Properties

Label 1152.4.a.y.1.2
Level $1152$
Weight $4$
Character 1152.1
Self dual yes
Analytic conductor $67.970$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1152,4,Mod(1,1152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1152, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1152.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1152.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.9702003266\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.4764.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 12x - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.536923\) of defining polynomial
Character \(\chi\) \(=\) 1152.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.147691 q^{5} -30.6992 q^{7} +57.1029 q^{11} -58.8076 q^{13} +130.501 q^{17} +52.2168 q^{19} -147.387 q^{23} -124.978 q^{25} +196.855 q^{29} +105.734 q^{31} -4.53399 q^{35} +306.764 q^{37} -1.31975 q^{41} -129.377 q^{43} -270.661 q^{47} +599.439 q^{49} -453.150 q^{53} +8.43360 q^{55} -669.707 q^{59} -456.379 q^{61} -8.68536 q^{65} -542.027 q^{67} +524.921 q^{71} -600.439 q^{73} -1753.01 q^{77} -192.434 q^{79} -920.789 q^{83} +19.2739 q^{85} +892.732 q^{89} +1805.34 q^{91} +7.71196 q^{95} -1165.43 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 10 q^{5} - 6 q^{7} + 20 q^{11} - 46 q^{13} + 68 q^{17} + 68 q^{19} - 56 q^{23} + 53 q^{25} - 46 q^{29} + 226 q^{31} - 332 q^{35} - 66 q^{37} + 236 q^{41} + 212 q^{43} - 760 q^{47} + 327 q^{49} - 702 q^{53}+ \cdots - 1222 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.147691 0.0132099 0.00660495 0.999978i \(-0.497898\pi\)
0.00660495 + 0.999978i \(0.497898\pi\)
\(6\) 0 0
\(7\) −30.6992 −1.65760 −0.828800 0.559546i \(-0.810976\pi\)
−0.828800 + 0.559546i \(0.810976\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 57.1029 1.56520 0.782599 0.622526i \(-0.213893\pi\)
0.782599 + 0.622526i \(0.213893\pi\)
\(12\) 0 0
\(13\) −58.8076 −1.25464 −0.627319 0.778763i \(-0.715848\pi\)
−0.627319 + 0.778763i \(0.715848\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 130.501 1.86184 0.930918 0.365229i \(-0.119009\pi\)
0.930918 + 0.365229i \(0.119009\pi\)
\(18\) 0 0
\(19\) 52.2168 0.630492 0.315246 0.949010i \(-0.397913\pi\)
0.315246 + 0.949010i \(0.397913\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −147.387 −1.33619 −0.668096 0.744075i \(-0.732890\pi\)
−0.668096 + 0.744075i \(0.732890\pi\)
\(24\) 0 0
\(25\) −124.978 −0.999825
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 196.855 1.26052 0.630259 0.776385i \(-0.282949\pi\)
0.630259 + 0.776385i \(0.282949\pi\)
\(30\) 0 0
\(31\) 105.734 0.612596 0.306298 0.951936i \(-0.400910\pi\)
0.306298 + 0.951936i \(0.400910\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.53399 −0.0218967
\(36\) 0 0
\(37\) 306.764 1.36302 0.681509 0.731810i \(-0.261324\pi\)
0.681509 + 0.731810i \(0.261324\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.31975 −0.00502707 −0.00251353 0.999997i \(-0.500800\pi\)
−0.00251353 + 0.999997i \(0.500800\pi\)
\(42\) 0 0
\(43\) −129.377 −0.458831 −0.229416 0.973329i \(-0.573681\pi\)
−0.229416 + 0.973329i \(0.573681\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −270.661 −0.840000 −0.420000 0.907524i \(-0.637970\pi\)
−0.420000 + 0.907524i \(0.637970\pi\)
\(48\) 0 0
\(49\) 599.439 1.74763
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −453.150 −1.17443 −0.587217 0.809430i \(-0.699776\pi\)
−0.587217 + 0.809430i \(0.699776\pi\)
\(54\) 0 0
\(55\) 8.43360 0.0206761
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −669.707 −1.47777 −0.738885 0.673832i \(-0.764647\pi\)
−0.738885 + 0.673832i \(0.764647\pi\)
\(60\) 0 0
\(61\) −456.379 −0.957924 −0.478962 0.877836i \(-0.658987\pi\)
−0.478962 + 0.877836i \(0.658987\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −8.68536 −0.0165736
\(66\) 0 0
\(67\) −542.027 −0.988345 −0.494173 0.869364i \(-0.664529\pi\)
−0.494173 + 0.869364i \(0.664529\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 524.921 0.877418 0.438709 0.898629i \(-0.355436\pi\)
0.438709 + 0.898629i \(0.355436\pi\)
