Properties

Label 1156.1.o.a.191.1
Level $1156$
Weight $1$
Character 1156.191
Analytic conductor $0.577$
Analytic rank $0$
Dimension $32$
Projective image $D_{68}$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1156,1,Mod(47,1156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1156, base_ring=CyclotomicField(68))
 
chi = DirichletCharacter(H, H._module([34, 25]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1156.47");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1156 = 2^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1156.o (of order \(68\), degree \(32\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.576919154604\)
Analytic rank: \(0\)
Dimension: \(32\)
Coefficient field: \(\Q(\zeta_{68})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{32} - x^{30} + x^{28} - x^{26} + x^{24} - x^{22} + x^{20} - x^{18} + x^{16} - x^{14} + x^{12} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{68}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{68} - \cdots)\)

Embedding invariants

Embedding label 191.1
Root \(-0.361242 + 0.932472i\) of defining polynomial
Character \(\chi\) \(=\) 1156.191
Dual form 1156.1.o.a.115.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.673696 - 0.739009i) q^{2} +(-0.0922684 + 0.995734i) q^{4} +(0.273663 + 1.96183i) q^{5} +(0.798017 - 0.602635i) q^{8} +(-0.526432 + 0.850217i) q^{9} +(1.26544 - 1.52391i) q^{10} +(-0.634493 - 0.840204i) q^{13} +(-0.982973 - 0.183750i) q^{16} +(0.982973 + 0.183750i) q^{17} +(0.982973 - 0.183750i) q^{18} +(-1.97871 + 0.0914812i) q^{20} +(-2.81204 + 0.800095i) q^{25} +(-0.193463 + 1.03494i) q^{26} +(0.292529 + 0.352279i) q^{29} +(0.526432 + 0.850217i) q^{32} +(-0.526432 - 0.850217i) q^{34} +(-0.798017 - 0.602635i) q^{36} +(-0.806980 + 1.82764i) q^{37} +(1.40065 + 1.40065i) q^{40} +(-0.241393 + 0.134455i) q^{41} +(-1.81204 - 0.800095i) q^{45} +(-0.895163 + 0.445738i) q^{49} +(2.48574 + 1.53910i) q^{50} +(0.895163 - 0.554262i) q^{52} +(0.942485 - 1.52217i) q^{53} +(0.0632619 - 0.453510i) q^{58} +(-0.555259 + 1.65667i) q^{61} +(0.273663 - 0.961826i) q^{64} +(1.47470 - 1.47470i) q^{65} +(-0.273663 + 0.961826i) q^{68} +(0.0922684 + 0.995734i) q^{72} +(1.60617 - 1.10025i) q^{73} +(1.89430 - 0.634905i) q^{74} +(0.0914812 - 1.97871i) q^{80} +(-0.445738 - 0.895163i) q^{81} +(0.261989 + 0.0878098i) q^{82} +(-0.0914812 + 1.97871i) q^{85} +(0.811985 - 1.07524i) q^{89} +(0.629488 + 1.87814i) q^{90} +(1.49780 - 0.352279i) q^{97} +(0.932472 + 0.361242i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{4} + 2 q^{5} - 2 q^{10} - 2 q^{16} + 2 q^{17} + 2 q^{18} - 2 q^{20} - 34 q^{25} - 2 q^{29} + 2 q^{37} + 2 q^{40} - 2 q^{41} - 2 q^{45} + 2 q^{50} + 2 q^{58} + 2 q^{61} + 2 q^{64} - 2 q^{68}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1156\mathbb{Z}\right)^\times\).

\(n\) \(579\) \(581\)
\(\chi(n)\) \(-1\) \(e\left(\frac{23}{68}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.673696 0.739009i −0.673696 0.739009i
\(3\) 0 0 −0.486604 0.873622i \(-0.661765\pi\)
0.486604 + 0.873622i \(0.338235\pi\)
\(4\) −0.0922684 + 0.995734i −0.0922684 + 0.995734i
\(5\) 0.273663 + 1.96183i 0.273663 + 1.96183i 0.273663 + 0.961826i \(0.411765\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 0 0 −0.228951 0.973438i \(-0.573529\pi\)
0.228951 + 0.973438i \(0.426471\pi\)
\(8\) 0.798017 0.602635i 0.798017 0.602635i
\(9\) −0.526432 + 0.850217i −0.526432 + 0.850217i
\(10\) 1.26544 1.52391i 1.26544 1.52391i
\(11\) 0 0 0.769334 0.638847i \(-0.220588\pi\)
−0.769334 + 0.638847i \(0.779412\pi\)
\(12\) 0 0
\(13\) −0.634493 0.840204i −0.634493 0.840204i 0.361242 0.932472i \(-0.382353\pi\)
−0.995734 + 0.0922684i \(0.970588\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.982973 0.183750i −0.982973 0.183750i
\(17\) 0.982973 + 0.183750i 0.982973 + 0.183750i
\(18\) 0.982973 0.183750i 0.982973 0.183750i
\(19\) 0 0 0.673696 0.739009i \(-0.264706\pi\)
−0.673696 + 0.739009i \(0.735294\pi\)
\(20\) −1.97871 + 0.0914812i −1.97871 + 0.0914812i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 −0.228951 0.973438i \(-0.573529\pi\)
0.228951 + 0.973438i \(0.426471\pi\)
\(24\) 0 0
\(25\) −2.81204 + 0.800095i −2.81204 + 0.800095i
\(26\) −0.193463 + 1.03494i −0.193463 + 1.03494i
\(27\) 0 0
\(28\) 0 0
\(29\) 0.292529 + 0.352279i 0.292529 + 0.352279i 0.895163 0.445738i \(-0.147059\pi\)
−0.602635 + 0.798017i \(0.705882\pi\)
\(30\) 0 0
\(31\) 0 0 −0.990410 0.138156i \(-0.955882\pi\)
0.990410 + 0.138156i \(0.0441176\pi\)
\(32\) 0.526432 + 0.850217i 0.526432 + 0.850217i
\(33\) 0 0
\(34\) −0.526432 0.850217i −0.526432 0.850217i
