Properties

Label 1152.3.g.a.127.2
Level $1152$
Weight $3$
Character 1152.127
Analytic conductor $31.390$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1152,3,Mod(127,1152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1152, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1152.127");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1152.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.3897264543\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: no (minimal twist has level 128)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 127.2
Root \(-0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1152.127
Dual form 1152.3.g.a.127.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-7.65685 q^{5} +1.65685i q^{7} +1.51472i q^{11} -0.343146 q^{13} +13.3137 q^{17} +20.8284i q^{19} +33.6569i q^{23} +33.6274 q^{25} -39.6569 q^{29} -45.2548i q^{31} -12.6863i q^{35} -29.5980 q^{37} -24.6274 q^{41} -50.0833i q^{43} -35.3137i q^{47} +46.2548 q^{49} +16.3431 q^{53} -11.5980i q^{55} -53.1127i q^{59} +34.4020 q^{61} +2.62742 q^{65} -62.4853i q^{67} -40.2843i q^{71} +55.9411 q^{73} -2.50967 q^{77} -137.941i q^{79} -114.652i q^{83} -101.941 q^{85} +2.56854 q^{89} -0.568542i q^{91} -159.480i q^{95} -138.569 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{5} - 24 q^{13} + 8 q^{17} + 44 q^{25} - 136 q^{29} + 40 q^{37} - 8 q^{41} + 4 q^{49} + 88 q^{53} + 296 q^{61} - 80 q^{65} + 88 q^{73} + 352 q^{77} - 272 q^{85} - 216 q^{89} - 328 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(641\) \(901\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −7.65685 −1.53137 −0.765685 0.643215i \(-0.777600\pi\)
−0.765685 + 0.643215i \(0.777600\pi\)
\(6\) 0 0
\(7\) 1.65685i 0.236693i 0.992972 + 0.118347i \(0.0377594\pi\)
−0.992972 + 0.118347i \(0.962241\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.51472i 0.137702i 0.997627 + 0.0688508i \(0.0219333\pi\)
−0.997627 + 0.0688508i \(0.978067\pi\)
\(12\) 0 0
\(13\) −0.343146 −0.0263958 −0.0131979 0.999913i \(-0.504201\pi\)
−0.0131979 + 0.999913i \(0.504201\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 13.3137 0.783159 0.391580 0.920144i \(-0.371929\pi\)
0.391580 + 0.920144i \(0.371929\pi\)
\(18\) 0 0
\(19\) 20.8284i 1.09623i 0.836402 + 0.548117i \(0.184655\pi\)
−0.836402 + 0.548117i \(0.815345\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 33.6569i 1.46334i 0.681658 + 0.731671i \(0.261259\pi\)
−0.681658 + 0.731671i \(0.738741\pi\)
\(24\) 0 0
\(25\) 33.6274 1.34510
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −39.6569 −1.36748 −0.683739 0.729727i \(-0.739647\pi\)
−0.683739 + 0.729727i \(0.739647\pi\)
\(30\) 0 0
\(31\) − 45.2548i − 1.45983i −0.683536 0.729917i \(-0.739559\pi\)
0.683536 0.729917i \(-0.260441\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 12.6863i − 0.362465i
\(36\) 0 0
\(37\) −29.5980 −0.799945 −0.399973 0.916527i \(-0.630980\pi\)
−0.399973 + 0.916527i \(0.630980\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −24.6274 −0.600669 −0.300334 0.953834i \(-0.597098\pi\)
−0.300334 + 0.953834i \(0.597098\pi\)
\(42\) 0 0
\(43\) − 50.0833i − 1.16473i −0.812929 0.582364i \(-0.802128\pi\)
0.812929 0.582364i \(-0.197872\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 35.3137i − 0.751355i −0.926750 0.375678i \(-0.877410\pi\)
0.926750 0.375678i \(-0.122590\pi\)
\(48\) 0 0
\(49\) 46.2548 0.943976
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 16.3431 0.308361 0.154181 0.988043i \(-0.450726\pi\)
0.154181 + 0.988043i \(0.450726\pi\)
\(54\) 0 0
\(55\) − 11.5980i − 0.210872i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 53.1127i − 0.900215i −0.892974 0.450108i \(-0.851386\pi\)
0.892974 0.450108i \(-0.148614\pi\)
\(60\) 0 0
\(61\) 34.4020 0.563968 0.281984 0.959419i \(-0.409008\pi\)
0.281984 + 0.959419i \(0.409008\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.62742 0.0404218
\(66\) 0 0
\(67\) − 62.4853i − 0.932616i −0.884622 0.466308i \(-0.845584\pi\)
0.884622 0.466308i \(-0.154416\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 40.2843i − 0.567384i −0.958915 0.283692i \(-0.908441\pi\)
0.958915 0.283692i \(-0.0915593\pi\)
\(72\) 0 0