\(72\) 0 0
\(73\) −600.439 −0.962685 −0.481343 0.876532i \(-0.659851\pi\)
−0.481343 + 0.876532i \(0.659851\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1753.01 −2.59447
\(78\) 0 0
\(79\) −192.434 −0.274057 −0.137028 0.990567i \(-0.543755\pi\)
−0.137028 + 0.990567i \(0.543755\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −920.789 −1.21771 −0.608854 0.793283i \(-0.708370\pi\)
−0.608854 + 0.793283i \(0.708370\pi\)
\(84\) 0 0
\(85\) 19.2739 0.0245947
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 892.732 1.06325 0.531626 0.846979i \(-0.321581\pi\)
0.531626 + 0.846979i \(0.321581\pi\)
\(90\) 0 0
\(91\) 1805.34 2.07969
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 7.71196 0.00832874
\(96\) 0 0
\(97\) −1165.43 −1.21991 −0.609954 0.792437i \(-0.708812\pi\)
−0.609954 + 0.792437i \(0.708812\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 18.0902 0.0178222 0.00891111 0.999960i \(-0.497163\pi\)
0.00891111 + 0.999960i \(0.497163\pi\)
\(102\) 0 0
\(103\) −522.212 −0.499564 −0.249782 0.968302i \(-0.580359\pi\)
−0.249782 + 0.968302i \(0.580359\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −619.745 −0.559935 −0.279968 0.960009i \(-0.590324\pi\)
−0.279968 + 0.960009i \(0.590324\pi\)
\(108\) 0 0
\(109\) 571.653 0.502334 0.251167 0.967944i \(-0.419186\pi\)
0.251167 + 0.967944i \(0.419186\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 504.082 0.419646 0.209823 0.977739i \(-0.432711\pi\)
0.209823 + 0.977739i \(0.432711\pi\)
\(114\) 0 0
\(115\) −21.7678 −0.0176510
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −4006.28 −3.08618
\(120\) 0 0
\(121\) 1929.75 1.44985
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −36.9196 −0.0264175
\(126\) 0 0
\(127\) 1431.52 1.00021 0.500107 0.865964i \(-0.333294\pi\)
0.500107 + 0.865964i \(0.333294\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1536.00 −1.02443 −0.512217 0.858856i \(-0.671176\pi\)
−0.512217 + 0.858856i \(0.671176\pi\)
\(132\) 0 0
\(133\) −1603.01 −1.04510
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2734.14 1.70506 0.852531 0.522677i \(-0.175066\pi\)
0.852531 + 0.522677i \(0.175066\pi\)
\(138\) 0 0
\(139\) −2808.47 −1.71375 −0.856877 0.515522i \(-0.827598\pi\)
−0.856877 + 0.515522i \(0.827598\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3358.09 −1.96376
\(144\) 0 0
\(145\) 29.0737 0.0166513
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1790.08 −0.984222 −0.492111 0.870532i \(-0.663775\pi\)
−0.492111 + 0.870532i \(0.663775\pi\)
\(150\) 0 0
\(151\) −1848.00 −0.995948 −0.497974 0.867192i \(-0.665922\pi\)
−0.497974 + 0.867192i \(0.665922\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 15.6160 0.00809233
\(156\) 0 0
\(157\) 2541.93 1.29215 0.646076 0.763273i \(-0.276409\pi\)
0.646076 + 0.763273i \(0.276409\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 4524.67 2.21487
\(162\) 0 0
\(163\) −2613.06 −1.25565 −0.627824 0.778355i \(-0.716054\pi\)
−0.627824 + 0.778355i \(0.716054\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 687.732 0.318673 0.159336 0.987224i \(-0.449065\pi\)
0.159336 + 0.987224i \(0.449065\pi\)
\(168\) 0 0
\(169\) 1261.33 0.574115
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 631.176 0.277384 0.138692 0.990336i \(-0.455710\pi\)
0.138692 + 0.990336i \(0.455710\pi\)
\(174\) 0 0
\(175\) 3836.73 1.65731
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 324.959 0.135690 0.0678451 0.997696i \(-0.478388\pi\)
0.0678451 + 0.997696i \(0.478388\pi\)
\(180\) 0 0
\(181\) −444.868 −0.182689 −0.0913446 0.995819i \(-0.529116\pi\)
−0.0913446 + 0.995819i \(0.529116\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 45.3063 0.0180053
\(186\) 0 0
\(187\) 7452.01 2.91414
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2061.70 −0.781042 −0.390521 0.920594i \(-0.627705\pi\)
−0.390521 + 0.920594i \(0.627705\pi\)
\(192\) 0 0
\(193\) −1885.67 −0.703283 −0.351642 0.936135i \(-0.614376\pi\)
−0.351642 + 0.936135i \(0.614376\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −5248.55 −1.89819 −0.949096 0.314987i \(-0.898000\pi\)