\(35\) 0 0
\(36\) −0.798017 0.602635i −0.798017 0.602635i
\(37\) −0.806980 + 1.82764i −0.806980 + 1.82764i −0.361242 + 0.932472i \(0.617647\pi\)
−0.445738 + 0.895163i \(0.647059\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 1.40065 + 1.40065i 1.40065 + 1.40065i
\(41\) −0.241393 + 0.134455i −0.241393 + 0.134455i −0.602635 0.798017i \(-0.705882\pi\)
0.361242 + 0.932472i \(0.382353\pi\)
\(42\) 0 0
\(43\) 0 0 −0.183750 0.982973i \(-0.558824\pi\)
0.183750 + 0.982973i \(0.441176\pi\)
\(44\) 0 0
\(45\) −1.81204 0.800095i −1.81204 0.800095i
\(46\) 0 0
\(47\) 0 0 0.850217 0.526432i \(-0.176471\pi\)
−0.850217 + 0.526432i \(0.823529\pi\)
\(48\) 0 0
\(49\) −0.895163 + 0.445738i −0.895163 + 0.445738i
\(50\) 2.48574 + 1.53910i 2.48574 + 1.53910i
\(51\) 0 0
\(52\) 0.895163 0.554262i 0.895163 0.554262i
\(53\) 0.942485 1.52217i 0.942485 1.52217i 0.0922684 0.995734i \(-0.470588\pi\)
0.850217 0.526432i \(-0.176471\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0.0632619 0.453510i 0.0632619 0.453510i
\(59\) 0 0 −0.895163 0.445738i \(-0.852941\pi\)
0.895163 + 0.445738i \(0.147059\pi\)
\(60\) 0 0
\(61\) −0.555259 + 1.65667i −0.555259 + 1.65667i 0.183750 + 0.982973i \(0.441176\pi\)
−0.739009 + 0.673696i \(0.764706\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0.273663 0.961826i 0.273663 0.961826i
\(65\) 1.47470 1.47470i 1.47470 1.47470i
\(66\) 0 0
\(67\) 0 0 −0.739009 0.673696i \(-0.764706\pi\)
0.739009 + 0.673696i \(0.235294\pi\)
\(68\) −0.273663 + 0.961826i −0.273663 + 0.961826i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.973438 0.228951i \(-0.0735294\pi\)
−0.973438 + 0.228951i \(0.926471\pi\)
\(72\) 0.0922684 + 0.995734i 0.0922684 + 0.995734i
\(73\) 1.60617 1.10025i 1.60617 1.10025i 0.673696 0.739009i \(-0.264706\pi\)
0.932472 0.361242i \(-0.117647\pi\)
\(74\) 1.89430 0.634905i 1.89430 0.634905i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.0461835 0.998933i \(-0.514706\pi\)
0.0461835 + 0.998933i \(0.485294\pi\)
\(80\) 0.0914812 1.97871i 0.0914812 1.97871i
\(81\) −0.445738 0.895163i −0.445738 0.895163i
\(82\) 0.261989 + 0.0878098i 0.261989 + 0.0878098i
\(83\) 0 0 0.961826 0.273663i \(-0.0882353\pi\)
−0.961826 + 0.273663i \(0.911765\pi\)
\(84\) 0 0
\(85\) −0.0914812 + 1.97871i −0.0914812 + 1.97871i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0.811985 1.07524i 0.811985 1.07524i −0.183750 0.982973i \(-0.558824\pi\)
0.995734 0.0922684i \(-0.0294118\pi\)
\(90\) 0.629488 + 1.87814i 0.629488 + 1.87814i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1.49780 0.352279i 1.49780 0.352279i 0.602635 0.798017i \(-0.294118\pi\)
0.895163 + 0.445738i \(0.147059\pi\)
\(98\) 0.932472 + 0.361242i 0.932472 + 0.361242i
\(99\) 0 0
\(100\) −0.537220 2.87387i −0.537220 2.87387i
\(101\) 0.163808 + 0.328972i 0.163808 + 0.328972i 0.961826 0.273663i \(-0.0882353\pi\)
−0.798017 + 0.602635i \(0.794118\pi\)
\(102\) 0 0
\(103\) 0 0 0.445738 0.895163i \(-0.352941\pi\)
−0.445738 + 0.895163i \(0.647059\pi\)
\(104\) −1.01267 0.288130i −1.01267 0.288130i
\(105\) 0 0
\(106\) −1.75984 + 0.328972i −1.75984 + 0.328972i
\(107\) 0 0 0.998933 0.0461835i \(-0.0147059\pi\)
−0.998933 + 0.0461835i \(0.985294\pi\)
\(108\) 0 0
\(109\) −0.0449462 + 0.0806938i −0.0449462 + 0.0806938i −0.895163 0.445738i \(-0.852941\pi\)
0.850217 + 0.526432i \(0.176471\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.23549 0.688163i 1.23549 0.688163i 0.273663 0.961826i \(-0.411765\pi\)
0.961826 + 0.273663i \(0.0882353\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −0.377767 + 0.258777i −0.377767 + 0.258777i
\(117\) 1.04837 0.0971461i 1.04837 0.0971461i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.183750 0.982973i 0.183750 0.982973i
\(122\) 1.59837 0.705749i 1.59837 0.705749i
\(123\) 0 0
\(124\) 0 0
\(125\) −1.53910 3.48574i −1.53910 3.48574i
\(126\) 0 0
\(127\) 0 0 0.361242 0.932472i \(-0.382353\pi\)
−0.361242 + 0.932472i \(0.617647\pi\)
\(128\) −0.895163 + 0.445738i −0.895163 + 0.445738i
\(129\) 0 0
\(130\) −2.08331 0.0963172i −2.08331 0.0963172i
\(131\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0.895163 0.445738i 0.895163 0.445738i
\(137\) −0.147263 + 1.58923i −0.147263 + 1.58923i 0.526432 + 0.850217i \(0.323529\pi\)
−0.673696 + 0.739009i \(0.735294\pi\)
\(138\) 0 0
\(139\) 0 0 0.0461835 0.998933i \(-0.485294\pi\)
−0.0461835 + 0.998933i \(0.514706\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0.673696 0.739009i 0.673696 0.739009i
\(145\) −0.611055 + 0.670296i −0.611055 + 0.670296i
\(146\) −1.89516 0.445738i −1.89516 0.445738i
\(147\) 0 0