\(73\) 55.9411 0.766317 0.383158 0.923683i \(-0.374836\pi\)
0.383158 + 0.923683i \(0.374836\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.50967 −0.0325931
\(78\) 0 0
\(79\) − 137.941i − 1.74609i −0.487639 0.873045i \(-0.662142\pi\)
0.487639 0.873045i \(-0.337858\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 114.652i − 1.38135i −0.723167 0.690674i \(-0.757314\pi\)
0.723167 0.690674i \(-0.242686\pi\)
\(84\) 0 0
\(85\) −101.941 −1.19931
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2.56854 0.0288600 0.0144300 0.999896i \(-0.495407\pi\)
0.0144300 + 0.999896i \(0.495407\pi\)
\(90\) 0 0
\(91\) − 0.568542i − 0.00624772i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 159.480i − 1.67874i
\(96\) 0 0
\(97\) −138.569 −1.42854 −0.714271 0.699869i \(-0.753242\pi\)
−0.714271 + 0.699869i \(0.753242\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 45.5980 0.451465 0.225733 0.974189i \(-0.427522\pi\)
0.225733 + 0.974189i \(0.427522\pi\)
\(102\) 0 0
\(103\) 20.4020i 0.198078i 0.995084 + 0.0990389i \(0.0315768\pi\)
−0.995084 + 0.0990389i \(0.968423\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 97.5147i 0.911353i 0.890146 + 0.455676i \(0.150603\pi\)
−0.890146 + 0.455676i \(0.849397\pi\)
\(108\) 0 0
\(109\) −149.598 −1.37246 −0.686229 0.727385i \(-0.740735\pi\)
−0.686229 + 0.727385i \(0.740735\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 168.510 1.49124 0.745618 0.666374i \(-0.232154\pi\)
0.745618 + 0.666374i \(0.232154\pi\)
\(114\) 0 0
\(115\) − 257.706i − 2.24092i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 22.0589i 0.185369i
\(120\) 0 0
\(121\) 118.706 0.981038
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −66.0589 −0.528471
\(126\) 0 0
\(127\) 102.627i 0.808090i 0.914739 + 0.404045i \(0.132396\pi\)
−0.914739 + 0.404045i \(0.867604\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 45.6325i − 0.348339i −0.984716 0.174170i \(-0.944276\pi\)
0.984716 0.174170i \(-0.0557241\pi\)
\(132\) 0 0
\(133\) −34.5097 −0.259471
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 81.8823 0.597681 0.298840 0.954303i \(-0.403400\pi\)
0.298840 + 0.954303i \(0.403400\pi\)
\(138\) 0 0
\(139\) 52.5442i 0.378016i 0.981976 + 0.189008i \(0.0605271\pi\)
−0.981976 + 0.189008i \(0.939473\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 0.519769i − 0.00363475i
\(144\) 0 0
\(145\) 303.647 2.09412
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −116.912 −0.784642 −0.392321 0.919828i \(-0.628328\pi\)
−0.392321 + 0.919828i \(0.628328\pi\)
\(150\) 0 0
\(151\) − 214.676i − 1.42170i −0.703345 0.710848i \(-0.748311\pi\)
0.703345 0.710848i \(-0.251689\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 346.510i 2.23555i
\(156\) 0 0
\(157\) −136.108 −0.866928 −0.433464 0.901171i \(-0.642709\pi\)
−0.433464 + 0.901171i \(0.642709\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −55.7645 −0.346363
\(162\) 0 0
\(163\) − 53.6812i − 0.329333i −0.986349 0.164666i \(-0.947345\pi\)
0.986349 0.164666i \(-0.0526547\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 93.2061i 0.558120i 0.960274 + 0.279060i \(0.0900229\pi\)
−0.960274 + 0.279060i \(0.909977\pi\)
\(168\) 0 0
\(169\) −168.882 −0.999303
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 16.3431 0.0944691 0.0472345 0.998884i \(-0.484959\pi\)
0.0472345 + 0.998884i \(0.484959\pi\)
\(174\) 0 0
\(175\) 55.7157i 0.318376i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 120.142i − 0.671185i −0.942007 0.335593i \(-0.891063\pi\)
0.942007 0.335593i \(-0.108937\pi\)
\(180\) 0 0
\(181\) −176.108 −0.972970 −0.486485 0.873689i \(-0.661721\pi\)
−0.486485 + 0.873689i \(0.661721\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 226.627 1.22501
\(186\) 0 0
\(187\) 20.1665i 0.107842i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 62.8629i − 0.329125i −0.986367 0.164563i \(-0.947379\pi\)
0.986367 0.164563i \(-0.0526213\pi\)
\(192\) 0 0
\(193\) −69.0782 −0.357918 −0.178959 0.983857i \(-0.557273\pi\)
−0.178959 + 0.983857i \(0.557273\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 45.8335 0.232657 0.116329 0.993211i \(-0.462887\pi\)
0.116329 + 0.993211i \(0.462887\pi\)
\(198\) 0 0
