Properties

Label 1152.4.c.b.1151.12
Level $1152$
Weight $4$
Character 1152.1151
Analytic conductor $67.970$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1152,4,Mod(1151,1152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1152, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1152.1151");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1152.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(67.9702003266\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 4 x^{10} + 12 x^{9} + 88 x^{8} + 356 x^{7} + 1278 x^{6} + 3320 x^{5} + 8177 x^{4} + \cdots + 98 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{33}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1151.12
Root \(-0.843160 - 2.03557i\) of defining polynomial
Character \(\chi\) \(=\) 1152.1151
Dual form 1152.4.c.b.1151.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+19.4649i q^{5} -22.2014i q^{7} +31.9589 q^{11} -12.7921 q^{13} +1.79939i q^{17} -55.3042i q^{19} -152.218 q^{23} -253.882 q^{25} +292.254i q^{29} -271.560i q^{31} +432.148 q^{35} -114.334 q^{37} +300.192i q^{41} +371.823i q^{43} +35.2663 q^{47} -149.902 q^{49} -391.098i q^{53} +622.077i q^{55} -22.8408 q^{59} -662.958 q^{61} -248.997i q^{65} -926.894i q^{67} -1071.12 q^{71} +9.27078 q^{73} -709.534i q^{77} +565.805i q^{79} -566.393 q^{83} -35.0248 q^{85} -911.883i q^{89} +284.003i q^{91} +1076.49 q^{95} +466.815 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 240 q^{23} - 300 q^{25} + 864 q^{35} - 264 q^{37} - 624 q^{47} + 132 q^{49} + 1632 q^{59} - 312 q^{61} - 4080 q^{71} + 432 q^{73} + 3744 q^{83} + 1704 q^{85} - 5856 q^{95} + 96 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(641\) \(901\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 19.4649i 1.74099i 0.492176 + 0.870496i \(0.336202\pi\)
−0.492176 + 0.870496i \(0.663798\pi\)
\(6\) 0 0
\(7\) − 22.2014i − 1.19876i −0.800463 0.599382i \(-0.795413\pi\)
0.800463 0.599382i \(-0.204587\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 31.9589 0.875999 0.437999 0.898975i \(-0.355687\pi\)
0.437999 + 0.898975i \(0.355687\pi\)
\(12\) 0 0
\(13\) −12.7921 −0.272915 −0.136457 0.990646i \(-0.543572\pi\)
−0.136457 + 0.990646i \(0.543572\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.79939i 0.0256715i 0.999918 + 0.0128357i \(0.00408585\pi\)
−0.999918 + 0.0128357i \(0.995914\pi\)
\(18\) 0 0
\(19\) − 55.3042i − 0.667772i −0.942614 0.333886i \(-0.891640\pi\)
0.942614 0.333886i \(-0.108360\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −152.218 −1.37999 −0.689994 0.723815i \(-0.742387\pi\)
−0.689994 + 0.723815i \(0.742387\pi\)
\(24\) 0 0
\(25\) −253.882 −2.03105
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 292.254i 1.87139i 0.352811 + 0.935695i \(0.385226\pi\)
−0.352811 + 0.935695i \(0.614774\pi\)
\(30\) 0 0
\(31\) − 271.560i − 1.57334i −0.617372 0.786672i \(-0.711803\pi\)
0.617372 0.786672i \(-0.288197\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 432.148 2.08704
\(36\) 0 0
\(37\) −114.334 −0.508013 −0.254006 0.967203i \(-0.581748\pi\)
−0.254006 + 0.967203i \(0.581748\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 300.192i 1.14347i 0.820439 + 0.571734i \(0.193729\pi\)
−0.820439 + 0.571734i \(0.806271\pi\)
\(42\) 0 0
\(43\) 371.823i 1.31866i 0.751853 + 0.659331i \(0.229160\pi\)
−0.751853 + 0.659331i \(0.770840\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 35.2663 0.109449 0.0547246 0.998501i \(-0.482572\pi\)
0.0547246 + 0.998501i \(0.482572\pi\)
\(48\) 0 0
\(49\) −149.902 −0.437033
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 391.098i − 1.01361i −0.862060 0.506806i \(-0.830826\pi\)
0.862060 0.506806i \(-0.169174\pi\)
\(54\) 0 0
\(55\) 622.077i 1.52511i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −22.8408 −0.0504003 −0.0252001 0.999682i \(-0.508022\pi\)
−0.0252001 + 0.999682i \(0.508022\pi\)
\(60\) 0 0
\(61\) −662.958 −1.39153 −0.695763 0.718272i \(-0.744933\pi\)
−0.695763 + 0.718272i \(0.744933\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 248.997i − 0.475142i
\(66\) 0 0
\(67\) − 926.894i − 1.69012i −0.534671 0.845060i \(-0.679564\pi\)
0.534671 0.845060i \(-0.320436\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −1071.12 −1.79040 −0.895198 0.445669i \(-0.852966\pi\)