\(148\) −1.74538 0.972171i −1.74538 0.972171i
\(149\) 0.465346 + 1.63552i 0.465346 + 1.63552i 0.739009 + 0.673696i \(0.235294\pi\)
−0.273663 + 0.961826i \(0.588235\pi\)
\(150\) 0 0
\(151\) 0 0 −0.995734 0.0922684i \(-0.970588\pi\)
0.995734 + 0.0922684i \(0.0294118\pi\)
\(152\) 0 0
\(153\) −0.673696 + 0.739009i −0.673696 + 0.739009i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −0.537235 + 1.07891i −0.537235 + 1.07891i 0.445738 + 0.895163i \(0.352941\pi\)
−0.982973 + 0.183750i \(0.941176\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −1.52391 + 1.26544i −1.52391 + 1.26544i
\(161\) 0 0
\(162\) −0.361242 + 0.932472i −0.361242 + 0.932472i
\(163\) 0 0 −0.403921 0.914794i \(-0.632353\pi\)
0.403921 + 0.914794i \(0.367647\pi\)
\(164\) −0.111609 0.252769i −0.111609 0.252769i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.914794 0.403921i \(-0.132353\pi\)
−0.914794 + 0.403921i \(0.867647\pi\)
\(168\) 0 0
\(169\) −0.0296988 + 0.104380i −0.0296988 + 0.104380i
\(170\) 1.52391 1.26544i 1.52391 1.26544i
\(171\) 0 0
\(172\) 0 0
\(173\) 0.524354 0.359191i 0.524354 0.359191i −0.273663 0.961826i \(-0.588235\pi\)
0.798017 + 0.602635i \(0.205882\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) −1.34164 + 0.124322i −1.34164 + 0.124322i
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0.963876 1.73049i 0.963876 1.73049i
\(181\) −0.134455 + 0.963876i −0.134455 + 0.963876i 0.798017 + 0.602635i \(0.205882\pi\)
−0.932472 + 0.361242i \(0.882353\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3.80634 1.08300i −3.80634 1.08300i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.932472 0.361242i \(-0.882353\pi\)
0.932472 + 0.361242i \(0.117647\pi\)
\(192\) 0 0
\(193\) 0.922758 1.65667i 0.922758 1.65667i 0.183750 0.982973i \(-0.441176\pi\)
0.739009 0.673696i \(-0.235294\pi\)
\(194\) −1.26940 0.869557i −1.26940 0.869557i
\(195\) 0 0
\(196\) −0.361242 0.932472i −0.361242 0.932472i
\(197\) 1.11943 0.156154i 1.11943 0.156154i 0.445738 0.895163i \(-0.352941\pi\)
0.673696 + 0.739009i \(0.264706\pi\)
\(198\) 0 0
\(199\) 0 0 −0.317791 0.948161i \(-0.602941\pi\)
0.317791 + 0.948161i \(0.397059\pi\)
\(200\) −1.76189 + 2.33312i −1.76189 + 2.33312i
\(201\) 0 0
\(202\) 0.132756 0.342683i 0.132756 0.342683i
\(203\) 0 0
\(204\) 0 0
\(205\) −0.329838 0.436776i −0.329838 0.436776i
\(206\) 0 0
\(207\) 0 0
\(208\) 0.469302 + 0.942485i 0.469302 + 0.942485i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.948161 0.317791i \(-0.102941\pi\)
−0.948161 + 0.317791i \(0.897059\pi\)
\(212\) 1.42871 + 1.07891i 1.42871 + 1.07891i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0.0899135 0.0211475i 0.0899135 0.0211475i
\(219\) 0 0
\(220\) 0 0
\(221\) −0.469302 0.942485i −0.469302 0.942485i
\(222\) 0 0
\(223\) 0 0 −0.361242 0.932472i \(-0.617647\pi\)
0.361242 + 0.932472i \(0.382353\pi\)
\(224\) 0 0
\(225\) 0.800095 2.81204i 0.800095 2.81204i
\(226\) −1.34090 0.449425i −1.34090 0.449425i
\(227\) 0 0 −0.565136 0.824997i \(-0.691176\pi\)
0.565136 + 0.824997i \(0.308824\pi\)
\(228\) 0 0
\(229\) −0.981767 1.58561i −0.981767 1.58561i −0.798017 0.602635i \(-0.794118\pi\)
−0.183750 0.982973i \(-0.558824\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0.445738 + 0.104837i 0.445738 + 0.104837i
\(233\) 0.869557 + 0.722071i 0.869557 + 0.722071i 0.961826 0.273663i \(-0.0882353\pi\)
−0.0922684 + 0.995734i \(0.529412\pi\)
\(234\) −0.778076 0.709310i −0.778076 0.709310i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.850217 0.526432i \(-0.823529\pi\)
0.850217 + 0.526432i \(0.176471\pi\)
\(240\) 0 0
\(241\) −0.309277 0.922758i −0.309277 0.922758i −0.982973 0.183750i \(-0.941176\pi\)
0.673696 0.739009i \(-0.264706\pi\)
\(242\) −0.850217 + 0.526432i −0.850217 + 0.526432i
\(243\) 0 0
\(244\) −1.59837 0.705749i −1.59837 0.705749i
\(245\) −1.11943 1.63417i −1.11943 1.63417i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) −1.53910 + 3.48574i −1.53910 + 3.48574i
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0.932472 + 0.361242i 0.932472 + 0.361242i
\(257\) 0.778076 + 1.25664i 0.778076 + 1.25664i 0.961826 + 0.273663i \(0.0882353\pi\)
−0.183750 + 0.982973i \(0.558824\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 1.33234 + 1.60447i 1.33234 + 1.60447i
\(261\) −0.453510 + 0.0632619i −0.453510 + 0.0632619i
\(262\) 0 0
\(263\) 0 0 0.183750 0.982973i \(-0.441176\pi\)
−0.183750 + 0.982973i \(0.558824\pi\)
\(264\) 0 0
\(265\) 3.24415 + 1.43243i 3.24415 + 1.43243i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.64823 0.0762025i 1.64823 0.0762025i 0.798017 0.602635i \(-0.205882\pi\)