−0.949096 + 0.314987i \(0.898000\pi\)
\(198\) 0 0
\(199\) −3094.00 −1.10215 −0.551076 0.834455i \(-0.685782\pi\)
−0.551076 + 0.834455i \(0.685782\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −6043.28 −2.08943
\(204\) 0 0
\(205\) −0.194915 −6.64071e−5 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2981.73 0.986846
\(210\) 0 0
\(211\) −65.6705 −0.0214263 −0.0107131 0.999943i \(-0.503410\pi\)
−0.0107131 + 0.999943i \(0.503410\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −19.1078 −0.00606111
\(216\) 0 0
\(217\) −3245.96 −1.01544
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −7674.46 −2.33593
\(222\) 0 0
\(223\) −377.711 −0.113423 −0.0567117 0.998391i \(-0.518062\pi\)
−0.0567117 + 0.998391i \(0.518062\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3627.59 −1.06067 −0.530334 0.847789i \(-0.677933\pi\)
−0.530334 + 0.847789i \(0.677933\pi\)
\(228\) 0 0
\(229\) −329.399 −0.0950537 −0.0475268 0.998870i \(-0.515134\pi\)
−0.0475268 + 0.998870i \(0.515134\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2715.15 −0.763413 −0.381707 0.924284i \(-0.624664\pi\)
−0.381707 + 0.924284i \(0.624664\pi\)
\(234\) 0 0
\(235\) −39.9743 −0.0110963
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1400.56 0.379056 0.189528 0.981875i \(-0.439304\pi\)
0.189528 + 0.981875i \(0.439304\pi\)
\(240\) 0 0
\(241\) 147.831 0.0395129 0.0197565 0.999805i \(-0.493711\pi\)
0.0197565 + 0.999805i \(0.493711\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 88.5318 0.0230861
\(246\) 0 0
\(247\) −3070.74 −0.791039
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −2880.42 −0.724346 −0.362173 0.932111i \(-0.617965\pi\)
−0.362173 + 0.932111i \(0.617965\pi\)
\(252\) 0 0
\(253\) −8416.26 −2.09141
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6466.90 −1.56963 −0.784813 0.619732i \(-0.787241\pi\)
−0.784813 + 0.619732i \(0.787241\pi\)
\(258\) 0 0
\(259\) −9417.40 −2.25934
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −5171.68 −1.21255 −0.606273 0.795256i \(-0.707336\pi\)
−0.606273 + 0.795256i \(0.707336\pi\)
\(264\) 0 0
\(265\) −66.9263 −0.0155141
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2480.11 0.562136 0.281068 0.959688i \(-0.409311\pi\)
0.281068 + 0.959688i \(0.409311\pi\)
\(270\) 0 0
\(271\) 2061.23 0.462032 0.231016 0.972950i \(-0.425795\pi\)
0.231016 + 0.972950i \(0.425795\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −7136.62 −1.56493
\(276\) 0 0
\(277\) 6241.31 1.35380 0.676902 0.736073i \(-0.263322\pi\)
0.676902 + 0.736073i \(0.263322\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6839.63 1.45202 0.726011 0.687683i \(-0.241372\pi\)
0.726011 + 0.687683i \(0.241372\pi\)
\(282\) 0 0
\(283\) 8037.94 1.68836 0.844180 0.536060i \(-0.180088\pi\)
0.844180 + 0.536060i \(0.180088\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 40.5151 0.00833286
\(288\) 0 0
\(289\) 12117.6 2.46643
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1762.17 0.351354 0.175677 0.984448i \(-0.443789\pi\)
0.175677 + 0.984448i \(0.443789\pi\)
\(294\) 0 0
\(295\) −98.9098 −0.0195212
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 8667.50 1.67644
\(300\) 0 0
\(301\) 3971.75 0.760558
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −67.4031 −0.0126541
\(306\) 0 0
\(307\) −4383.94 −0.814998 −0.407499 0.913206i \(-0.633599\pi\)
−0.407499 + 0.913206i \(0.633599\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 2791.10 0.508903 0.254451 0.967086i \(-0.418105\pi\)
0.254451 + 0.967086i \(0.418105\pi\)
\(312\) 0 0
\(313\) −3379.98 −0.610377 −0.305189 0.952292i \(-0.598719\pi\)
−0.305189 + 0.952292i \(0.598719\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1672.82 −0.296388 −0.148194 0.988958i \(-0.547346\pi\)
−0.148194 + 0.988958i \(0.547346\pi\)
\(318\) 0 0
\(319\) 11241.0 1.97296
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6814.36 1.17387
\(324\) 0 0
\(325\) 7349.66 1.25442
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 8309.08 1.39238
\(330\) 0 0