\(199\) 220.167i 1.10636i 0.833060 + 0.553182i \(0.186587\pi\)
−0.833060 + 0.553182i \(0.813413\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 65.7056i − 0.323673i
\(204\) 0 0
\(205\) 188.569 0.919847
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −31.5492 −0.150953
\(210\) 0 0
\(211\) 30.7696i 0.145827i 0.997338 + 0.0729136i \(0.0232297\pi\)
−0.997338 + 0.0729136i \(0.976770\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 383.480i 1.78363i
\(216\) 0 0
\(217\) 74.9807 0.345533
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −4.56854 −0.0206721
\(222\) 0 0
\(223\) − 210.745i − 0.945046i −0.881318 0.472523i \(-0.843343\pi\)
0.881318 0.472523i \(-0.156657\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 403.220i − 1.77630i −0.459553 0.888151i \(-0.651990\pi\)
0.459553 0.888151i \(-0.348010\pi\)
\(228\) 0 0
\(229\) 359.186 1.56850 0.784249 0.620447i \(-0.213049\pi\)
0.784249 + 0.620447i \(0.213049\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −210.451 −0.903222 −0.451611 0.892215i \(-0.649151\pi\)
−0.451611 + 0.892215i \(0.649151\pi\)
\(234\) 0 0
\(235\) 270.392i 1.15060i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 332.215i − 1.39002i −0.718999 0.695011i \(-0.755399\pi\)
0.718999 0.695011i \(-0.244601\pi\)
\(240\) 0 0
\(241\) 71.7056 0.297534 0.148767 0.988872i \(-0.452470\pi\)
0.148767 + 0.988872i \(0.452470\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −354.167 −1.44558
\(246\) 0 0
\(247\) − 7.14719i − 0.0289360i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 50.6518i 0.201800i 0.994897 + 0.100900i \(0.0321722\pi\)
−0.994897 + 0.100900i \(0.967828\pi\)
\(252\) 0 0
\(253\) −50.9807 −0.201505
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −338.000 −1.31518 −0.657588 0.753378i \(-0.728423\pi\)
−0.657588 + 0.753378i \(0.728423\pi\)
\(258\) 0 0
\(259\) − 49.0395i − 0.189342i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 258.794i − 0.984007i −0.870593 0.492004i \(-0.836265\pi\)
0.870593 0.492004i \(-0.163735\pi\)
\(264\) 0 0
\(265\) −125.137 −0.472215
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 399.637 1.48564 0.742819 0.669492i \(-0.233488\pi\)
0.742819 + 0.669492i \(0.233488\pi\)
\(270\) 0 0
\(271\) − 253.823i − 0.936618i −0.883565 0.468309i \(-0.844863\pi\)
0.883565 0.468309i \(-0.155137\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 50.9361i 0.185222i
\(276\) 0 0
\(277\) 505.696 1.82562 0.912808 0.408389i \(-0.133909\pi\)
0.912808 + 0.408389i \(0.133909\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −245.196 −0.872583 −0.436292 0.899805i \(-0.643708\pi\)
−0.436292 + 0.899805i \(0.643708\pi\)
\(282\) 0 0
\(283\) 22.1522i 0.0782765i 0.999234 + 0.0391382i \(0.0124613\pi\)
−0.999234 + 0.0391382i \(0.987539\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 40.8040i − 0.142174i
\(288\) 0 0
\(289\) −111.745 −0.386661
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 232.343 0.792980 0.396490 0.918039i \(-0.370228\pi\)
0.396490 + 0.918039i \(0.370228\pi\)
\(294\) 0 0
\(295\) 406.676i 1.37856i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 11.5492i − 0.0386261i
\(300\) 0 0
\(301\) 82.9807 0.275683
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −263.411 −0.863643
\(306\) 0 0
\(307\) 408.240i 1.32977i 0.746945 + 0.664885i \(0.231520\pi\)
−0.746945 + 0.664885i \(0.768480\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 544.715i 1.75149i 0.482770 + 0.875747i \(0.339631\pi\)
−0.482770 + 0.875747i \(0.660369\pi\)
\(312\) 0 0
\(313\) −327.373 −1.04592 −0.522959 0.852358i \(-0.675172\pi\)
−0.522959 + 0.852358i \(0.675172\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 120.343 0.379631 0.189816 0.981820i \(-0.439211\pi\)
0.189816 + 0.981820i \(0.439211\pi\)
\(318\) 0 0
\(319\) − 60.0690i − 0.188304i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 277.304i 0.858525i
\(324\) 0 0
\(325\) −11.5391 −0.0355049
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 58.5097 0.177841
\(330\) 0 0
\(331\) − 61.1615i − 0.184778i −0.995723 0.0923889i \(-0.970550\pi\)
0.995723 0.0923889i \(-0.0294503\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 478.441i 1.42818i