0.850217 + 0.526432i \(0.176471\pi\)
\(270\) 0 0
\(271\) 0 0 0.982973 0.183750i \(-0.0588235\pi\)
−0.982973 + 0.183750i \(0.941176\pi\)
\(272\) −0.932472 0.361242i −0.932472 0.361242i
\(273\) 0 0
\(274\) 1.27366 0.961826i 1.27366 0.961826i
\(275\) 0 0
\(276\) 0 0
\(277\) −0.581427 + 0.256725i −0.581427 + 0.256725i −0.673696 0.739009i \(-0.735294\pi\)
0.0922684 + 0.995734i \(0.470588\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.58923 1.20013i 1.58923 1.20013i 0.739009 0.673696i \(-0.235294\pi\)
0.850217 0.526432i \(-0.176471\pi\)
\(282\) 0 0
\(283\) 0 0 0.317791 0.948161i \(-0.397059\pi\)
−0.317791 + 0.948161i \(0.602941\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −1.00000 −1.00000
\(289\) 0.932472 + 0.361242i 0.932472 + 0.361242i
\(290\) 0.907020 0.907020
\(291\) 0 0
\(292\) 0.947359 + 1.70083i 0.947359 + 1.70083i
\(293\) −0.136374 + 1.47171i −0.136374 + 1.47171i 0.602635 + 0.798017i \(0.294118\pi\)
−0.739009 + 0.673696i \(0.764706\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0.457413 + 1.94480i 0.457413 + 1.94480i
\(297\) 0 0
\(298\) 0.895163 1.44574i 0.895163 1.44574i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −3.40205 0.635953i −3.40205 0.635953i
\(306\) 1.00000 1.00000
\(307\) 0 0 0.982973 0.183750i \(-0.0588235\pi\)
−0.982973 + 0.183750i \(0.941176\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.990410 0.138156i \(-0.955882\pi\)
0.990410 + 0.138156i \(0.0441176\pi\)
\(312\) 0 0
\(313\) −1.50941 0.666468i −1.50941 0.666468i −0.526432 0.850217i \(-0.676471\pi\)
−0.982973 + 0.183750i \(0.941176\pi\)
\(314\) 1.15926 0.329838i 1.15926 0.329838i
\(315\) 0 0
\(316\) 0 0
\(317\) 1.63417 0.227957i 1.63417 0.227957i 0.739009 0.673696i \(-0.235294\pi\)
0.895163 + 0.445738i \(0.147059\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 1.96183 + 0.273663i 1.96183 + 0.273663i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0.932472 0.361242i 0.932472 0.361242i
\(325\) 2.45646 + 1.85503i 2.45646 + 1.85503i
\(326\) 0 0
\(327\) 0 0
\(328\) −0.111609 + 0.252769i −0.111609 + 0.252769i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.995734 0.0922684i \(-0.970588\pi\)
0.995734 + 0.0922684i \(0.0294118\pi\)
\(332\) 0 0
\(333\) −1.12907 1.64823i −1.12907 1.64823i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −0.581427 1.73474i −0.581427 1.73474i −0.673696 0.739009i \(-0.735294\pi\)
0.0922684 0.995734i \(-0.470588\pi\)
\(338\) 0.0971461 0.0483730i 0.0971461 0.0483730i
\(339\) 0 0
\(340\) −1.96183 0.273663i −1.96183 0.273663i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −0.618701 0.145517i −0.618701 0.145517i
\(347\) 0 0 0.138156 0.990410i \(-0.455882\pi\)
−0.138156 + 0.990410i \(0.544118\pi\)
\(348\) 0 0
\(349\) 0.380338 + 0.614268i 0.380338 + 0.614268i 0.982973 0.183750i \(-0.0588235\pi\)
−0.602635 + 0.798017i \(0.705882\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −0.538007 + 1.89090i −0.538007 + 1.89090i −0.0922684 + 0.995734i \(0.529412\pi\)
−0.445738 + 0.895163i \(0.647059\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0.995734 + 0.907732i 0.995734 + 0.907732i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.895163 0.445738i \(-0.852941\pi\)
0.895163 + 0.445738i \(0.147059\pi\)
\(360\) −1.92821 + 0.453510i −1.92821 + 0.453510i
\(361\) −0.0922684 0.995734i −0.0922684 0.995734i
\(362\) 0.802895 0.549996i 0.802895 0.549996i
\(363\) 0 0
\(364\) 0 0
\(365\) 2.59805 + 2.84992i 2.59805 + 2.84992i
\(366\) 0 0
\(367\) 0 0 0.948161 0.317791i \(-0.102941\pi\)
−0.948161 + 0.317791i \(0.897059\pi\)
\(368\) 0 0
\(369\) 0.0127611 0.276018i 0.0127611 0.276018i
\(370\) 1.76397 + 3.54253i 1.76397 + 3.54253i
\(371\) 0 0
\(372\) 0 0
\(373\) −0.435393 0.576554i −0.435393 0.576554i 0.526432 0.850217i \(-0.323529\pi\)
−0.961826 + 0.273663i \(0.911765\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0.110379 0.469302i 0.110379 0.469302i
\(378\) 0 0
\(379\) 0 0 −0.317791 0.948161i \(-0.602941\pi\)
0.317791 + 0.948161i \(0.397059\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.961826 0.273663i \(-0.911765\pi\)
0.961826 + 0.273663i \(0.0882353\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −1.84595 + 0.434164i −1.84595 + 0.434164i
\(387\) 0 0
\(388\) 0.212577 + 1.52391i 0.212577 + 1.52391i
\(389\) −0.163808 0.876298i −0.163808 0.876298i −0.961826 0.273663i \(-0.911765\pi\)
0.798017 0.602635i \(-0.205882\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.445738 + 0.895163i −0.445738 + 0.895163i
\(393\) 0 0
\(394\) −0.869557 0.722071i −0.869557 0.722071i
\(395\) 0 0
\(396\) 0 0