−0.895198 + 0.445669i \(0.852966\pi\)
\(72\) 0 0
\(73\) 9.27078 0.0148639 0.00743193 0.999972i \(-0.497634\pi\)
0.00743193 + 0.999972i \(0.497634\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 709.534i − 1.05011i
\(78\) 0 0
\(79\) 565.805i 0.805798i 0.915245 + 0.402899i \(0.131997\pi\)
−0.915245 + 0.402899i \(0.868003\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −566.393 −0.749032 −0.374516 0.927220i \(-0.622191\pi\)
−0.374516 + 0.927220i \(0.622191\pi\)
\(84\) 0 0
\(85\) −35.0248 −0.0446938
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 911.883i − 1.08606i −0.839713 0.543031i \(-0.817277\pi\)
0.839713 0.543031i \(-0.182723\pi\)
\(90\) 0 0
\(91\) 284.003i 0.327160i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1076.49 1.16259
\(96\) 0 0
\(97\) 466.815 0.488638 0.244319 0.969695i \(-0.421436\pi\)
0.244319 + 0.969695i \(0.421436\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 615.098i − 0.605986i −0.952993 0.302993i \(-0.902014\pi\)
0.952993 0.302993i \(-0.0979858\pi\)
\(102\) 0 0
\(103\) 1834.29i 1.75474i 0.479818 + 0.877368i \(0.340703\pi\)
−0.479818 + 0.877368i \(0.659297\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −565.082 −0.510547 −0.255273 0.966869i \(-0.582166\pi\)
−0.255273 + 0.966869i \(0.582166\pi\)
\(108\) 0 0
\(109\) −314.783 −0.276612 −0.138306 0.990390i \(-0.544166\pi\)
−0.138306 + 0.990390i \(0.544166\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 2245.29i − 1.86920i −0.355703 0.934599i \(-0.615759\pi\)
0.355703 0.934599i \(-0.384241\pi\)
\(114\) 0 0
\(115\) − 2962.91i − 2.40255i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 39.9489 0.0307740
\(120\) 0 0
\(121\) −309.626 −0.232626
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 2508.66i − 1.79505i
\(126\) 0 0
\(127\) 1020.85i 0.713273i 0.934243 + 0.356637i \(0.116077\pi\)
−0.934243 + 0.356637i \(0.883923\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1164.80 0.776864 0.388432 0.921477i \(-0.373017\pi\)
0.388432 + 0.921477i \(0.373017\pi\)
\(132\) 0 0
\(133\) −1227.83 −0.800500
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 1915.28i − 1.19440i −0.802091 0.597202i \(-0.796279\pi\)
0.802091 0.597202i \(-0.203721\pi\)
\(138\) 0 0
\(139\) − 3016.58i − 1.84074i −0.391051 0.920369i \(-0.627888\pi\)
0.391051 0.920369i \(-0.372112\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −408.822 −0.239073
\(144\) 0 0
\(145\) −5688.70 −3.25807
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 39.8288i 0.0218987i 0.999940 + 0.0109493i \(0.00348535\pi\)
−0.999940 + 0.0109493i \(0.996515\pi\)
\(150\) 0 0
\(151\) − 2021.62i − 1.08952i −0.838592 0.544760i \(-0.816621\pi\)
0.838592 0.544760i \(-0.183379\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 5285.89 2.73918
\(156\) 0 0
\(157\) 1260.53 0.640772 0.320386 0.947287i \(-0.396187\pi\)
0.320386 + 0.947287i \(0.396187\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3379.46i 1.65428i
\(162\) 0 0
\(163\) 1803.46i 0.866611i 0.901247 + 0.433305i \(0.142653\pi\)
−0.901247 + 0.433305i \(0.857347\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2030.46 −0.940847 −0.470424 0.882441i \(-0.655899\pi\)
−0.470424 + 0.882441i \(0.655899\pi\)
\(168\) 0 0
\(169\) −2033.36 −0.925518
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1541.47i 0.677432i 0.940889 + 0.338716i \(0.109993\pi\)
−0.940889 + 0.338716i \(0.890007\pi\)
\(174\) 0 0
\(175\) 5636.53i 2.43475i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −2660.38 −1.11087 −0.555436 0.831560i \(-0.687448\pi\)
−0.555436 + 0.831560i \(0.687448\pi\)
\(180\) 0 0
\(181\) −3890.04 −1.59748 −0.798741 0.601675i \(-0.794500\pi\)
−0.798741 + 0.601675i \(0.794500\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 2225.51i − 0.884446i
\(186\) 0 0
\(187\) 57.5065i 0.0224882i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1980.04 −0.750107 −0.375053 0.927003i \(-0.622376\pi\)
−0.375053 + 0.927003i \(0.622376\pi\)
\(192\) 0 0
\(193\) 3510.71 1.30936 0.654679 0.755907i \(-0.272804\pi\)
0.654679 + 0.755907i \(0.272804\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 582.273i 0.210585i 0.994441 + 0.105292i \(0.0335779\pi\)