\(331\) 2389.90 0.396860 0.198430 0.980115i \(-0.436416\pi\)
0.198430 + 0.980115i \(0.436416\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −80.0526 −0.0130559
\(336\) 0 0
\(337\) −6669.96 −1.07815 −0.539074 0.842258i \(-0.681226\pi\)
−0.539074 + 0.842258i \(0.681226\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 6037.75 0.958834
\(342\) 0 0
\(343\) −7872.45 −1.23928
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1502.43 0.232435 0.116217 0.993224i \(-0.462923\pi\)
0.116217 + 0.993224i \(0.462923\pi\)
\(348\) 0 0
\(349\) −1238.77 −0.190000 −0.0950000 0.995477i \(-0.530285\pi\)
−0.0950000 + 0.995477i \(0.530285\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6421.72 0.968255 0.484127 0.874998i \(-0.339137\pi\)
0.484127 + 0.874998i \(0.339137\pi\)
\(354\) 0 0
\(355\) 77.5262 0.0115906
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −5298.01 −0.778881 −0.389440 0.921052i \(-0.627332\pi\)
−0.389440 + 0.921052i \(0.627332\pi\)
\(360\) 0 0
\(361\) −4132.41 −0.602479
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −88.6795 −0.0127170
\(366\) 0 0
\(367\) 9310.15 1.32421 0.662106 0.749410i \(-0.269663\pi\)
0.662106 + 0.749410i \(0.269663\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 13911.3 1.94674
\(372\) 0 0
\(373\) −11651.8 −1.61745 −0.808726 0.588186i \(-0.799842\pi\)
−0.808726 + 0.588186i \(0.799842\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −11576.6 −1.58149
\(378\) 0 0
\(379\) 1424.32 0.193040 0.0965201 0.995331i \(-0.469229\pi\)
0.0965201 + 0.995331i \(0.469229\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −6244.09 −0.833050 −0.416525 0.909124i \(-0.636752\pi\)
−0.416525 + 0.909124i \(0.636752\pi\)
\(384\) 0 0
\(385\) −258.904 −0.0342727
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 6434.93 0.838725 0.419362 0.907819i \(-0.362254\pi\)
0.419362 + 0.907819i \(0.362254\pi\)
\(390\) 0 0
\(391\) −19234.2 −2.48777
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −28.4207 −0.00362026
\(396\) 0 0
\(397\) −559.727 −0.0707604 −0.0353802 0.999374i \(-0.511264\pi\)
−0.0353802 + 0.999374i \(0.511264\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2930.51 −0.364945 −0.182472 0.983211i \(-0.558410\pi\)
−0.182472 + 0.983211i \(0.558410\pi\)
\(402\) 0 0
\(403\) −6217.98 −0.768585
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 17517.1 2.13339
\(408\) 0 0
\(409\) 7242.66 0.875614 0.437807 0.899069i \(-0.355755\pi\)
0.437807 + 0.899069i \(0.355755\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 20559.4 2.44955
\(414\) 0 0
\(415\) −135.992 −0.0160858
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1575.55 0.183701 0.0918504 0.995773i \(-0.470722\pi\)
0.0918504 + 0.995773i \(0.470722\pi\)
\(420\) 0 0
\(421\) −12220.0 −1.41465 −0.707326 0.706888i \(-0.750098\pi\)
−0.707326 + 0.706888i \(0.750098\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −16309.8 −1.86151
\(426\) 0 0
\(427\) 14010.5 1.58785
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 12669.6 1.41594 0.707971 0.706241i \(-0.249611\pi\)
0.707971 + 0.706241i \(0.249611\pi\)
\(432\) 0 0
\(433\) −3704.81 −0.411182 −0.205591 0.978638i \(-0.565912\pi\)
−0.205591 + 0.978638i \(0.565912\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −7696.10 −0.842459
\(438\) 0 0
\(439\) −787.710 −0.0856387 −0.0428193 0.999083i \(-0.513634\pi\)
−0.0428193 + 0.999083i \(0.513634\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5536.26 −0.593760 −0.296880 0.954915i \(-0.595946\pi\)
−0.296880 + 0.954915i \(0.595946\pi\)
\(444\) 0 0
\(445\) 131.849 0.0140454
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −8968.84 −0.942685 −0.471343 0.881950i \(-0.656230\pi\)
−0.471343 + 0.881950i \(0.656230\pi\)
\(450\) 0 0
\(451\) −75.3614 −0.00786836
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 266.633 0.0274724
\(456\) 0 0
\(457\) 11755.1 1.20324 0.601619 0.798783i \(-0.294523\pi\)
0.601619 + 0.798783i \(0.294523\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −3595.89 −0.363291 −0.181646 0.983364i \(-0.558142\pi\)
−0.181646 + 0.983364i \(0.558142\pi\)