\(397\) −0.0127611 + 0.0914812i −0.0127611 + 0.0914812i −0.995734 0.0922684i \(-0.970588\pi\)
0.982973 + 0.183750i \(0.0588235\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 2.91118 0.269761i 2.91118 0.269761i
\(401\) −0.0293534 0.634905i −0.0293534 0.634905i −0.961826 0.273663i \(-0.911765\pi\)
0.932472 0.361242i \(-0.117647\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −0.342683 + 0.132756i −0.342683 + 0.132756i
\(405\) 1.63417 1.11943i 1.63417 1.11943i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −0.149783 + 0.526432i −0.149783 + 0.526432i 0.850217 + 0.526432i \(0.176471\pi\)
−1.00000 \(\pi\)
\(410\) −0.100571 + 0.538007i −0.100571 + 0.538007i
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0.380338 0.981767i 0.380338 0.981767i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 −0.998933 0.0461835i \(-0.985294\pi\)
0.998933 + 0.0461835i \(0.0147059\pi\)
\(420\) 0 0
\(421\) 0.163808 0.328972i 0.163808 0.328972i −0.798017 0.602635i \(-0.794118\pi\)
0.961826 + 0.273663i \(0.0882353\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) −0.165190 1.78269i −0.165190 1.78269i
\(425\) −2.91118 + 0.269761i −2.91118 + 0.269761i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.824997 0.565136i \(-0.808824\pi\)
0.824997 + 0.565136i \(0.191176\pi\)
\(432\) 0 0
\(433\) −0.811985 + 0.890705i −0.811985 + 0.890705i −0.995734 0.0922684i \(-0.970588\pi\)
0.183750 + 0.982973i \(0.441176\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −0.0762025 0.0521999i −0.0762025 0.0521999i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.0461835 0.998933i \(-0.485294\pi\)
−0.0461835 + 0.998933i \(0.514706\pi\)
\(440\) 0 0
\(441\) 0.0922684 0.995734i 0.0922684 0.995734i
\(442\) −0.380338 + 0.981767i −0.380338 + 0.981767i
\(443\) 0 0 −0.0922684 0.995734i \(-0.529412\pi\)
0.0922684 + 0.995734i \(0.470588\pi\)
\(444\) 0 0
\(445\) 2.33165 + 1.29872i 2.33165 + 1.29872i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −1.45890 + 1.21146i −1.45890 + 1.21146i −0.526432 + 0.850217i \(0.676471\pi\)
−0.932472 + 0.361242i \(0.882353\pi\)
\(450\) −2.61715 + 1.30318i −2.61715 + 1.30318i
\(451\) 0 0
\(452\) 0.571231 + 1.29371i 0.571231 + 1.29371i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0.361242 1.93247i 0.361242 1.93247i 1.00000i \(-0.5\pi\)
0.361242 0.932472i \(-0.382353\pi\)
\(458\) −0.510366 + 1.79375i −0.510366 + 1.79375i
\(459\) 0 0
\(460\) 0 0
\(461\) −1.98297 + 0.183750i −1.98297 + 0.183750i −0.982973 + 0.183750i \(0.941176\pi\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 0.932472 0.361242i \(-0.117647\pi\)
−0.932472 + 0.361242i \(0.882353\pi\)
\(464\) −0.222817 0.400033i −0.222817 0.400033i
\(465\) 0 0
\(466\) −0.0521999 1.12907i −0.0521999 1.12907i
\(467\) 0 0 0.995734 0.0922684i \(-0.0294118\pi\)
−0.995734 + 0.0922684i \(0.970588\pi\)
\(468\) 1.05286i 1.05286i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0.798017 + 1.60263i 0.798017 + 1.60263i
\(478\) 0 0
\(479\) 0 0 −0.138156 0.990410i \(-0.544118\pi\)
0.138156 + 0.990410i \(0.455882\pi\)
\(480\) 0 0
\(481\) 2.04761 0.481593i 2.04761 0.481593i
\(482\) −0.473568 + 0.850217i −0.473568 + 0.850217i
\(483\) 0 0
\(484\) 0.961826 + 0.273663i 0.961826 + 0.273663i
\(485\) 1.10100 + 2.84201i 1.10100 + 2.84201i
\(486\) 0 0
\(487\) 0 0 0.638847 0.769334i \(-0.279412\pi\)
−0.638847 + 0.769334i \(0.720588\pi\)
\(488\) 0.555259 + 1.65667i 0.555259 + 1.65667i
\(489\) 0 0
\(490\) −0.453510 + 1.92821i −0.453510 + 1.92821i
\(491\) 0 0 0.361242 0.932472i \(-0.382353\pi\)
−0.361242 + 0.932472i \(0.617647\pi\)
\(492\) 0 0
\(493\) 0.222817 + 0.400033i 0.222817 + 0.400033i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 −0.0461835 0.998933i \(-0.514706\pi\)
0.0461835 + 0.998933i \(0.485294\pi\)
\(500\) 3.61288 1.21092i 3.61288 1.21092i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(504\) 0 0
\(505\) −0.600557 + 0.411391i −0.600557 + 0.411391i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −0.658809 + 0.600584i −0.658809 + 0.600584i −0.932472 0.361242i \(-0.882353\pi\)
0.273663 + 0.961826i \(0.411765\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.361242 0.932472i −0.361242 0.932472i
\(513\) 0 0
\(514\) 0.404479 1.42160i 0.404479 1.42160i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0.288130 2.06554i 0.288130 2.06554i
\(521\) −1.37665 0.323785i −1.37665 0.323785i −0.526432 0.850217i \(-0.676471\pi\)
−0.850217 + 0.526432i \(0.823529\pi\)
\(522\) 0.352279 + 0.292529i 0.352279 + 0.292529i
\(523\) 0 0 −0.739009 0.673696i \(-0.764706\pi\)