−0.994441 + 0.105292i \(0.966422\pi\)
\(198\) 0 0
\(199\) − 3859.19i − 1.37473i −0.726313 0.687364i \(-0.758768\pi\)
0.726313 0.687364i \(-0.241232\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 6488.46 2.24335
\(204\) 0 0
\(205\) −5843.21 −1.99077
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 1767.47i − 0.584967i
\(210\) 0 0
\(211\) − 3152.87i − 1.02868i −0.857585 0.514342i \(-0.828036\pi\)
0.857585 0.514342i \(-0.171964\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −7237.49 −2.29578
\(216\) 0 0
\(217\) −6029.02 −1.88607
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 23.0179i − 0.00700612i
\(222\) 0 0
\(223\) 3930.70i 1.18035i 0.807274 + 0.590177i \(0.200942\pi\)
−0.807274 + 0.590177i \(0.799058\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −604.951 −0.176881 −0.0884406 0.996081i \(-0.528188\pi\)
−0.0884406 + 0.996081i \(0.528188\pi\)
\(228\) 0 0
\(229\) −3047.32 −0.879355 −0.439678 0.898156i \(-0.644907\pi\)
−0.439678 + 0.898156i \(0.644907\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5242.57i 1.47404i 0.675869 + 0.737022i \(0.263768\pi\)
−0.675869 + 0.737022i \(0.736232\pi\)
\(234\) 0 0
\(235\) 686.454i 0.190550i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −3218.81 −0.871162 −0.435581 0.900150i \(-0.643457\pi\)
−0.435581 + 0.900150i \(0.643457\pi\)
\(240\) 0 0
\(241\) −4991.45 −1.33414 −0.667069 0.744996i \(-0.732452\pi\)
−0.667069 + 0.744996i \(0.732452\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 2917.83i − 0.760872i
\(246\) 0 0
\(247\) 707.458i 0.182245i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1930.14 0.485376 0.242688 0.970104i \(-0.421971\pi\)
0.242688 + 0.970104i \(0.421971\pi\)
\(252\) 0 0
\(253\) −4864.74 −1.20887
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 136.590i − 0.0331526i −0.999863 0.0165763i \(-0.994723\pi\)
0.999863 0.0165763i \(-0.00527665\pi\)
\(258\) 0 0
\(259\) 2538.39i 0.608987i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1726.50 0.404793 0.202397 0.979304i \(-0.435127\pi\)
0.202397 + 0.979304i \(0.435127\pi\)
\(264\) 0 0
\(265\) 7612.67 1.76469
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 3174.73i − 0.719579i −0.933033 0.359790i \(-0.882848\pi\)
0.933033 0.359790i \(-0.117152\pi\)
\(270\) 0 0
\(271\) 2453.18i 0.549889i 0.961460 + 0.274945i \(0.0886596\pi\)
−0.961460 + 0.274945i \(0.911340\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −8113.79 −1.77920
\(276\) 0 0
\(277\) 4665.27 1.01195 0.505973 0.862549i \(-0.331134\pi\)
0.505973 + 0.862549i \(0.331134\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 1304.96i − 0.277038i −0.990360 0.138519i \(-0.955766\pi\)
0.990360 0.138519i \(-0.0442342\pi\)
\(282\) 0 0
\(283\) − 1487.84i − 0.312518i −0.987716 0.156259i \(-0.950057\pi\)
0.987716 0.156259i \(-0.0499435\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 6664.69 1.37075
\(288\) 0 0
\(289\) 4909.76 0.999341
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 1936.50i − 0.386114i −0.981188 0.193057i \(-0.938160\pi\)
0.981188 0.193057i \(-0.0618402\pi\)
\(294\) 0 0
\(295\) − 444.593i − 0.0877465i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1947.19 0.376619
\(300\) 0 0
\(301\) 8254.99 1.58076
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 12904.4i − 2.42263i
\(306\) 0 0
\(307\) − 5884.32i − 1.09393i −0.837156 0.546964i \(-0.815783\pi\)
0.837156 0.546964i \(-0.184217\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1160.58 0.211610 0.105805 0.994387i \(-0.466258\pi\)
0.105805 + 0.994387i \(0.466258\pi\)
\(312\) 0 0
\(313\) −6605.01 −1.19277 −0.596385 0.802698i \(-0.703397\pi\)
−0.596385 + 0.802698i \(0.703397\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2661.31i 0.471526i 0.971811 + 0.235763i \(0.0757590\pi\)
−0.971811 + 0.235763i \(0.924241\pi\)
\(318\) 0 0
\(319\) 9340.14i 1.63933i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 99.5137 0.0171427
\(324\) 0 0
\(325\) 3247.68 0.554304
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 782.961i − 0.131204i
\(330\) 0 0
\(331\) 4233.72i 0.703040i 0.936180 + 0.351520i \(0.114335\pi\)
−0.936180 + 0.351520i \(0.885665\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 18041.9 2.94249
