Properties

Label 1152.4.a.l
Level 11521152
Weight 44
Character orbit 1152.a
Self dual yes
Analytic conductor 67.97067.970
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1152,4,Mod(1,1152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1152, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1152.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 1152=2732 1152 = 2^{7} \cdot 3^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1152.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 67.970200326667.9702003266
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 384)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+8q5+10q7+68q11+46q13+74q1716q1920q2361q25+228q29+162q31+80q35262q3730q41264q43+124q47243q49204q53+806q97+O(q100) q + 8 q^{5} + 10 q^{7} + 68 q^{11} + 46 q^{13} + 74 q^{17} - 16 q^{19} - 20 q^{23} - 61 q^{25} + 228 q^{29} + 162 q^{31} + 80 q^{35} - 262 q^{37} - 30 q^{41} - 264 q^{43} + 124 q^{47} - 243 q^{49} - 204 q^{53}+ \cdots - 806 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 0 0 8.00000 0 10.0000 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1152.4.a.l 1
3.b odd 2 1 384.4.a.e yes 1
4.b odd 2 1 1152.4.a.k 1
8.b even 2 1 1152.4.a.b 1
8.d odd 2 1 1152.4.a.a 1
12.b even 2 1 384.4.a.a 1
24.f even 2 1 384.4.a.h yes 1
24.h odd 2 1 384.4.a.d yes 1
48.i odd 4 2 768.4.d.e 2
48.k even 4 2 768.4.d.l 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
384.4.a.a 1 12.b even 2 1
384.4.a.d yes 1 24.h odd 2 1
384.4.a.e yes 1 3.b odd 2 1
384.4.a.h yes 1 24.f even 2 1
768.4.d.e 2 48.i odd 4 2
768.4.d.l 2 48.k even 4 2
1152.4.a.a 1 8.d odd 2 1
1152.4.a.b 1 8.b even 2 1
1152.4.a.k 1 4.b odd 2 1
1152.4.a.l 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(1152))S_{4}^{\mathrm{new}}(\Gamma_0(1152)):

T58 T_{5} - 8 Copy content Toggle raw display
T710 T_{7} - 10 Copy content Toggle raw display
T1346 T_{13} - 46 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T8 T - 8 Copy content Toggle raw display
77 T10 T - 10 Copy content Toggle raw display
1111 T68 T - 68 Copy content Toggle raw display
1313 T46 T - 46 Copy content Toggle raw display
1717 T74 T - 74 Copy content Toggle raw display
1919 T+16 T + 16 Copy content Toggle raw display
2323 T+20 T + 20 Copy content Toggle raw display
2929 T228 T - 228 Copy content Toggle raw display
3131 T162 T - 162 Copy content Toggle raw display
3737 T+262 T + 262 Copy content Toggle raw display
4141 T+30 T + 30 Copy content Toggle raw display
4343 T+264 T + 264 Copy content Toggle raw display
4747 T124 T - 124 Copy content Toggle raw display
5353 T+204 T + 204 Copy content Toggle raw display
5959 T340 T - 340 Copy content Toggle raw display
6161 T+950 T + 950 Copy content Toggle raw display
6767 T436 T - 436 Copy content Toggle raw display
7171 T+780 T + 780 Copy content Toggle raw display
7373 T518 T - 518 Copy content Toggle raw display
7979 T1010 T - 1010 Copy content Toggle raw display
8383 T852 T - 852 Copy content Toggle raw display
8989 T686 T - 686 Copy content Toggle raw display
9797 T+806 T + 806 Copy content Toggle raw display
show more
show less