\(336\) 0 0
\(337\) −58.7838 −0.174433 −0.0872164 0.996189i \(-0.527797\pi\)
−0.0872164 + 0.996189i \(0.527797\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 68.5483 0.201022
\(342\) 0 0
\(343\) 157.823i 0.460126i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 396.406i − 1.14238i −0.820818 0.571190i \(-0.806482\pi\)
0.820818 0.571190i \(-0.193518\pi\)
\(348\) 0 0
\(349\) 7.18586 0.0205899 0.0102949 0.999947i \(-0.496723\pi\)
0.0102949 + 0.999947i \(0.496723\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 171.726 0.486475 0.243238 0.969967i \(-0.421790\pi\)
0.243238 + 0.969967i \(0.421790\pi\)
\(354\) 0 0
\(355\) 308.451i 0.868875i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 160.617i 0.447402i 0.974658 + 0.223701i \(0.0718139\pi\)
−0.974658 + 0.223701i \(0.928186\pi\)
\(360\) 0 0
\(361\) −72.8234 −0.201727
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −428.333 −1.17352
\(366\) 0 0
\(367\) − 55.1960i − 0.150398i −0.997169 0.0751989i \(-0.976041\pi\)
0.997169 0.0751989i \(-0.0239592\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 27.0782i 0.0729871i
\(372\) 0 0
\(373\) −346.853 −0.929900 −0.464950 0.885337i \(-0.653928\pi\)
−0.464950 + 0.885337i \(0.653928\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 13.6081 0.0360957
\(378\) 0 0
\(379\) 112.759i 0.297518i 0.988873 + 0.148759i \(0.0475279\pi\)
−0.988873 + 0.148759i \(0.952472\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 618.039i − 1.61368i −0.590771 0.806839i \(-0.701176\pi\)
0.590771 0.806839i \(-0.298824\pi\)
\(384\) 0 0
\(385\) 19.2162 0.0499121
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 419.088 1.07735 0.538674 0.842514i \(-0.318925\pi\)
0.538674 + 0.842514i \(0.318925\pi\)
\(390\) 0 0
\(391\) 448.098i 1.14603i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1056.20i 2.67391i
\(396\) 0 0
\(397\) 564.441 1.42176 0.710882 0.703311i \(-0.248296\pi\)
0.710882 + 0.703311i \(0.248296\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 199.823 0.498313 0.249156 0.968463i \(-0.419847\pi\)
0.249156 + 0.968463i \(0.419847\pi\)
\(402\) 0 0
\(403\) 15.5290i 0.0385335i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 44.8326i − 0.110154i
\(408\) 0 0
\(409\) −118.902 −0.290713 −0.145356 0.989379i \(-0.546433\pi\)
−0.145356 + 0.989379i \(0.546433\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 88.0000 0.213075
\(414\) 0 0
\(415\) 877.872i 2.11535i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 304.093i 0.725760i 0.931836 + 0.362880i \(0.118206\pi\)
−0.931836 + 0.362880i \(0.881794\pi\)
\(420\) 0 0
\(421\) 188.676 0.448162 0.224081 0.974571i \(-0.428062\pi\)
0.224081 + 0.974571i \(0.428062\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 447.706 1.05343
\(426\) 0 0
\(427\) 56.9991i 0.133487i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 402.843i 0.934670i 0.884080 + 0.467335i \(0.154786\pi\)
−0.884080 + 0.467335i \(0.845214\pi\)
\(432\) 0 0
\(433\) −721.862 −1.66712 −0.833559 0.552431i \(-0.813700\pi\)
−0.833559 + 0.552431i \(0.813700\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −701.019 −1.60416
\(438\) 0 0
\(439\) 333.872i 0.760529i 0.924878 + 0.380264i \(0.124167\pi\)
−0.924878 + 0.380264i \(0.875833\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 393.848i 0.889047i 0.895767 + 0.444523i \(0.146627\pi\)
−0.895767 + 0.444523i \(0.853373\pi\)
\(444\) 0 0
\(445\) −19.6670 −0.0441954
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −26.9218 −0.0599594 −0.0299797 0.999551i \(-0.509544\pi\)
−0.0299797 + 0.999551i \(0.509544\pi\)
\(450\) 0 0
\(451\) − 37.3036i − 0.0827131i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 4.35325i 0.00956758i
\(456\) 0 0
\(457\) 222.118 0.486034 0.243017 0.970022i \(-0.421863\pi\)
0.243017 + 0.970022i \(0.421863\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 139.088 0.301710 0.150855 0.988556i \(-0.451797\pi\)
0.150855 + 0.988556i \(0.451797\pi\)
\(462\) 0 0
\(463\) 480.098i 1.03693i 0.855100 + 0.518464i \(0.173496\pi\)
−0.855100 + 0.518464i \(0.826504\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 105.092i 0.225037i 0.993650 + 0.112519i \(0.0358918\pi\)