\(336\) 0 0
\(337\) −4641.65 −0.750286 −0.375143 0.926967i \(-0.622406\pi\)
−0.375143 + 0.926967i \(0.622406\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 8678.77i − 1.37825i
\(342\) 0 0
\(343\) − 4287.04i − 0.674864i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4554.37 0.704587 0.352293 0.935890i \(-0.385402\pi\)
0.352293 + 0.935890i \(0.385402\pi\)
\(348\) 0 0
\(349\) −747.324 −0.114623 −0.0573113 0.998356i \(-0.518253\pi\)
−0.0573113 + 0.998356i \(0.518253\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6594.80i 0.994351i 0.867650 + 0.497175i \(0.165629\pi\)
−0.867650 + 0.497175i \(0.834371\pi\)
\(354\) 0 0
\(355\) − 20849.2i − 3.11706i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −13093.3 −1.92489 −0.962447 0.271471i \(-0.912490\pi\)
−0.962447 + 0.271471i \(0.912490\pi\)
\(360\) 0 0
\(361\) 3800.44 0.554081
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 180.455i 0.0258779i
\(366\) 0 0
\(367\) − 12114.5i − 1.72309i −0.507682 0.861544i \(-0.669498\pi\)
0.507682 0.861544i \(-0.330502\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −8682.92 −1.21508
\(372\) 0 0
\(373\) 12969.7 1.80039 0.900196 0.435486i \(-0.143423\pi\)
0.900196 + 0.435486i \(0.143423\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 3738.55i − 0.510730i
\(378\) 0 0
\(379\) 12527.1i 1.69783i 0.528532 + 0.848913i \(0.322743\pi\)
−0.528532 + 0.848913i \(0.677257\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 6966.21 0.929391 0.464695 0.885471i \(-0.346164\pi\)
0.464695 + 0.885471i \(0.346164\pi\)
\(384\) 0 0
\(385\) 13811.0 1.82824
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 13156.5i 1.71481i 0.514645 + 0.857403i \(0.327924\pi\)
−0.514645 + 0.857403i \(0.672076\pi\)
\(390\) 0 0
\(391\) − 273.899i − 0.0354263i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −11013.3 −1.40289
\(396\) 0 0
\(397\) −1737.94 −0.219709 −0.109855 0.993948i \(-0.535039\pi\)
−0.109855 + 0.993948i \(0.535039\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 506.378i 0.0630606i 0.999503 + 0.0315303i \(0.0100381\pi\)
−0.999503 + 0.0315303i \(0.989962\pi\)
\(402\) 0 0
\(403\) 3473.83i 0.429389i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3654.01 −0.445019
\(408\) 0 0
\(409\) 9910.80 1.19818 0.599092 0.800680i \(-0.295528\pi\)
0.599092 + 0.800680i \(0.295528\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 507.098i 0.0604180i
\(414\) 0 0
\(415\) − 11024.8i − 1.30406i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −4058.63 −0.473215 −0.236607 0.971605i \(-0.576036\pi\)
−0.236607 + 0.971605i \(0.576036\pi\)
\(420\) 0 0
\(421\) −7852.53 −0.909048 −0.454524 0.890735i \(-0.650191\pi\)
−0.454524 + 0.890735i \(0.650191\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 456.831i − 0.0521401i
\(426\) 0 0
\(427\) 14718.6i 1.66811i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 10717.2 1.19775 0.598873 0.800844i \(-0.295615\pi\)
0.598873 + 0.800844i \(0.295615\pi\)
\(432\) 0 0
\(433\) −5190.51 −0.576074 −0.288037 0.957619i \(-0.593003\pi\)
−0.288037 + 0.957619i \(0.593003\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8418.32i 0.921516i
\(438\) 0 0
\(439\) 2101.72i 0.228495i 0.993452 + 0.114248i \(0.0364457\pi\)
−0.993452 + 0.114248i \(0.963554\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −586.526 −0.0629045 −0.0314523 0.999505i \(-0.510013\pi\)
−0.0314523 + 0.999505i \(0.510013\pi\)
\(444\) 0 0
\(445\) 17749.7 1.89082
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 16423.7i 1.72624i 0.504995 + 0.863122i \(0.331494\pi\)
−0.504995 + 0.863122i \(0.668506\pi\)
\(450\) 0 0
\(451\) 9593.83i 1.00168i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −5528.08 −0.569583
\(456\) 0 0
\(457\) −5904.11 −0.604338 −0.302169 0.953254i \(-0.597711\pi\)
−0.302169 + 0.953254i \(0.597711\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 9501.12i 0.959894i 0.877298 + 0.479947i \(0.159344\pi\)
−0.877298 + 0.479947i \(0.840656\pi\)
\(462\) 0 0
\(463\) 1341.81i 0.134685i 0.997730 + 0.0673424i \(0.0214520\pi\)
−0.997730 + 0.0673424i \(0.978548\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 19268.8 1.90933 0.954663 0.297689i \(-0.0962159\pi\)