\(462\) 0 0
\(463\) −5568.32 −0.558924 −0.279462 0.960157i \(-0.590156\pi\)
−0.279462 + 0.960157i \(0.590156\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −9741.02 −0.965226 −0.482613 0.875834i \(-0.660312\pi\)
−0.482613 + 0.875834i \(0.660312\pi\)
\(468\) 0 0
\(469\) 16639.8 1.63828
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −7387.78 −0.718162
\(474\) 0 0
\(475\) −6525.96 −0.630382
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 11840.6 1.12946 0.564730 0.825276i \(-0.308980\pi\)
0.564730 + 0.825276i \(0.308980\pi\)
\(480\) 0 0
\(481\) −18040.0 −1.71009
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −172.123 −0.0161148
\(486\) 0 0
\(487\) 16044.0 1.49286 0.746432 0.665461i \(-0.231765\pi\)
0.746432 + 0.665461i \(0.231765\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 11236.6 1.03279 0.516395 0.856351i \(-0.327274\pi\)
0.516395 + 0.856351i \(0.327274\pi\)
\(492\) 0 0
\(493\) 25689.8 2.34688
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −16114.6 −1.45441
\(498\) 0 0
\(499\) −18926.3 −1.69791 −0.848957 0.528461i \(-0.822769\pi\)
−0.848957 + 0.528461i \(0.822769\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 12581.8 1.11530 0.557649 0.830077i \(-0.311704\pi\)
0.557649 + 0.830077i \(0.311704\pi\)
\(504\) 0 0
\(505\) 2.67177 0.000235430 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 11042.6 0.961597 0.480799 0.876831i \(-0.340347\pi\)
0.480799 + 0.876831i \(0.340347\pi\)
\(510\) 0 0
\(511\) 18433.0 1.59575
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −77.1260 −0.00659918
\(516\) 0 0
\(517\) −15455.6 −1.31477
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −6096.70 −0.512671 −0.256335 0.966588i \(-0.582515\pi\)
−0.256335 + 0.966588i \(0.582515\pi\)
\(522\) 0 0
\(523\) 21980.7 1.83776 0.918881 0.394536i \(-0.129095\pi\)
0.918881 + 0.394536i \(0.129095\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 13798.5 1.14055
\(528\) 0 0
\(529\) 9556.05 0.785407
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 77.6111 0.00630715
\(534\) 0 0
\(535\) −91.5309 −0.00739668
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 34229.7 2.73540
\(540\) 0 0
\(541\) −10519.1 −0.835951 −0.417976 0.908458i \(-0.637260\pi\)
−0.417976 + 0.908458i \(0.637260\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 84.4281 0.00663578
\(546\) 0 0
\(547\) −4811.42 −0.376090 −0.188045 0.982160i \(-0.560215\pi\)
−0.188045 + 0.982160i \(0.560215\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 10279.1 0.794747
\(552\) 0 0
\(553\) 5907.55 0.454276
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −6482.69 −0.493143 −0.246571 0.969125i \(-0.579304\pi\)
−0.246571 + 0.969125i \(0.579304\pi\)
\(558\) 0 0
\(559\) 7608.32 0.575666
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 23090.2 1.72849 0.864243 0.503075i \(-0.167798\pi\)
0.864243 + 0.503075i \(0.167798\pi\)
\(564\) 0 0
\(565\) 74.4484 0.00554348
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1781.49 0.131255 0.0656274 0.997844i \(-0.479095\pi\)
0.0656274 + 0.997844i \(0.479095\pi\)
\(570\) 0 0
\(571\) −15493.9 −1.13555 −0.567776 0.823183i \(-0.692196\pi\)
−0.567776 + 0.823183i \(0.692196\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 18420.2 1.33596
\(576\) 0 0
\(577\) 3233.43 0.233292 0.116646 0.993174i \(-0.462786\pi\)
0.116646 + 0.993174i \(0.462786\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 28267.4 2.01847
\(582\) 0 0
\(583\) −25876.2 −1.83822
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −18285.3 −1.28571 −0.642857 0.765986i \(-0.722251\pi\)
−0.642857 + 0.765986i \(0.722251\pi\)
\(588\) 0 0
\(589\) 5521.11 0.386237
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −5783.50 −0.400506 −0.200253 0.979744i \(-0.564176\pi\)
−0.200253 + 0.979744i \(0.564176\pi\)
\(594\) 0 0
\(595\) −591.692 −0.0407681
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −27718.5 −1.89073 −0.945363 0.326018i \(-0.894293\pi\)
−0.945363 + 0.326018i \(0.894293\pi\)
\(600\) 0 0
\(601\) −2905.47 −0.197199 −0.0985995 0.995127i \(-0.531436\pi\)