−0.993650 + 0.112519i \(0.964108\pi\)
\(468\) 0 0
\(469\) 103.529 0.220744
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 75.8620 0.160385
\(474\) 0 0
\(475\) 700.406i 1.47454i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 391.765i 0.817880i 0.912561 + 0.408940i \(0.134101\pi\)
−0.912561 + 0.408940i \(0.865899\pi\)
\(480\) 0 0
\(481\) 10.1564 0.0211152
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1061.00 2.18763
\(486\) 0 0
\(487\) − 567.716i − 1.16574i −0.812565 0.582870i \(-0.801930\pi\)
0.812565 0.582870i \(-0.198070\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 755.602i − 1.53890i −0.638704 0.769452i \(-0.720529\pi\)
0.638704 0.769452i \(-0.279471\pi\)
\(492\) 0 0
\(493\) −527.980 −1.07095
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 66.7452 0.134296
\(498\) 0 0
\(499\) − 208.759i − 0.418356i −0.977878 0.209178i \(-0.932921\pi\)
0.977878 0.209178i \(-0.0670787\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 136.187i − 0.270749i −0.990795 0.135374i \(-0.956776\pi\)
0.990795 0.135374i \(-0.0432237\pi\)
\(504\) 0 0
\(505\) −349.137 −0.691361
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −247.892 −0.487018 −0.243509 0.969899i \(-0.578299\pi\)
−0.243509 + 0.969899i \(0.578299\pi\)
\(510\) 0 0
\(511\) 92.6863i 0.181382i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 156.215i − 0.303331i
\(516\) 0 0
\(517\) 53.4903 0.103463
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −881.724 −1.69237 −0.846184 0.532890i \(-0.821106\pi\)
−0.846184 + 0.532890i \(0.821106\pi\)
\(522\) 0 0
\(523\) − 818.181i − 1.56440i −0.623028 0.782200i \(-0.714098\pi\)
0.623028 0.782200i \(-0.285902\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 602.510i − 1.14328i
\(528\) 0 0
\(529\) −603.784 −1.14137
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 8.45079 0.0158551
\(534\) 0 0
\(535\) − 746.656i − 1.39562i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 70.0631i 0.129987i
\(540\) 0 0
\(541\) 263.892 0.487786 0.243893 0.969802i \(-0.421575\pi\)
0.243893 + 0.969802i \(0.421575\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1145.45 2.10174
\(546\) 0 0
\(547\) − 52.6417i − 0.0962371i −0.998842 0.0481186i \(-0.984677\pi\)
0.998842 0.0481186i \(-0.0153225\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 825.990i − 1.49907i
\(552\) 0 0
\(553\) 228.548 0.413288
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 725.362 1.30227 0.651133 0.758963i \(-0.274294\pi\)
0.651133 + 0.758963i \(0.274294\pi\)
\(558\) 0 0
\(559\) 17.1859i 0.0307439i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 156.780i 0.278472i 0.990259 + 0.139236i \(0.0444646\pi\)
−0.990259 + 0.139236i \(0.955535\pi\)
\(564\) 0 0
\(565\) −1290.25 −2.28364
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −796.705 −1.40018 −0.700092 0.714053i \(-0.746858\pi\)
−0.700092 + 0.714053i \(0.746858\pi\)
\(570\) 0 0
\(571\) − 151.103i − 0.264628i −0.991208 0.132314i \(-0.957759\pi\)
0.991208 0.132314i \(-0.0422407\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1131.79i 1.96834i
\(576\) 0 0
\(577\) 462.313 0.801235 0.400618 0.916245i \(-0.368796\pi\)
0.400618 + 0.916245i \(0.368796\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 189.961 0.326956
\(582\) 0 0
\(583\) 24.7553i 0.0424619i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 278.721i − 0.474822i −0.971409 0.237411i \(-0.923701\pi\)
0.971409 0.237411i \(-0.0762989\pi\)
\(588\) 0 0
\(589\) 942.587 1.60032
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −934.548 −1.57597 −0.787983 0.615696i \(-0.788875\pi\)
−0.787983 + 0.615696i \(0.788875\pi\)
\(594\) 0 0
\(595\) − 168.902i − 0.283868i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 1004.74i − 1.67735i −0.544629 0.838677i \(-0.683330\pi\)
0.544629 0.838677i \(-0.316670\pi\)
\(600\) 0 0
\(601\) 722.451 1.20208 0.601041 0.799218i \(-0.294753\pi\)
0.601041 + 0.799218i \(0.294753\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −908.912 −1.50233
\(606\) 0 0
\(607\) − 344.431i − 0.567431i −0.958909 0.283715i \(-0.908433\pi\)
0.958909 0.283715i \(-0.0915671\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 12.1177i 0.0198326i