0.954663 + 0.297689i \(0.0962159\pi\)
\(468\) 0 0
\(469\) −20578.3 −2.02605
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 11883.1i 1.15515i
\(474\) 0 0
\(475\) 14040.7i 1.35628i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −12832.2 −1.22404 −0.612021 0.790841i \(-0.709643\pi\)
−0.612021 + 0.790841i \(0.709643\pi\)
\(480\) 0 0
\(481\) 1462.58 0.138644
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 9086.49i 0.850714i
\(486\) 0 0
\(487\) − 15784.6i − 1.46872i −0.678758 0.734362i \(-0.737481\pi\)
0.678758 0.734362i \(-0.262519\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 15306.9 1.40691 0.703453 0.710742i \(-0.251640\pi\)
0.703453 + 0.710742i \(0.251640\pi\)
\(492\) 0 0
\(493\) −525.878 −0.0480413
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 23780.3i 2.14626i
\(498\) 0 0
\(499\) 10479.3i 0.940117i 0.882635 + 0.470058i \(0.155767\pi\)
−0.882635 + 0.470058i \(0.844233\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −9919.58 −0.879308 −0.439654 0.898167i \(-0.644899\pi\)
−0.439654 + 0.898167i \(0.644899\pi\)
\(504\) 0 0
\(505\) 11972.8 1.05502
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 10028.1i − 0.873254i −0.899643 0.436627i \(-0.856173\pi\)
0.899643 0.436627i \(-0.143827\pi\)
\(510\) 0 0
\(511\) − 205.824i − 0.0178183i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −35704.2 −3.05498
\(516\) 0 0
\(517\) 1127.07 0.0958774
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 10216.7i 0.859122i 0.903038 + 0.429561i \(0.141332\pi\)
−0.903038 + 0.429561i \(0.858668\pi\)
\(522\) 0 0
\(523\) 12295.9i 1.02803i 0.857780 + 0.514017i \(0.171843\pi\)
−0.857780 + 0.514017i \(0.828157\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 488.641 0.0403900
\(528\) 0 0
\(529\) 11003.4 0.904365
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 3840.09i − 0.312069i
\(534\) 0 0
\(535\) − 10999.3i − 0.888858i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −4790.72 −0.382841
\(540\) 0 0
\(541\) 9786.98 0.777773 0.388887 0.921286i \(-0.372860\pi\)
0.388887 + 0.921286i \(0.372860\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 6127.22i − 0.481580i
\(546\) 0 0
\(547\) 351.890i 0.0275059i 0.999905 + 0.0137530i \(0.00437784\pi\)
−0.999905 + 0.0137530i \(0.995622\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 16162.9 1.24966
\(552\) 0 0
\(553\) 12561.7 0.965960
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 22996.2i 1.74933i 0.484724 + 0.874667i \(0.338920\pi\)
−0.484724 + 0.874667i \(0.661080\pi\)
\(558\) 0 0
\(559\) − 4756.40i − 0.359882i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 590.483 0.0442023 0.0221011 0.999756i \(-0.492964\pi\)
0.0221011 + 0.999756i \(0.492964\pi\)
\(564\) 0 0
\(565\) 43704.4 3.25426
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 8863.10i 0.653006i 0.945196 + 0.326503i \(0.105870\pi\)
−0.945196 + 0.326503i \(0.894130\pi\)
\(570\) 0 0
\(571\) − 86.0835i − 0.00630907i −0.999995 0.00315454i \(-0.998996\pi\)
0.999995 0.00315454i \(-0.00100412\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 38645.4 2.80283
\(576\) 0 0
\(577\) −10676.7 −0.770320 −0.385160 0.922850i \(-0.625854\pi\)
−0.385160 + 0.922850i \(0.625854\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 12574.7i 0.897912i
\(582\) 0 0
\(583\) − 12499.1i − 0.887922i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 14828.7 1.04267 0.521335 0.853352i \(-0.325434\pi\)
0.521335 + 0.853352i \(0.325434\pi\)
\(588\) 0 0
\(589\) −15018.4 −1.05063
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 7625.52i − 0.528065i −0.964514 0.264033i \(-0.914947\pi\)
0.964514 0.264033i \(-0.0850526\pi\)
\(594\) 0 0
\(595\) 777.600i 0.0535773i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 2515.53 0.171589 0.0857945 0.996313i \(-0.472657\pi\)
0.0857945 + 0.996313i \(0.472657\pi\)
\(600\) 0 0
\(601\) −884.652 −0.0600428 −0.0300214 0.999549i \(-0.509558\pi\)
−0.0300214 + 0.999549i \(0.509558\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 6026.83i − 0.405001i
\(606\) 0 0
\(607\) − 3262.44i − 0.218152i −0.994033 0.109076i \(-0.965211\pi\)
0.994033 0.109076i \(-0.0347892\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −451.130 −0.0298703
\(612\) 0 0