0.739009 + 0.673696i \(0.235294\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −0.895163 + 0.445738i −0.895163 + 0.445738i
\(530\) −1.12699 3.36248i −1.12699 3.36248i
\(531\) 0 0
\(532\) 0 0
\(533\) 0.266132 + 0.117509i 0.266132 + 0.117509i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −1.16672 1.16672i −1.16672 1.16672i
\(539\) 0 0
\(540\) 0 0
\(541\) −0.393100 + 0.890286i −0.393100 + 0.890286i 0.602635 + 0.798017i \(0.294118\pi\)
−0.995734 + 0.0922684i \(0.970588\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0.361242 + 0.932472i 0.361242 + 0.932472i
\(545\) −0.170607 0.0660936i −0.170607 0.0660936i
\(546\) 0 0
\(547\) 0 0 −0.990410 0.138156i \(-0.955882\pi\)
0.990410 + 0.138156i \(0.0441176\pi\)
\(548\) −1.56886 0.293271i −1.56886 0.293271i
\(549\) −1.11622 1.34421i −1.11622 1.34421i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0.581427 + 0.256725i 0.581427 + 0.256725i
\(555\) 0 0
\(556\) 0 0
\(557\) 0.995734 0.907732i 0.995734 0.907732i 1.00000i \(-0.5\pi\)
0.995734 + 0.0922684i \(0.0294118\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −1.95756 0.365931i −1.95756 0.365931i
\(563\) 0 0 0.798017 0.602635i \(-0.205882\pi\)
−0.798017 + 0.602635i \(0.794118\pi\)
\(564\) 0 0
\(565\) 1.68816 + 2.23549i 1.68816 + 2.23549i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 −0.850217 0.526432i \(-0.823529\pi\)
0.850217 + 0.526432i \(0.176471\pi\)
\(570\) 0 0
\(571\) 0 0 −0.228951 0.973438i \(-0.573529\pi\)
0.228951 + 0.973438i \(0.426471\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0.673696 + 0.739009i 0.673696 + 0.739009i
\(577\) −0.722483 −0.722483 −0.361242 0.932472i \(-0.617647\pi\)
−0.361242 + 0.932472i \(0.617647\pi\)
\(578\) −0.361242 0.932472i −0.361242 0.932472i
\(579\) 0 0
\(580\) −0.611055 0.670296i −0.611055 0.670296i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0.618701 1.84595i 0.618701 1.84595i
\(585\) 0.477485 + 2.03014i 0.477485 + 2.03014i
\(586\) 1.17948 0.890705i 1.17948 0.890705i
\(587\) 0 0 0.526432 0.850217i \(-0.323529\pi\)
−0.526432 + 0.850217i \(0.676471\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 1.12907 1.64823i 1.12907 1.64823i
\(593\) 1.27366 0.961826i 1.27366 0.961826i 0.273663 0.961826i \(-0.411765\pi\)
1.00000 \(0\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.67148 + 0.312454i −1.67148 + 0.312454i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.739009 0.673696i \(-0.235294\pi\)
−0.739009 + 0.673696i \(0.764706\pi\)
\(600\) 0 0
\(601\) 0.445738 + 1.89516i 0.445738 + 1.89516i 0.445738 + 0.895163i \(0.352941\pi\)
1.00000i \(0.500000\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.97871 + 0.0914812i 1.97871 + 0.0914812i
\(606\) 0 0
\(607\) 0 0 −0.638847 0.769334i \(-0.720588\pi\)
0.638847 + 0.769334i \(0.279412\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 1.82197 + 2.94258i 1.82197 + 2.94258i
\(611\) 0 0
\(612\) −0.673696 0.739009i −0.673696 0.739009i
\(613\) 0.172075 0.0666624i 0.172075 0.0666624i −0.273663 0.961826i \(-0.588235\pi\)
0.445738 + 0.895163i \(0.352941\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0.786384 1.78099i 0.786384 1.78099i 0.183750 0.982973i \(-0.441176\pi\)
0.602635 0.798017i \(-0.294118\pi\)
\(618\) 0 0
\(619\) 0 0 0.873622 0.486604i \(-0.161765\pi\)
−0.873622 + 0.486604i \(0.838235\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 3.93148 2.43427i 3.93148 2.43427i
\(626\) 0.524354 + 1.56446i 0.524354 + 1.56446i
\(627\) 0 0
\(628\) −1.02474 0.634493i −1.02474 0.634493i
\(629\) −1.12907 + 1.64823i −1.12907 + 1.64823i
\(630\) 0 0
\(631\) 0 0 0.526432 0.850217i \(-0.323529\pi\)
−0.526432 + 0.850217i \(0.676471\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −1.26940 1.05409i −1.26940 1.05409i
\(635\) 0 0
\(636\) 0 0
\(637\) 0.942485 + 0.469302i 0.942485 + 0.469302i
\(638\) 0 0
\(639\) 0 0
\(640\) −1.11943 1.63417i −1.11943 1.63417i
\(641\) −1.73474 0.581427i −1.73474 0.581427i −0.739009 0.673696i \(-0.764706\pi\)
−0.995734 + 0.0922684i \(0.970588\pi\)
\(642\) 0 0
\(643\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.739009 0.673696i \(-0.235294\pi\)
−0.739009 + 0.673696i \(0.764706\pi\)
\(648\) −0.895163 0.445738i −0.895163 0.445738i
\(649\) 0 0
\(650\) −0.284021 3.06508i −0.284021 3.06508i
\(651\) 0 0
\(652\) 0 0
\(653\) 0.571231 + 0.571231i 0.571231 + 0.571231i 0.932472 0.361242i \(-0.117647\pi\)
−0.361242 + 0.932472i \(0.617647\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0.261989 0.0878098i 0.261989 0.0878098i
\(657\) 0.0899135 + 1.94480i 0.0899135 + 1.94480i
\(658\) 0 0
\(659\) 0 0 −0.445738 0.895163i \(-0.647059\pi\)
0.445738 + 0.895163i \(0.352941\pi\)