−0.0985995 + 0.995127i \(0.531436\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 285.006 0.0191523
\(606\) 0 0
\(607\) −27350.5 −1.82887 −0.914433 0.404738i \(-0.867363\pi\)
−0.914433 + 0.404738i \(0.867363\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 15916.9 1.05390
\(612\) 0 0
\(613\) −575.905 −0.0379455 −0.0189727 0.999820i \(-0.506040\pi\)
−0.0189727 + 0.999820i \(0.506040\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 13186.7 0.860417 0.430208 0.902730i \(-0.358440\pi\)
0.430208 + 0.902730i \(0.358440\pi\)
\(618\) 0 0
\(619\) 18598.4 1.20764 0.603822 0.797120i \(-0.293644\pi\)
0.603822 + 0.797120i \(0.293644\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −27406.1 −1.76244
\(624\) 0 0
\(625\) 15616.8 0.999477
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 40033.1 2.53772
\(630\) 0 0
\(631\) −6196.64 −0.390942 −0.195471 0.980709i \(-0.562624\pi\)
−0.195471 + 0.980709i \(0.562624\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 211.423 0.0132127
\(636\) 0 0
\(637\) −35251.5 −2.19265
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −13568.8 −0.836091 −0.418045 0.908426i \(-0.637285\pi\)
−0.418045 + 0.908426i \(0.637285\pi\)
\(642\) 0 0
\(643\) 20311.3 1.24573 0.622863 0.782331i \(-0.285970\pi\)
0.622863 + 0.782331i \(0.285970\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 28961.7 1.75982 0.879908 0.475145i \(-0.157604\pi\)
0.879908 + 0.475145i \(0.157604\pi\)
\(648\) 0 0
\(649\) −38242.2 −2.31300
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 23670.5 1.41853 0.709264 0.704943i \(-0.249028\pi\)
0.709264 + 0.704943i \(0.249028\pi\)
\(654\) 0 0
\(655\) −226.854 −0.0135327
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 945.123 0.0558676 0.0279338 0.999610i \(-0.491107\pi\)
0.0279338 + 0.999610i \(0.491107\pi\)
\(660\) 0 0
\(661\) 15682.5 0.922813 0.461407 0.887189i \(-0.347345\pi\)
0.461407 + 0.887189i \(0.347345\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −236.751 −0.0138057
\(666\) 0 0
\(667\) −29013.9 −1.68429
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −26060.6 −1.49934
\(672\) 0 0
\(673\) −12152.8 −0.696070 −0.348035 0.937482i \(-0.613151\pi\)
−0.348035 + 0.937482i \(0.613151\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −10521.1 −0.597282 −0.298641 0.954366i \(-0.596533\pi\)
−0.298641 + 0.954366i \(0.596533\pi\)
\(678\) 0 0
\(679\) 35777.6 2.02212
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 18474.8 1.03502 0.517509 0.855678i \(-0.326859\pi\)
0.517509 + 0.855678i \(0.326859\pi\)
\(684\) 0 0
\(685\) 403.809 0.0225237
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 26648.7 1.47349
\(690\) 0 0
\(691\) 20100.2 1.10658 0.553290 0.832989i \(-0.313372\pi\)
0.553290 + 0.832989i \(0.313372\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −414.787 −0.0226385
\(696\) 0 0
\(697\) −172.229 −0.00935958
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −12867.8 −0.693307 −0.346654 0.937993i \(-0.612682\pi\)
−0.346654 + 0.937993i \(0.612682\pi\)
\(702\) 0 0
\(703\) 16018.2 0.859373
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −555.355 −0.0295421
\(708\) 0 0
\(709\) 17082.1 0.904838 0.452419 0.891806i \(-0.350561\pi\)
0.452419 + 0.891806i \(0.350561\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −15583.9 −0.818545
\(714\) 0 0
\(715\) −495.959 −0.0259410
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 10251.4 0.531728 0.265864 0.964011i \(-0.414343\pi\)
0.265864 + 0.964011i \(0.414343\pi\)
\(720\) 0 0
\(721\) 16031.5 0.828076
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −24602.6 −1.26030
\(726\) 0 0
\(727\) −6464.45 −0.329784 −0.164892 0.986312i \(-0.552728\pi\)
−0.164892 + 0.986312i \(0.552728\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −16883.8 −0.854268
\(732\) 0 0
\(733\) −9971.20 −0.502449 −0.251224 0.967929i \(-0.580833\pi\)
−0.251224 + 0.967929i \(0.580833\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −30951.3 −1.54696
\(738\) 0 0
\(739\) 10085.1 0.502011 0.251006 0.967986i \(-0.419239\pi\)