\(613\) 7103.23 0.468021 0.234010 0.972234i \(-0.424815\pi\)
0.234010 + 0.972234i \(0.424815\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 17015.2i − 1.11022i −0.831776 0.555111i \(-0.812676\pi\)
0.831776 0.555111i \(-0.187324\pi\)
\(618\) 0 0
\(619\) − 14796.3i − 0.960763i −0.877060 0.480381i \(-0.840498\pi\)
0.877060 0.480381i \(-0.159502\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −20245.1 −1.30193
\(624\) 0 0
\(625\) 17095.7 1.09412
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 205.732i − 0.0130414i
\(630\) 0 0
\(631\) − 6518.78i − 0.411265i −0.978629 0.205633i \(-0.934075\pi\)
0.978629 0.205633i \(-0.0659252\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −19870.7 −1.24180
\(636\) 0 0
\(637\) 1917.57 0.119273
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 23065.6i − 1.42127i −0.703559 0.710637i \(-0.748407\pi\)
0.703559 0.710637i \(-0.251593\pi\)
\(642\) 0 0
\(643\) 11825.3i 0.725264i 0.931932 + 0.362632i \(0.118122\pi\)
−0.931932 + 0.362632i \(0.881878\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 14019.2 0.851857 0.425929 0.904757i \(-0.359947\pi\)
0.425929 + 0.904757i \(0.359947\pi\)
\(648\) 0 0
\(649\) −729.968 −0.0441506
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 7701.14i − 0.461514i −0.973011 0.230757i \(-0.925880\pi\)
0.973011 0.230757i \(-0.0741203\pi\)
\(654\) 0 0
\(655\) 22672.7i 1.35251i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −24026.7 −1.42026 −0.710128 0.704073i \(-0.751363\pi\)
−0.710128 + 0.704073i \(0.751363\pi\)
\(660\) 0 0
\(661\) 1278.87 0.0752530 0.0376265 0.999292i \(-0.488020\pi\)
0.0376265 + 0.999292i \(0.488020\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 23899.6i − 1.39366i
\(666\) 0 0
\(667\) − 44486.5i − 2.58249i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −21187.4 −1.21897
\(672\) 0 0
\(673\) −2951.17 −0.169033 −0.0845164 0.996422i \(-0.526935\pi\)
−0.0845164 + 0.996422i \(0.526935\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 5263.47i 0.298806i 0.988776 + 0.149403i \(0.0477351\pi\)
−0.988776 + 0.149403i \(0.952265\pi\)
\(678\) 0 0
\(679\) − 10363.9i − 0.585761i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −14057.0 −0.787517 −0.393759 0.919214i \(-0.628825\pi\)
−0.393759 + 0.919214i \(0.628825\pi\)
\(684\) 0 0
\(685\) 37280.7 2.07945
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 5002.96i 0.276629i
\(690\) 0 0
\(691\) 16916.0i 0.931282i 0.884974 + 0.465641i \(0.154176\pi\)
−0.884974 + 0.465641i \(0.845824\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 58717.3 3.20471
\(696\) 0 0
\(697\) −540.162 −0.0293545
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 3743.98i 0.201723i 0.994900 + 0.100862i \(0.0321600\pi\)
−0.994900 + 0.100862i \(0.967840\pi\)
\(702\) 0 0
\(703\) 6323.18i 0.339237i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −13656.0 −0.726433
\(708\) 0 0
\(709\) −5993.31 −0.317466 −0.158733 0.987322i \(-0.550741\pi\)
−0.158733 + 0.987322i \(0.550741\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 41336.4i 2.17119i
\(714\) 0 0
\(715\) − 7957.68i − 0.416224i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 9158.35 0.475033 0.237517 0.971383i \(-0.423667\pi\)
0.237517 + 0.971383i \(0.423667\pi\)
\(720\) 0 0
\(721\) 40723.8 2.10351
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 74198.0i − 3.80089i
\(726\) 0 0
\(727\) − 20102.5i − 1.02553i −0.858529 0.512765i \(-0.828621\pi\)
0.858529 0.512765i \(-0.171379\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −669.053 −0.0338520
\(732\) 0 0
\(733\) −8493.27 −0.427975 −0.213988 0.976836i \(-0.568645\pi\)
−0.213988 + 0.976836i \(0.568645\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 29622.5i − 1.48054i
\(738\) 0 0
\(739\) 3413.95i 0.169938i 0.996384 + 0.0849689i \(0.0270791\pi\)
−0.996384 + 0.0849689i \(0.972921\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −199.861 −0.00986836 −0.00493418 0.999988i \(-0.501571\pi\)
−0.00493418 + 0.999988i \(0.501571\pi\)
\(744\) 0 0
\(745\) −775.263 −0.0381254
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 12545.6i 0.612025i
\(750\) 0 0
\(751\) − 1351.41i − 0.0656641i −0.999461 0.0328321i \(-0.989547\pi\)
