Properties

Label 1152.4.d.a
Level 11521152
Weight 44
Character orbit 1152.d
Analytic conductor 67.97067.970
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1152,4,Mod(577,1152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1152, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1152.577");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 1152=2732 1152 = 2^{7} \cdot 3^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1152.d (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 67.970200326667.9702003266
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 22 2^{2}
Twist minimal: no (minimal twist has level 128)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=4i\beta = 4i. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+3βq532q72βq115βq13+98q1722βq1932q2319q2543βq29256q3196βq3523βq37+102q41+74βq43++238q97+O(q100) q + 3 \beta q^{5} - 32 q^{7} - 2 \beta q^{11} - 5 \beta q^{13} + 98 q^{17} - 22 \beta q^{19} - 32 q^{23} - 19 q^{25} - 43 \beta q^{29} - 256 q^{31} - 96 \beta q^{35} - 23 \beta q^{37} + 102 q^{41} + 74 \beta q^{43} + \cdots + 238 q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q64q7+196q1764q2338q25512q31+204q41+640q47+1362q49+192q55+480q65+832q71276q73128q791164q89+2112q95+476q97+O(q100) 2 q - 64 q^{7} + 196 q^{17} - 64 q^{23} - 38 q^{25} - 512 q^{31} + 204 q^{41} + 640 q^{47} + 1362 q^{49} + 192 q^{55} + 480 q^{65} + 832 q^{71} - 276 q^{73} - 128 q^{79} - 1164 q^{89} + 2112 q^{95} + 476 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1152Z)×\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times.

nn 127127 641641 901901
χ(n)\chi(n) 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
577.1
1.00000i
1.00000i
0 0 0 12.0000i 0 −32.0000 0 0 0
577.2 0 0 0 12.0000i 0 −32.0000 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1152.4.d.a 2
3.b odd 2 1 128.4.b.a 2
4.b odd 2 1 1152.4.d.h 2
8.b even 2 1 inner 1152.4.d.a 2
8.d odd 2 1 1152.4.d.h 2
12.b even 2 1 128.4.b.d yes 2
16.e even 4 1 2304.4.a.d 1
16.e even 4 1 2304.4.a.n 1
16.f odd 4 1 2304.4.a.c 1
16.f odd 4 1 2304.4.a.m 1
24.f even 2 1 128.4.b.d yes 2
24.h odd 2 1 128.4.b.a 2
48.i odd 4 1 256.4.a.b 1
48.i odd 4 1 256.4.a.g 1
48.k even 4 1 256.4.a.c 1
48.k even 4 1 256.4.a.f 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
128.4.b.a 2 3.b odd 2 1
128.4.b.a 2 24.h odd 2 1
128.4.b.d yes 2 12.b even 2 1
128.4.b.d yes 2 24.f even 2 1
256.4.a.b 1 48.i odd 4 1
256.4.a.c 1 48.k even 4 1
256.4.a.f 1 48.k even 4 1
256.4.a.g 1 48.i odd 4 1
1152.4.d.a 2 1.a even 1 1 trivial
1152.4.d.a 2 8.b even 2 1 inner
1152.4.d.h 2 4.b odd 2 1
1152.4.d.h 2 8.d odd 2 1
2304.4.a.c 1 16.f odd 4 1
2304.4.a.d 1 16.e even 4 1
2304.4.a.m 1 16.f odd 4 1
2304.4.a.n 1 16.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(1152,[χ])S_{4}^{\mathrm{new}}(1152, [\chi]):

T52+144 T_{5}^{2} + 144 Copy content Toggle raw display
T7+32 T_{7} + 32 Copy content Toggle raw display
T1798 T_{17} - 98 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2+144 T^{2} + 144 Copy content Toggle raw display
77 (T+32)2 (T + 32)^{2} Copy content Toggle raw display
1111 T2+64 T^{2} + 64 Copy content Toggle raw display
1313 T2+400 T^{2} + 400 Copy content Toggle raw display
1717 (T98)2 (T - 98)^{2} Copy content Toggle raw display
1919 T2+7744 T^{2} + 7744 Copy content Toggle raw display
2323 (T+32)2 (T + 32)^{2} Copy content Toggle raw display
2929 T2+29584 T^{2} + 29584 Copy content Toggle raw display
3131 (T+256)2 (T + 256)^{2} Copy content Toggle raw display
3737 T2+8464 T^{2} + 8464 Copy content Toggle raw display
4141 (T102)2 (T - 102)^{2} Copy content Toggle raw display
4343 T2+87616 T^{2} + 87616 Copy content Toggle raw display
4747 (T320)2 (T - 320)^{2} Copy content Toggle raw display
5353 T2+5776 T^{2} + 5776 Copy content Toggle raw display
5959 T2+166464 T^{2} + 166464 Copy content Toggle raw display
6161 T2+404496 T^{2} + 404496 Copy content Toggle raw display
6767 T2+304704 T^{2} + 304704 Copy content Toggle raw display
7171 (T416)2 (T - 416)^{2} Copy content Toggle raw display
7373 (T+138)2 (T + 138)^{2} Copy content Toggle raw display
7979 (T+64)2 (T + 64)^{2} Copy content Toggle raw display
8383 T2+153664 T^{2} + 153664 Copy content Toggle raw display
8989 (T+582)2 (T + 582)^{2} Copy content Toggle raw display
9797 (T238)2 (T - 238)^{2} Copy content Toggle raw display
show more
show less