\(660\) 0 0
\(661\) 0 0 −0.273663 0.961826i \(-0.588235\pi\)
0.273663 + 0.961826i \(0.411765\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −0.457413 + 1.94480i −0.457413 + 1.94480i
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −1.05409 0.722071i −1.05409 0.722071i −0.0922684 0.995734i \(-0.529412\pi\)
−0.961826 + 0.273663i \(0.911765\pi\)
\(674\) −0.890286 + 1.59837i −0.890286 + 1.59837i
\(675\) 0 0
\(676\) −0.101195 0.0392031i −0.101195 0.0392031i
\(677\) −0.176521 1.26544i −0.176521 1.26544i −0.850217 0.526432i \(-0.823529\pi\)
0.673696 0.739009i \(-0.264706\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 1.11943 + 1.63417i 1.11943 + 1.63417i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.769334 0.638847i \(-0.779412\pi\)
0.769334 + 0.638847i \(0.220588\pi\)
\(684\) 0 0
\(685\) −3.15808 + 0.146007i −3.15808 + 0.146007i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1.87693 + 0.173923i −1.87693 + 0.173923i
\(690\) 0 0
\(691\) 0 0 0.873622 0.486604i \(-0.161765\pi\)
−0.873622 + 0.486604i \(0.838235\pi\)
\(692\) 0.309277 + 0.555259i 0.309277 + 0.555259i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −0.261989 + 0.0878098i −0.261989 + 0.0878098i
\(698\) 0.197717 0.694903i 0.197717 0.694903i
\(699\) 0 0
\(700\) 0 0
\(701\) −0.312454 0.193463i −0.312454 0.193463i 0.361242 0.932472i \(-0.382353\pi\)
−0.673696 + 0.739009i \(0.735294\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 1.75984 0.876298i 1.75984 0.876298i
\(707\) 0 0
\(708\) 0 0
\(709\) 0.571231 0.571231i 0.571231 0.571231i −0.361242 0.932472i \(-0.617647\pi\)
0.932472 + 0.361242i \(0.117647\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 1.34739i 1.34739i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.873622 0.486604i \(-0.838235\pi\)
0.873622 + 0.486604i \(0.161765\pi\)
\(720\) 1.63417 + 1.11943i 1.63417 + 1.11943i
\(721\) 0 0
\(722\) −0.673696 + 0.739009i −0.673696 + 0.739009i
\(723\) 0 0
\(724\) −0.947359 0.222817i −0.947359 0.222817i
\(725\) −1.10446 0.756572i −1.10446 0.756572i
\(726\) 0 0
\(727\) 0 0 −0.273663 0.961826i \(-0.588235\pi\)
0.273663 + 0.961826i \(0.411765\pi\)
\(728\) 0 0
\(729\) 0.995734 + 0.0922684i 0.995734 + 0.0922684i
\(730\) 0.355825 3.83996i 0.355825 3.83996i
\(731\) 0 0
\(732\) 0 0
\(733\) 1.59603i 1.59603i −0.602635 0.798017i \(-0.705882\pi\)
0.602635 0.798017i \(-0.294118\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) −0.212577 + 0.176521i −0.212577 + 0.176521i
\(739\) 0 0 0.895163 0.445738i \(-0.147059\pi\)
−0.895163 + 0.445738i \(0.852941\pi\)
\(740\) 1.42958 3.69018i 1.42958 3.69018i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.228951 0.973438i \(-0.426471\pi\)
−0.228951 + 0.973438i \(0.573529\pi\)
\(744\) 0 0
\(745\) −3.08126 + 1.36051i −3.08126 + 1.36051i
\(746\) −0.132756 + 0.710182i −0.132756 + 0.710182i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.824997 0.565136i \(-0.191176\pi\)
−0.824997 + 0.565136i \(0.808824\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −0.421180 + 0.234596i −0.421180 + 0.234596i
\(755\) 0 0
\(756\) 0 0
\(757\) 0.184537i 0.184537i 0.995734 + 0.0922684i \(0.0294118\pi\)
−0.995734 + 0.0922684i \(0.970588\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1.56886 + 0.293271i −1.56886 + 0.293271i −0.895163 0.445738i \(-0.852941\pi\)
−0.673696 + 0.739009i \(0.735294\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −1.63417 1.11943i −1.63417 1.11943i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 1.25640 + 0.486734i 1.25640 + 0.486734i 0.895163 0.445738i \(-0.147059\pi\)
0.361242 + 0.932472i \(0.382353\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1.56446 + 1.07168i 1.56446 + 1.07168i
\(773\) −1.15926 0.329838i −1.15926 0.329838i −0.361242 0.932472i \(-0.617647\pi\)
−0.798017 + 0.602635i \(0.794118\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0.982973 1.18375i 0.982973 1.18375i
\(777\) 0 0
\(778\) −0.537235 + 0.711414i −0.537235 + 0.711414i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0.961826 0.273663i 0.961826 0.273663i
\(785\) −2.26366 0.758702i −2.26366 0.758702i
\(786\) 0 0
\(787\) 0 0 0.0461835 0.998933i \(-0.485294\pi\)
−0.0461835 + 0.998933i \(0.514706\pi\)
\(788\) 0.0521999 + 1.12907i 0.0521999 + 1.12907i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 1.74425 0.584613i 1.74425 0.584613i
\(794\) 0.0762025 0.0521999i 0.0762025 0.0521999i
\(795\) 0 0
\(796\) 0 0
\(797\) −1.60263 0.798017i −1.60263 0.798017i −0.602635 0.798017i \(-0.705882\pi\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −2.16060 1.96965i −2.16060 1.96965i