0.999461 0.0328321i \(-0.0104526\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 39350.7 1.89684
\(756\) 0 0
\(757\) 33084.3 1.58847 0.794233 0.607613i \(-0.207873\pi\)
0.794233 + 0.607613i \(0.207873\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 15677.9i 0.746811i 0.927668 + 0.373406i \(0.121810\pi\)
−0.927668 + 0.373406i \(0.878190\pi\)
\(762\) 0 0
\(763\) 6988.63i 0.331593i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 292.182 0.0137550
\(768\) 0 0
\(769\) −39525.9 −1.85350 −0.926750 0.375679i \(-0.877410\pi\)
−0.926750 + 0.375679i \(0.877410\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 29192.3i 1.35831i 0.733994 + 0.679156i \(0.237654\pi\)
−0.733994 + 0.679156i \(0.762346\pi\)
\(774\) 0 0
\(775\) 68944.1i 3.19554i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 16601.9 0.763575
\(780\) 0 0
\(781\) −34231.7 −1.56838
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 24536.1i 1.11558i
\(786\) 0 0
\(787\) 24107.0i 1.09190i 0.837819 + 0.545949i \(0.183831\pi\)
−0.837819 + 0.545949i \(0.816169\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −49848.7 −2.24073
\(792\) 0 0
\(793\) 8480.62 0.379768
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 8464.67i 0.376203i 0.982150 + 0.188102i \(0.0602334\pi\)
−0.982150 + 0.188102i \(0.939767\pi\)
\(798\) 0 0
\(799\) 63.4576i 0.00280972i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 296.284 0.0130207
\(804\) 0 0
\(805\) −65780.8 −2.88008
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 29597.4i − 1.28626i −0.765755 0.643132i \(-0.777635\pi\)
0.765755 0.643132i \(-0.222365\pi\)
\(810\) 0 0
\(811\) 14572.2i 0.630949i 0.948934 + 0.315474i \(0.102164\pi\)
−0.948934 + 0.315474i \(0.897836\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −35104.0 −1.50876
\(816\) 0 0
\(817\) 20563.4 0.880565
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 7894.06i 0.335572i 0.985823 + 0.167786i \(0.0536618\pi\)
−0.985823 + 0.167786i \(0.946338\pi\)
\(822\) 0 0
\(823\) 2643.21i 0.111952i 0.998432 + 0.0559760i \(0.0178270\pi\)
−0.998432 + 0.0559760i \(0.982173\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 11809.6 0.496567 0.248284 0.968687i \(-0.420133\pi\)
0.248284 + 0.968687i \(0.420133\pi\)
\(828\) 0 0
\(829\) −13461.7 −0.563987 −0.281993 0.959416i \(-0.590996\pi\)
−0.281993 + 0.959416i \(0.590996\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 269.732i − 0.0112193i
\(834\) 0 0
\(835\) − 39522.6i − 1.63801i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −12513.7 −0.514922 −0.257461 0.966289i \(-0.582886\pi\)
−0.257461 + 0.966289i \(0.582886\pi\)
\(840\) 0 0
\(841\) −61023.7 −2.50210
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 39579.1i − 1.61132i
\(846\) 0 0
\(847\) 6874.13i 0.278864i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 17403.8 0.701051
\(852\) 0 0
\(853\) −25549.9 −1.02557 −0.512786 0.858517i \(-0.671386\pi\)
−0.512786 + 0.858517i \(0.671386\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 32706.4i 1.30365i 0.758370 + 0.651825i \(0.225996\pi\)
−0.758370 + 0.651825i \(0.774004\pi\)
\(858\) 0 0
\(859\) 27072.8i 1.07534i 0.843157 + 0.537668i \(0.180695\pi\)
−0.843157 + 0.537668i \(0.819305\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −28641.5 −1.12974 −0.564870 0.825180i \(-0.691074\pi\)
−0.564870 + 0.825180i \(0.691074\pi\)
\(864\) 0 0
\(865\) −30004.5 −1.17940
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 18082.5i 0.705877i
\(870\) 0 0
\(871\) 11856.9i 0.461259i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −55695.9 −2.15185
\(876\) 0 0
\(877\) −7094.49 −0.273163 −0.136581 0.990629i \(-0.543612\pi\)
−0.136581 + 0.990629i \(0.543612\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 43494.2i 1.66329i 0.555310 + 0.831643i \(0.312600\pi\)
−0.555310 + 0.831643i \(0.687400\pi\)
\(882\) 0 0
\(883\) 1247.80i 0.0475560i 0.999717 + 0.0237780i \(0.00756948\pi\)
−0.999717 + 0.0237780i \(0.992431\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 7320.80 0.277123 0.138562 0.990354i \(-0.455752\pi\)
0.138562 + 0.990354i \(0.455752\pi\)
\(888\) 0 0
\(889\) 22664.3 0.855046
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 1950.38i − 0.0730871i
\(894\) 0 0