\(612\) 0 0
\(613\) 839.657 1.36975 0.684875 0.728660i \(-0.259857\pi\)
0.684875 + 0.728660i \(0.259857\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 41.8620 0.0678477 0.0339239 0.999424i \(-0.489200\pi\)
0.0339239 + 0.999424i \(0.489200\pi\)
\(618\) 0 0
\(619\) 1098.60i 1.77480i 0.460997 + 0.887401i \(0.347492\pi\)
−0.460997 + 0.887401i \(0.652508\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 4.25570i 0.00683098i
\(624\) 0 0
\(625\) −334.882 −0.535812
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −394.059 −0.626485
\(630\) 0 0
\(631\) − 1042.32i − 1.65186i −0.563774 0.825929i \(-0.690651\pi\)
0.563774 0.825929i \(-0.309349\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 785.803i − 1.23749i
\(636\) 0 0
\(637\) −15.8721 −0.0249170
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −448.412 −0.699551 −0.349775 0.936834i \(-0.613742\pi\)
−0.349775 + 0.936834i \(0.613742\pi\)
\(642\) 0 0
\(643\) − 523.740i − 0.814526i −0.913311 0.407263i \(-0.866483\pi\)
0.913311 0.407263i \(-0.133517\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 465.283i 0.719140i 0.933118 + 0.359570i \(0.117077\pi\)
−0.933118 + 0.359570i \(0.882923\pi\)
\(648\) 0 0
\(649\) 80.4508 0.123961
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 283.559 0.434241 0.217120 0.976145i \(-0.430334\pi\)
0.217120 + 0.976145i \(0.430334\pi\)
\(654\) 0 0
\(655\) 349.401i 0.533437i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 209.710i − 0.318224i −0.987261 0.159112i \(-0.949137\pi\)
0.987261 0.159112i \(-0.0508631\pi\)
\(660\) 0 0
\(661\) 31.4214 0.0475361 0.0237680 0.999718i \(-0.492434\pi\)
0.0237680 + 0.999718i \(0.492434\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 264.235 0.397347
\(666\) 0 0
\(667\) − 1334.72i − 2.00109i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 52.1094i 0.0776593i
\(672\) 0 0
\(673\) 1327.00 1.97177 0.985883 0.167433i \(-0.0535478\pi\)
0.985883 + 0.167433i \(0.0535478\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 211.559 0.312495 0.156248 0.987718i \(-0.450060\pi\)
0.156248 + 0.987718i \(0.450060\pi\)
\(678\) 0 0
\(679\) − 229.588i − 0.338126i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 801.799i − 1.17394i −0.809610 0.586969i \(-0.800321\pi\)
0.809610 0.586969i \(-0.199679\pi\)
\(684\) 0 0
\(685\) −626.960 −0.915271
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −5.60808 −0.00813945
\(690\) 0 0
\(691\) 173.161i 0.250595i 0.992119 + 0.125298i \(0.0399886\pi\)
−0.992119 + 0.125298i \(0.960011\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 402.323i − 0.578882i
\(696\) 0 0
\(697\) −327.882 −0.470419
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −764.912 −1.09117 −0.545586 0.838055i \(-0.683693\pi\)
−0.545586 + 0.838055i \(0.683693\pi\)
\(702\) 0 0
\(703\) − 616.479i − 0.876927i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 75.5492i 0.106859i
\(708\) 0 0
\(709\) −252.656 −0.356355 −0.178178 0.983998i \(-0.557020\pi\)
−0.178178 + 0.983998i \(0.557020\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1523.14 2.13623
\(714\) 0 0
\(715\) 3.97980i 0.00556615i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 806.725i 1.12201i 0.827813 + 0.561005i \(0.189585\pi\)
−0.827813 + 0.561005i \(0.810415\pi\)
\(720\) 0 0
\(721\) −33.8032 −0.0468837
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1333.56 −1.83939
\(726\) 0 0
\(727\) 1185.75i 1.63102i 0.578740 + 0.815512i \(0.303545\pi\)
−0.578740 + 0.815512i \(0.696455\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 666.794i − 0.912167i
\(732\) 0 0
\(733\) −785.911 −1.07218 −0.536092 0.844160i \(-0.680100\pi\)
−0.536092 + 0.844160i \(0.680100\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 94.6476 0.128423
\(738\) 0 0
\(739\) 1074.28i 1.45369i 0.686800 + 0.726846i \(0.259015\pi\)
−0.686800 + 0.726846i \(0.740985\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 385.852i − 0.519316i −0.965701 0.259658i \(-0.916390\pi\)
0.965701 0.259658i \(-0.0836099\pi\)
\(744\) 0 0
\(745\) 895.176 1.20158
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −161.568 −0.215711
\(750\) 0 0
