Properties

Label 1152.5.b.f
Level 11521152
Weight 55
Character orbit 1152.b
Analytic conductor 119.082119.082
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1152,5,Mod(703,1152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1152, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1152.703");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: N N == 1152=2732 1152 = 2^{7} \cdot 3^{2}
Weight: k k == 5 5
Character orbit: [χ][\chi] == 1152.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 119.082197473119.082197473
Analytic rank: 00
Dimension: 44
Coefficient field: Q(2,17)\Q(\sqrt{-2}, \sqrt{-17})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x416x2+81 x^{4} - 16x^{2} + 81 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 2734 2^{7}\cdot 3^{4}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β3q5β2q7+β1q11+4β3q1316q174β1q1916β2q23+13q25+17β3q29+13β2q319β1q35+2366q97+O(q100) q + \beta_{3} q^{5} - \beta_{2} q^{7} + \beta_1 q^{11} + 4 \beta_{3} q^{13} - 16 q^{17} - 4 \beta_1 q^{19} - 16 \beta_{2} q^{23} + 13 q^{25} + 17 \beta_{3} q^{29} + 13 \beta_{2} q^{31} - 9 \beta_1 q^{35}+ \cdots - 2366 q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q64q17+52q251856q41764q499792q65+3592q7328288q899464q97+O(q100) 4 q - 64 q^{17} + 52 q^{25} - 1856 q^{41} - 764 q^{49} - 9792 q^{65} + 3592 q^{73} - 28288 q^{89} - 9464 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x416x2+81 x^{4} - 16x^{2} + 81 : Copy content Toggle raw display

β1\beta_{1}== (8ν3+200ν)/3 ( -8\nu^{3} + 200\nu ) / 3 Copy content Toggle raw display
β2\beta_{2}== 4ν3+28ν -4\nu^{3} + 28\nu Copy content Toggle raw display
β3\beta_{3}== 6ν248 6\nu^{2} - 48 Copy content Toggle raw display
ν\nu== (2β2+3β1)/144 ( -2\beta_{2} + 3\beta_1 ) / 144 Copy content Toggle raw display
ν2\nu^{2}== (β3+48)/6 ( \beta_{3} + 48 ) / 6 Copy content Toggle raw display
ν3\nu^{3}== (50β2+21β1)/144 ( -50\beta_{2} + 21\beta_1 ) / 144 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1152Z)×\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times.

nn 127127 641641 901901
χ(n)\chi(n) 1-1 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
703.1
2.91548 0.707107i
−2.91548 + 0.707107i
−2.91548 0.707107i
2.91548 + 0.707107i
0 0 0 24.7386i 0 50.9117i 0 0 0
703.2 0 0 0 24.7386i 0 50.9117i 0 0 0
703.3 0 0 0 24.7386i 0 50.9117i 0 0 0
703.4 0 0 0 24.7386i 0 50.9117i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1152.5.b.f 4
3.b odd 2 1 1152.5.b.h yes 4
4.b odd 2 1 inner 1152.5.b.f 4
8.b even 2 1 inner 1152.5.b.f 4
8.d odd 2 1 inner 1152.5.b.f 4
12.b even 2 1 1152.5.b.h yes 4
24.f even 2 1 1152.5.b.h yes 4
24.h odd 2 1 1152.5.b.h yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1152.5.b.f 4 1.a even 1 1 trivial
1152.5.b.f 4 4.b odd 2 1 inner
1152.5.b.f 4 8.b even 2 1 inner
1152.5.b.f 4 8.d odd 2 1 inner
1152.5.b.h yes 4 3.b odd 2 1
1152.5.b.h yes 4 12.b even 2 1
1152.5.b.h yes 4 24.f even 2 1
1152.5.b.h yes 4 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S5new(1152,[χ])S_{5}^{\mathrm{new}}(1152, [\chi]):

T52+612 T_{5}^{2} + 612 Copy content Toggle raw display
T17+16 T_{17} + 16 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 (T2+612)2 (T^{2} + 612)^{2} Copy content Toggle raw display
77 (T2+2592)2 (T^{2} + 2592)^{2} Copy content Toggle raw display
1111 (T219584)2 (T^{2} - 19584)^{2} Copy content Toggle raw display
1313 (T2+9792)2 (T^{2} + 9792)^{2} Copy content Toggle raw display
1717 (T+16)4 (T + 16)^{4} Copy content Toggle raw display
1919 (T2313344)2 (T^{2} - 313344)^{2} Copy content Toggle raw display
2323 (T2+663552)2 (T^{2} + 663552)^{2} Copy content Toggle raw display
2929 (T2+176868)2 (T^{2} + 176868)^{2} Copy content Toggle raw display
3131 (T2+438048)2 (T^{2} + 438048)^{2} Copy content Toggle raw display
3737 (T2+6120000)2 (T^{2} + 6120000)^{2} Copy content Toggle raw display
4141 (T+464)4 (T + 464)^{4} Copy content Toggle raw display
4343 (T2313344)2 (T^{2} - 313344)^{2} Copy content Toggle raw display
4747 (T2+5971968)2 (T^{2} + 5971968)^{2} Copy content Toggle raw display
5353 (T2+10184292)2 (T^{2} + 10184292)^{2} Copy content Toggle raw display
5959 (T213238784)2 (T^{2} - 13238784)^{2} Copy content Toggle raw display
6161 (T2+18105408)2 (T^{2} + 18105408)^{2} Copy content Toggle raw display
6767 (T231334400)2 (T^{2} - 31334400)^{2} Copy content Toggle raw display
7171 (T2+10616832)2 (T^{2} + 10616832)^{2} Copy content Toggle raw display
7373 (T898)4 (T - 898)^{4} Copy content Toggle raw display
7979 (T2+74030112)2 (T^{2} + 74030112)^{2} Copy content Toggle raw display
8383 (T2176256)2 (T^{2} - 176256)^{2} Copy content Toggle raw display
8989 (T+7072)4 (T + 7072)^{4} Copy content Toggle raw display
9797 (T+2366)4 (T + 2366)^{4} Copy content Toggle raw display
show more
show less