\(895\) − 51783.9i − 1.93402i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 79364.7 2.94434
\(900\) 0 0
\(901\) 703.736 0.0260209
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 75719.1i − 2.78120i
\(906\) 0 0
\(907\) − 40054.6i − 1.46636i −0.680034 0.733181i \(-0.738035\pi\)
0.680034 0.733181i \(-0.261965\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −11863.6 −0.431458 −0.215729 0.976453i \(-0.569213\pi\)
−0.215729 + 0.976453i \(0.569213\pi\)
\(912\) 0 0
\(913\) −18101.3 −0.656151
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 25860.2i − 0.931277i
\(918\) 0 0
\(919\) 41184.9i 1.47831i 0.673537 + 0.739153i \(0.264774\pi\)
−0.673537 + 0.739153i \(0.735226\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 13701.8 0.488625
\(924\) 0 0
\(925\) 29027.4 1.03180
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 15430.9i 0.544962i 0.962161 + 0.272481i \(0.0878442\pi\)
−0.962161 + 0.272481i \(0.912156\pi\)
\(930\) 0 0
\(931\) 8290.24i 0.291839i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −1119.36 −0.0391517
\(936\) 0 0
\(937\) −19757.6 −0.688852 −0.344426 0.938813i \(-0.611926\pi\)
−0.344426 + 0.938813i \(0.611926\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 47029.5i 1.62924i 0.579993 + 0.814622i \(0.303055\pi\)
−0.579993 + 0.814622i \(0.696945\pi\)
\(942\) 0 0
\(943\) − 45694.7i − 1.57797i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 13487.8 0.462825 0.231412 0.972856i \(-0.425665\pi\)
0.231412 + 0.972856i \(0.425665\pi\)
\(948\) 0 0
\(949\) −118.593 −0.00405657
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 8080.06i − 0.274647i −0.990526 0.137324i \(-0.956150\pi\)
0.990526 0.137324i \(-0.0438500\pi\)
\(954\) 0 0
\(955\) − 38541.2i − 1.30593i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −42521.9 −1.43181
\(960\) 0 0
\(961\) −43953.9 −1.47541
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 68335.5i 2.27958i
\(966\) 0 0
\(967\) − 28145.7i − 0.935994i −0.883730 0.467997i \(-0.844976\pi\)
0.883730 0.467997i \(-0.155024\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −17202.4 −0.568539 −0.284269 0.958744i \(-0.591751\pi\)
−0.284269 + 0.958744i \(0.591751\pi\)
\(972\) 0 0
\(973\) −66972.2 −2.20661
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 24457.7i − 0.800893i −0.916320 0.400446i \(-0.868855\pi\)
0.916320 0.400446i \(-0.131145\pi\)
\(978\) 0 0
\(979\) − 29142.8i − 0.951388i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 15491.0 0.502632 0.251316 0.967905i \(-0.419137\pi\)
0.251316 + 0.967905i \(0.419137\pi\)
\(984\) 0 0
\(985\) −11333.9 −0.366627
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 56598.2i − 1.81974i
\(990\) 0 0
\(991\) − 7771.50i − 0.249112i −0.992213 0.124556i \(-0.960249\pi\)
0.992213 0.124556i \(-0.0397506\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 75118.7 2.39339
\(996\) 0 0
\(997\) −53099.2 −1.68673 −0.843364 0.537343i \(-0.819428\pi\)
−0.843364 + 0.537343i \(0.819428\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1152.4.c.b.1151.12 yes 12
3.2 odd 2 1152.4.c.c.1151.1 yes 12
4.3 odd 2 1152.4.c.c.1151.12 yes 12
8.3 odd 2 1152.4.c.d.1151.1 yes 12
8.5 even 2 1152.4.c.a.1151.1 12
12.11 even 2 inner 1152.4.c.b.1151.1 yes 12
16.3 odd 4 2304.4.f.k.1151.11 12
16.5 even 4 2304.4.f.j.1151.2 12
16.11 odd 4 2304.4.f.i.1151.1 12
16.13 even 4 2304.4.f.l.1151.12 12
24.5 odd 2 1152.4.c.d.1151.12 yes 12
24.11 even 2 1152.4.c.a.1151.12 yes 12
48.5 odd 4 2304.4.f.k.1151.12 12
48.11 even 4 2304.4.f.l.1151.11 12
48.29 odd 4 2304.4.f.i.1151.2 12
48.35 even 4 2304.4.f.j.1151.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1152.4.c.a.1151.1 12 8.5 even 2
1152.4.c.a.1151.12 yes 12 24.11 even 2
1152.4.c.b.1151.1 yes 12 12.11 even 2 inner
1152.4.c.b.1151.12 yes 12 1.1 even 1 trivial
1152.4.c.c.1151.1 yes 12 3.2 odd 2
1152.4.c.c.1151.12 yes 12 4.3 odd 2
1152.4.c.d.1151.1 yes 12 8.3 odd 2
1152.4.c.d.1151.12 yes 12 24.5 odd 2
2304.4.f.i.1151.1 12 16.11 odd 4
2304.4.f.i.1151.2 12 48.29 odd 4
2304.4.f.j.1151.1 12 48.35 even 4
2304.4.f.j.1151.2 12 16.5 even 4
2304.4.f.k.1151.11 12 16.3 odd 4
2304.4.f.k.1151.12 12 48.5 odd 4
2304.4.f.l.1151.11 12 48.11 even 4
2304.4.f.l.1151.12 12 16.13 even 4