\(751\) − 729.665i − 0.971592i −0.874072 0.485796i \(-0.838530\pi\)
0.874072 0.485796i \(-0.161470\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1643.74i 2.17714i
\(756\) 0 0
\(757\) −570.617 −0.753788 −0.376894 0.926256i \(-0.623008\pi\)
−0.376894 + 0.926256i \(0.623008\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 347.450 0.456570 0.228285 0.973594i \(-0.426688\pi\)
0.228285 + 0.973594i \(0.426688\pi\)
\(762\) 0 0
\(763\) − 247.862i − 0.324852i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 18.2254i 0.0237619i
\(768\) 0 0
\(769\) 505.980 0.657971 0.328986 0.944335i \(-0.393293\pi\)
0.328986 + 0.944335i \(0.393293\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 476.656 0.616631 0.308316 0.951284i \(-0.400235\pi\)
0.308316 + 0.951284i \(0.400235\pi\)
\(774\) 0 0
\(775\) − 1521.80i − 1.96362i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 512.950i − 0.658473i
\(780\) 0 0
\(781\) 61.0193 0.0781298
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1042.16 1.32759
\(786\) 0 0
\(787\) 884.731i 1.12418i 0.827076 + 0.562091i \(0.190003\pi\)
−0.827076 + 0.562091i \(0.809997\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 279.196i 0.352966i
\(792\) 0 0
\(793\) −11.8049 −0.0148864
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −956.441 −1.20005 −0.600026 0.799981i \(-0.704843\pi\)
−0.600026 + 0.799981i \(0.704843\pi\)
\(798\) 0 0
\(799\) − 470.156i − 0.588431i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 84.7351i 0.105523i
\(804\) 0 0
\(805\) 426.981 0.530411
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1185.72 −1.46567 −0.732833 0.680408i \(-0.761802\pi\)
−0.732833 + 0.680408i \(0.761802\pi\)
\(810\) 0 0
\(811\) − 1017.95i − 1.25517i −0.778547 0.627587i \(-0.784043\pi\)
0.778547 0.627587i \(-0.215957\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 411.029i 0.504331i
\(816\) 0 0
\(817\) 1043.16 1.27681
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1359.19 −1.65552 −0.827762 0.561079i \(-0.810386\pi\)
−0.827762 + 0.561079i \(0.810386\pi\)
\(822\) 0 0
\(823\) 360.382i 0.437888i 0.975737 + 0.218944i \(0.0702612\pi\)
−0.975737 + 0.218944i \(0.929739\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 464.475i 0.561639i 0.959761 + 0.280819i \(0.0906062\pi\)
−0.959761 + 0.280819i \(0.909394\pi\)
\(828\) 0 0
\(829\) −103.166 −0.124446 −0.0622230 0.998062i \(-0.519819\pi\)
−0.0622230 + 0.998062i \(0.519819\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 615.823 0.739284
\(834\) 0 0
\(835\) − 713.665i − 0.854689i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 687.204i 0.819075i 0.912293 + 0.409538i \(0.134310\pi\)
−0.912293 + 0.409538i \(0.865690\pi\)
\(840\) 0 0
\(841\) 731.666 0.869995
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1293.11 1.53030
\(846\) 0 0
\(847\) 196.678i 0.232205i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 996.175i − 1.17059i
\(852\) 0 0
\(853\) −693.833 −0.813404 −0.406702 0.913561i \(-0.633321\pi\)
−0.406702 + 0.913561i \(0.633321\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.35325 0.00274591 0.00137296 0.999999i \(-0.499563\pi\)
0.00137296 + 0.999999i \(0.499563\pi\)
\(858\) 0 0
\(859\) − 1422.49i − 1.65599i −0.560737 0.827994i \(-0.689482\pi\)
0.560737 0.827994i \(-0.310518\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 501.961i − 0.581647i −0.956777 0.290823i \(-0.906071\pi\)
0.956777 0.290823i \(-0.0939292\pi\)
\(864\) 0 0
\(865\) −125.137 −0.144667
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 208.942 0.240440
\(870\) 0 0
\(871\) 21.4416i 0.0246172i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 109.450i − 0.125086i
\(876\) 0 0
\(877\) −1560.73 −1.77963 −0.889814 0.456324i \(-0.849166\pi\)
−0.889814 + 0.456324i \(0.849166\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −665.294 −0.755157 −0.377579 0.925978i \(-0.623243\pi\)
−0.377579 + 0.925978i \(0.623243\pi\)
\(882\) 0 0
\(883\) − 817.052i − 0.925314i −0.886537 0.462657i \(-0.846896\pi\)
0.886537 0.462657i \(-0.153104\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 1170.42i − 1.31953i −0.751473 0.659764i \(-0.770656\pi\)
0.751473 0.659764i \(-0.229344\pi\)
\(888\) 0 0