0.251006 + 0.967986i \(0.419239\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 6949.91 0.343159 0.171580 0.985170i \(-0.445113\pi\)
0.171580 + 0.985170i \(0.445113\pi\)
\(744\) 0 0
\(745\) −264.379 −0.0130015
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 19025.7 0.928148
\(750\) 0 0
\(751\) 15770.3 0.766265 0.383132 0.923693i \(-0.374845\pi\)
0.383132 + 0.923693i \(0.374845\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −272.933 −0.0131564
\(756\) 0 0
\(757\) 13727.2 0.659082 0.329541 0.944141i \(-0.393106\pi\)
0.329541 + 0.944141i \(0.393106\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 6731.89 0.320671 0.160336 0.987063i \(-0.448742\pi\)
0.160336 + 0.987063i \(0.448742\pi\)
\(762\) 0 0
\(763\) −17549.3 −0.832669
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 39383.8 1.85406
\(768\) 0 0
\(769\) 18919.2 0.887181 0.443591 0.896229i \(-0.353704\pi\)
0.443591 + 0.896229i \(0.353704\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −36138.2 −1.68150 −0.840751 0.541422i \(-0.817886\pi\)
−0.840751 + 0.541422i \(0.817886\pi\)
\(774\) 0 0
\(775\) −13214.5 −0.612489
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −68.9129 −0.00316953
\(780\) 0 0
\(781\) 29974.5 1.37333
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 375.420 0.0170692
\(786\) 0 0
\(787\) −26273.6 −1.19003 −0.595015 0.803714i \(-0.702854\pi\)
−0.595015 + 0.803714i \(0.702854\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −15474.9 −0.695605
\(792\) 0 0
\(793\) 26838.5 1.20185
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −35843.9 −1.59304 −0.796521 0.604610i \(-0.793329\pi\)
−0.796521 + 0.604610i \(0.793329\pi\)
\(798\) 0 0
\(799\) −35321.6 −1.56394
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −34286.8 −1.50679
\(804\) 0 0
\(805\) 668.254 0.0292582
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −3033.64 −0.131838 −0.0659191 0.997825i \(-0.520998\pi\)
−0.0659191 + 0.997825i \(0.520998\pi\)
\(810\) 0 0
\(811\) −23885.8 −1.03421 −0.517105 0.855922i \(-0.672990\pi\)
−0.517105 + 0.855922i \(0.672990\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −385.926 −0.0165870
\(816\) 0 0
\(817\) −6755.63 −0.289289
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −26993.1 −1.14746 −0.573730 0.819045i \(-0.694504\pi\)
−0.573730 + 0.819045i \(0.694504\pi\)
\(822\) 0 0
\(823\) 44105.5 1.86807 0.934034 0.357183i \(-0.116263\pi\)
0.934034 + 0.357183i \(0.116263\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −21548.3 −0.906057 −0.453028 0.891496i \(-0.649656\pi\)
−0.453028 + 0.891496i \(0.649656\pi\)
\(828\) 0 0
\(829\) −36677.9 −1.53664 −0.768322 0.640064i \(-0.778908\pi\)
−0.768322 + 0.640064i \(0.778908\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 78227.5 3.25381
\(834\) 0 0
\(835\) 101.572 0.00420963
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −7116.32 −0.292828 −0.146414 0.989223i \(-0.546773\pi\)
−0.146414 + 0.989223i \(0.546773\pi\)
\(840\) 0 0
\(841\) 14362.8 0.588906
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 186.287 0.00758399
\(846\) 0 0
\(847\) −59241.6 −2.40327
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −45213.1 −1.82125
\(852\) 0 0
\(853\) −22898.8 −0.919157 −0.459579 0.888137i \(-0.652000\pi\)
−0.459579 + 0.888137i \(0.652000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −20903.5 −0.833196 −0.416598 0.909091i \(-0.636778\pi\)
−0.416598 + 0.909091i \(0.636778\pi\)
\(858\) 0 0
\(859\) 20766.2 0.824833 0.412417 0.910995i \(-0.364685\pi\)
0.412417 + 0.910995i \(0.364685\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 5881.39 0.231987 0.115994 0.993250i \(-0.462995\pi\)
0.115994 + 0.993250i \(0.462995\pi\)
\(864\) 0 0
\(865\) 93.2191 0.00366421
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −10988.5 −0.428953
\(870\) 0 0
\(871\) 31875.3 1.24001
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1133.40 0.0437896
\(876\) 0 0
\(877\) 49735.2 1.91498 0.957490 0.288466i \(-0.0931454\pi\)
