi\)
−0.0592034 + 0.998246i \(0.518856\pi\)
\(930\) 0 0
\(931\) 3290.90 3.53480
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 672.000i − 0.718717i
\(936\) 0 0
\(937\) 1630.00 1.73959 0.869797 0.493409i \(-0.164250\pi\)
0.869797 + 0.493409i \(0.164250\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 48.4974i 0.0515382i 0.999668 + 0.0257691i \(0.00820346\pi\)
−0.999668 + 0.0257691i \(0.991797\pi\)
\(942\) 0 0
\(943\) − 336.000i − 0.356310i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1738.98 −1.83630 −0.918152 0.396229i \(-0.870318\pi\)
−0.918152 + 0.396229i \(0.870318\pi\)
\(948\) 0 0
\(949\) − 692.820i − 0.730053i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1714.00 −1.79853 −0.899265 0.437403i \(-0.855898\pi\)
−0.899265 + 0.437403i \(0.855898\pi\)
\(954\) 0 0
\(955\) −1662.77 −1.74112
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 2472.00i − 2.57769i
\(960\) 0 0
\(961\) 817.000 0.850156
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 13.8564i − 0.0143590i
\(966\) 0 0
\(967\) 1212.00i 1.25336i 0.779276 + 0.626680i \(0.215587\pi\)
−0.779276 + 0.626680i \(0.784413\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 311.769 0.321080 0.160540 0.987029i \(-0.448676\pi\)
0.160540 + 0.987029i \(0.448676\pi\)
\(972\) 0 0
\(973\) − 581.969i − 0.598118i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −14.0000 −0.0143296 −0.00716479 0.999974i \(-0.502281\pi\)
−0.00716479 + 0.999974i \(0.502281\pi\)
\(978\) 0 0
\(979\) −429.549 −0.438763
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 384.000i − 0.390641i −0.980739 0.195320i \(-0.937425\pi\)
0.980739 0.195320i \(-0.0625747\pi\)
\(984\) 0 0
\(985\) −912.000 −0.925888
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 166.277i 0.168126i
\(990\) 0 0
\(991\) 636.000i 0.641776i 0.947117 + 0.320888i \(0.103981\pi\)
−0.947117 + 0.320888i \(0.896019\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −2078.46 −2.08891
\(996\) 0 0
\(997\) 1441.07i 1.44540i 0.691161 + 0.722701i \(0.257100\pi\)
−0.691161 + 0.722701i \(0.742900\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1152.3.b.e.703.3 4
3.2 odd 2 384.3.b.b.319.1 4
4.3 odd 2 inner 1152.3.b.e.703.4 4
8.3 odd 2 inner 1152.3.b.e.703.2 4
8.5 even 2 inner 1152.3.b.e.703.1 4
12.11 even 2 384.3.b.b.319.3 yes 4
16.3 odd 4 2304.3.g.r.1279.3 4
16.5 even 4 2304.3.g.r.1279.2 4
16.11 odd 4 2304.3.g.r.1279.1 4
16.13 even 4 2304.3.g.r.1279.4 4
24.5 odd 2 384.3.b.b.319.4 yes 4
24.11 even 2 384.3.b.b.319.2 yes 4
48.5 odd 4 768.3.g.e.511.4 4
48.11 even 4 768.3.g.e.511.2 4
48.29 odd 4 768.3.g.e.511.1 4
48.35 even 4 768.3.g.e.511.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
384.3.b.b.319.1 4 3.2 odd 2
384.3.b.b.319.2 yes 4 24.11 even 2
384.3.b.b.319.3 yes 4 12.11 even 2
384.3.b.b.319.4 yes 4 24.5 odd 2
768.3.g.e.511.1 4 48.29 odd 4
768.3.g.e.511.2 4 48.11 even 4
768.3.g.e.511.3 4 48.35 even 4
768.3.g.e.511.4 4 48.5 odd 4
1152.3.b.e.703.1 4 8.5 even 2 inner
1152.3.b.e.703.2 4 8.3 odd 2 inner
1152.3.b.e.703.3 4 1.1 even 1 trivial
1152.3.b.e.703.4 4 4.3 odd 2 inner
2304.3.g.r.1279.1 4 16.11 odd 4
2304.3.g.r.1279.2 4 16.5 even 4
2304.3.g.r.1279.3 4 16.3 odd 4
2304.3.g.r.1279.4 4 16.13 even 4