\(889\) −170.039 −0.191270
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 735.529 0.823661
\(894\) 0 0
\(895\) 919.911i 1.02783i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1794.66i 1.99629i
\(900\) 0 0
\(901\) 217.588 0.241496
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1348.43 1.48998
\(906\) 0 0
\(907\) − 936.435i − 1.03245i −0.856452 0.516226i \(-0.827336\pi\)
0.856452 0.516226i \(-0.172664\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 958.018i − 1.05161i −0.850605 0.525806i \(-0.823764\pi\)
0.850605 0.525806i \(-0.176236\pi\)
\(912\) 0 0
\(913\) 173.665 0.190214
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 75.6063 0.0824497
\(918\) 0 0
\(919\) 255.675i 0.278210i 0.990278 + 0.139105i \(0.0444226\pi\)
−0.990278 + 0.139105i \(0.955577\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 13.8234i 0.0149766i
\(924\) 0 0
\(925\) −995.304 −1.07600
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −868.960 −0.935372 −0.467686 0.883895i \(-0.654912\pi\)
−0.467686 + 0.883895i \(0.654912\pi\)
\(930\) 0 0
\(931\) 963.415i 1.03482i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 154.412i − 0.165147i
\(936\) 0 0
\(937\) −1122.57 −1.19805 −0.599023 0.800732i \(-0.704444\pi\)
−0.599023 + 0.800732i \(0.704444\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −765.537 −0.813536 −0.406768 0.913531i \(-0.633344\pi\)
−0.406768 + 0.913531i \(0.633344\pi\)
\(942\) 0 0
\(943\) − 828.881i − 0.878983i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 249.563i 0.263531i 0.991281 + 0.131765i \(0.0420645\pi\)
−0.991281 + 0.131765i \(0.957935\pi\)
\(948\) 0 0
\(949\) −19.1960 −0.0202276
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 709.960 0.744973 0.372487 0.928038i \(-0.378505\pi\)
0.372487 + 0.928038i \(0.378505\pi\)
\(954\) 0 0
\(955\) 481.332i 0.504013i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 135.667i 0.141467i
\(960\) 0 0
\(961\) −1087.00 −1.13111
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 528.922 0.548105
\(966\) 0 0
\(967\) − 1525.64i − 1.57770i −0.614585 0.788850i \(-0.710677\pi\)
0.614585 0.788850i \(-0.289323\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 288.662i − 0.297283i −0.988891 0.148642i \(-0.952510\pi\)
0.988891 0.148642i \(-0.0474901\pi\)
\(972\) 0 0
\(973\) −87.0580 −0.0894738
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −541.667 −0.554419 −0.277209 0.960810i \(-0.589410\pi\)
−0.277209 + 0.960810i \(0.589410\pi\)
\(978\) 0 0
\(979\) 3.89062i 0.00397407i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 1007.01i − 1.02442i −0.858859 0.512212i \(-0.828826\pi\)
0.858859 0.512212i \(-0.171174\pi\)
\(984\) 0 0
\(985\) −350.940 −0.356285
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1685.65 1.70439
\(990\) 0 0
\(991\) − 183.098i − 0.184761i −0.995724 0.0923806i \(-0.970552\pi\)
0.995724 0.0923806i \(-0.0294477\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 1685.78i − 1.69425i
\(996\) 0 0
\(997\) 678.950 0.680993 0.340497 0.940246i \(-0.389405\pi\)
0.340497 + 0.940246i \(0.389405\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1152.3.g.a.127.2 4
3.2 odd 2 128.3.c.b.127.4 yes 4
4.3 odd 2 inner 1152.3.g.a.127.1 4
8.3 odd 2 1152.3.g.b.127.3 4
8.5 even 2 1152.3.g.b.127.4 4
12.11 even 2 128.3.c.b.127.1 yes 4
16.3 odd 4 2304.3.b.j.127.4 4
16.5 even 4 2304.3.b.j.127.1 4
16.11 odd 4 2304.3.b.p.127.1 4
16.13 even 4 2304.3.b.p.127.4 4
24.5 odd 2 128.3.c.a.127.1 4
24.11 even 2 128.3.c.a.127.4 yes 4
48.5 odd 4 256.3.d.e.127.4 4
48.11 even 4 256.3.d.d.127.2 4
48.29 odd 4 256.3.d.d.127.1 4
48.35 even 4 256.3.d.e.127.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
128.3.c.a.127.1 4 24.5 odd 2
128.3.c.a.127.4 yes 4 24.11 even 2
128.3.c.b.127.1 yes 4 12.11 even 2
128.3.c.b.127.4 yes 4 3.2 odd 2
256.3.d.d.127.1 4 48.29 odd 4
256.3.d.d.127.2 4 48.11 even 4
256.3.d.e.127.3 4 48.35 even 4
256.3.d.e.127.4 4 48.5 odd 4
1152.3.g.a.127.1 4 4.3 odd 2 inner
1152.3.g.a.127.2 4 1.1 even 1 trivial
1152.3.g.b.127.3 4 8.3 odd 2
1152.3.g.b.127.4 4 8.5 even 2
2304.3.b.j.127.1 4 16.5 even 4
2304.3.b.j.127.4 4 16.3 odd 4
2304.3.b.p.127.1 4 16.11 odd 4
2304.3.b.p.127.4 4 16.13 even 4