0.957490 + 0.288466i \(0.0931454\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −26000.8 −0.994312 −0.497156 0.867661i \(-0.665622\pi\)
−0.497156 + 0.867661i \(0.665622\pi\)
\(882\) 0 0
\(883\) 29578.1 1.12728 0.563638 0.826022i \(-0.309401\pi\)
0.563638 + 0.826022i \(0.309401\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −34850.5 −1.31924 −0.659619 0.751600i \(-0.729282\pi\)
−0.659619 + 0.751600i \(0.729282\pi\)
\(888\) 0 0
\(889\) −43946.6 −1.65795
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −14133.1 −0.529614
\(894\) 0 0
\(895\) 47.9935 0.00179245
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 20814.3 0.772188
\(900\) 0 0
\(901\) −59136.7 −2.18660
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −65.7030 −0.00241331
\(906\) 0 0
\(907\) −4319.35 −0.158127 −0.0790637 0.996870i \(-0.525193\pi\)
−0.0790637 + 0.996870i \(0.525193\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −37252.8 −1.35482 −0.677410 0.735605i \(-0.736898\pi\)
−0.677410 + 0.735605i \(0.736898\pi\)
\(912\) 0 0
\(913\) −52579.7 −1.90595
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 47153.9 1.69810
\(918\) 0 0
\(919\) 17996.5 0.645975 0.322987 0.946403i \(-0.395313\pi\)
0.322987 + 0.946403i \(0.395313\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −30869.3 −1.10084
\(924\) 0 0
\(925\) −38338.8 −1.36278
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 5536.38 0.195525 0.0977624 0.995210i \(-0.468831\pi\)
0.0977624 + 0.995210i \(0.468831\pi\)
\(930\) 0 0
\(931\) 31300.8 1.10187
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1100.60 0.0384955
\(936\) 0 0
\(937\) 26959.0 0.939926 0.469963 0.882686i \(-0.344267\pi\)
0.469963 + 0.882686i \(0.344267\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −20079.7 −0.695622 −0.347811 0.937565i \(-0.613075\pi\)
−0.347811 + 0.937565i \(0.613075\pi\)
\(942\) 0 0
\(943\) 194.514 0.00671713
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −13308.3 −0.456664 −0.228332 0.973583i \(-0.573327\pi\)
−0.228332 + 0.973583i \(0.573327\pi\)
\(948\) 0 0
\(949\) 35310.3 1.20782
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 43058.3 1.46358 0.731792 0.681528i \(-0.238684\pi\)
0.731792 + 0.681528i \(0.238684\pi\)
\(954\) 0 0
\(955\) −304.494 −0.0103175
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −83935.9 −2.82631
\(960\) 0 0
\(961\) −18611.2 −0.624727
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −278.497 −0.00929030
\(966\) 0 0
\(967\) −5593.18 −0.186002 −0.0930012 0.995666i \(-0.529646\pi\)
−0.0930012 + 0.995666i \(0.529646\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −9902.15 −0.327266 −0.163633 0.986521i \(-0.552321\pi\)
−0.163633 + 0.986521i \(0.552321\pi\)
\(972\) 0 0
\(973\) 86217.8 2.84072
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 17066.5 0.558860 0.279430 0.960166i \(-0.409855\pi\)
0.279430 + 0.960166i \(0.409855\pi\)
\(978\) 0 0
\(979\) 50977.6 1.66420
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −15726.6 −0.510275 −0.255137 0.966905i \(-0.582121\pi\)
−0.255137 + 0.966905i \(0.582121\pi\)
\(984\) 0 0
\(985\) −775.165 −0.0250749
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 19068.5 0.613086
\(990\) 0 0
\(991\) −40492.7 −1.29797 −0.648987 0.760799i \(-0.724807\pi\)
−0.648987 + 0.760799i \(0.724807\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −456.957 −0.0145593
\(996\) 0 0
\(997\) −28445.5 −0.903588 −0.451794 0.892122i \(-0.649216\pi\)
−0.451794 + 0.892122i \(0.649216\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1152.4.a.y.1.2 3
3.2 odd 2 1152.4.a.bc.1.2 yes 3
4.3 odd 2 1152.4.a.ba.1.2 yes 3
8.3 odd 2 1152.4.a.bf.1.2 yes 3
8.5 even 2 1152.4.a.bd.1.2 yes 3
12.11 even 2 1152.4.a.be.1.2 yes 3
24.5 odd 2 1152.4.a.z.1.2 yes 3
24.11 even 2 1152.4.a.bb.1.2 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1152.4.a.y.1.2 3 1.1 even 1 trivial
1152.4.a.z.1.2 yes 3 24.5 odd 2
1152.4.a.ba.1.2 yes 3 4.3 odd 2
1152.4.a.bb.1.2 yes 3 24.11 even 2
1152.4.a.bc.1.2 yes 3 3.2 odd 2
1152.4.a.bd.1.2 yes 3 8.5 even 2
1152.4.a.be.1.2 yes 3 12.11 even 2
1152.4.a.bf.1.2 yes 3 8.3 odd 2