Properties

Label 1152.5.b.f
Level $1152$
Weight $5$
Character orbit 1152.b
Analytic conductor $119.082$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1152,5,Mod(703,1152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1152, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1152.703");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 1152.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(119.082197473\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-17})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 16x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{7}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{5} - \beta_{2} q^{7} + \beta_1 q^{11} + 4 \beta_{3} q^{13} - 16 q^{17} - 4 \beta_1 q^{19} - 16 \beta_{2} q^{23} + 13 q^{25} + 17 \beta_{3} q^{29} + 13 \beta_{2} q^{31} - 9 \beta_1 q^{35}+ \cdots - 2366 q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 64 q^{17} + 52 q^{25} - 1856 q^{41} - 764 q^{49} - 9792 q^{65} + 3592 q^{73} - 28288 q^{89} - 9464 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 16x^{2} + 81 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -8\nu^{3} + 200\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -4\nu^{3} + 28\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 6\nu^{2} - 48 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -2\beta_{2} + 3\beta_1 ) / 144 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 48 ) / 6 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -50\beta_{2} + 21\beta_1 ) / 144 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(641\) \(901\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
703.1
2.91548 0.707107i
−2.91548 + 0.707107i
−2.91548 0.707107i
2.91548 + 0.707107i
0 0 0 24.7386i 0 50.9117i 0 0 0
703.2 0 0 0 24.7386i 0 50.9117i 0 0 0
703.3 0 0 0 24.7386i 0 50.9117i 0 0 0
703.4 0 0 0 24.7386i 0 50.9117i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1152.5.b.f 4
3.b odd 2 1 1152.5.b.h yes 4
4.b odd 2 1 inner 1152.5.b.f 4
8.b even 2 1 inner 1152.5.b.f 4
8.d odd 2 1 inner 1152.5.b.f 4
12.b even 2 1 1152.5.b.h yes 4
24.f even 2 1 1152.5.b.h yes 4
24.h odd 2 1 1152.5.b.h yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1152.5.b.f 4 1.a even 1 1 trivial
1152.5.b.f 4 4.b odd 2 1 inner
1152.5.b.f 4 8.b even 2 1 inner
1152.5.b.f 4 8.d odd 2 1 inner
1152.5.b.h yes 4 3.b odd 2 1
1152.5.b.h yes 4 12.b even 2 1
1152.5.b.h yes 4 24.f even 2 1
1152.5.b.h yes 4 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{5}^{\mathrm{new}}(1152, [\chi])\):

\( T_{5}^{2} + 612 \) Copy content Toggle raw display
\( T_{17} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} + 612)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 2592)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 19584)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 9792)^{2} \) Copy content Toggle raw display
$17$ \( (T + 16)^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} - 313344)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 663552)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 176868)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 438048)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 6120000)^{2} \) Copy content Toggle raw display
$41$ \( (T + 464)^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} - 313344)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 5971968)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 10184292)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 13238784)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 18105408)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 31334400)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 10616832)^{2} \) Copy content Toggle raw display
$73$ \( (T - 898)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + 74030112)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 176256)^{2} \) Copy content Toggle raw display
$89$ \( (T + 7072)^{4} \) Copy content Toggle raw display
$97$ \( (T + 2366)^{4} \) Copy content Toggle raw display
show more
show less