\(801\) 0.486734 + 1.25640i 0.486734 + 1.25640i
\(802\) −0.449425 + 0.449425i −0.449425 + 0.449425i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0.328972 + 0.163808i 0.328972 + 0.163808i
\(809\) 0.156154 1.11943i 0.156154 1.11943i −0.739009 0.673696i \(-0.764706\pi\)
0.895163 0.445738i \(-0.147059\pi\)
\(810\) −1.92821 0.453510i −1.92821 0.453510i
\(811\) 0 0 −0.769334 0.638847i \(-0.779412\pi\)
0.769334 + 0.638847i \(0.220588\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0.489946 0.243964i 0.489946 0.243964i
\(819\) 0 0
\(820\) 0.465346 0.288130i 0.465346 0.288130i
\(821\) 0.987432 1.44147i 0.987432 1.44147i 0.0922684 0.995734i \(-0.470588\pi\)
0.895163 0.445738i \(-0.147059\pi\)
\(822\) 0 0
\(823\) 0 0 −0.565136 0.824997i \(-0.691176\pi\)
0.565136 + 0.824997i \(0.308824\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(828\) 0 0
\(829\) −1.70043 −1.70043 −0.850217 0.526432i \(-0.823529\pi\)
−0.850217 + 0.526432i \(0.823529\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −0.981767 + 0.380338i −0.981767 + 0.380338i
\(833\) −0.961826 + 0.273663i −0.961826 + 0.273663i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.990410 0.138156i \(-0.0441176\pi\)
−0.990410 + 0.138156i \(0.955882\pi\)
\(840\) 0 0
\(841\) 0.145222 0.776870i 0.145222 0.776870i
\(842\) −0.353470 + 0.100571i −0.353470 + 0.100571i
\(843\) 0 0
\(844\) 0 0
\(845\) −0.212904 0.0296988i −0.212904 0.0296988i
\(846\) 0 0
\(847\) 0 0
\(848\) −1.20614 + 1.32307i −1.20614 + 1.32307i
\(849\) 0 0
\(850\) 2.16060 + 1.96965i 2.16060 + 1.96965i
\(851\) 0 0
\(852\) 0 0
\(853\) 1.03397 1.50941i 1.03397 1.50941i 0.183750 0.982973i \(-0.441176\pi\)
0.850217 0.526432i \(-0.176471\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −0.516087 + 0.621500i −0.516087 + 0.621500i −0.961826 0.273663i \(-0.911765\pi\)
0.445738 + 0.895163i \(0.352941\pi\)
\(858\) 0 0
\(859\) 0 0 0.798017 0.602635i \(-0.205882\pi\)
−0.798017 + 0.602635i \(0.794118\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.0922684 0.995734i \(-0.470588\pi\)
−0.0922684 + 0.995734i \(0.529412\pi\)
\(864\) 0 0
\(865\) 0.848166 + 0.930394i 0.848166 + 0.930394i
\(866\) 1.20527 1.20527
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0.0127611 + 0.0914812i 0.0127611 + 0.0914812i
\(873\) −0.488975 + 1.45890i −0.488975 + 1.45890i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1.24376 + 1.49780i −1.24376 + 1.49780i −0.445738 + 0.895163i \(0.647059\pi\)
−0.798017 + 0.602635i \(0.794118\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −0.869557 + 1.26940i −0.869557 + 1.26940i 0.0922684 + 0.995734i \(0.470588\pi\)
−0.961826 + 0.273663i \(0.911765\pi\)
\(882\) −0.798017 + 0.602635i −0.798017 + 0.602635i
\(883\) 0 0 −0.982973 0.183750i \(-0.941176\pi\)
0.982973 + 0.183750i \(0.0588235\pi\)
\(884\) 0.981767 0.380338i 0.981767 0.380338i
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.998933 0.0461835i \(-0.0147059\pi\)
−0.998933 + 0.0461835i \(0.985294\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −0.611055 2.59805i −0.611055 2.59805i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 1.87814 + 0.261989i 1.87814 + 0.261989i
\(899\) 0 0
\(900\) 2.72622 + 1.05614i 2.72622 + 1.05614i
\(901\) 1.20614 1.32307i 1.20614 1.32307i
\(902\) 0 0
\(903\) 0 0
\(904\) 0.571231 1.29371i 0.571231 1.29371i
\(905\) −1.92775 −1.92775
\(906\) 0 0
\(907\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(908\) 0 0
\(909\) −0.365931 0.0339085i −0.365931 0.0339085i
\(910\) 0 0
\(911\) 0 0 −0.565136 0.824997i \(-0.691176\pi\)
0.565136 + 0.824997i \(0.308824\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −1.67148 + 1.03494i −1.67148 + 1.03494i
\(915\) 0 0
\(916\) 1.66943 0.831277i 1.66943 0.831277i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 0.850217 0.526432i \(-0.176471\pi\)
−0.850217 + 0.526432i \(0.823529\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 1.47171 + 1.34164i 1.47171 + 1.34164i
\(923\) 0 0
\(924\) 0 0
\(925\) 0.806980 5.78505i 0.806980 5.78505i
\(926\) 0 0
\(927\) 0 0
\(928\) −0.145517 + 0.434164i −0.145517 + 0.434164i
\(929\) 0.722071 + 1.05409i 0.722071 + 1.05409i 0.995734 + 0.0922684i \(0.0294118\pi\)
−0.273663 + 0.961826i \(0.588235\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −0.799224 + 0.799224i −0.799224 + 0.799224i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0.778076 0.709310i 0.778076 0.709310i
\(937\) −1.78269 0.887674i −1.78269 0.887674i −0.932472 0.361242i \(-0.882353\pi\)
−0.850217 0.526432i \(-0.823529\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1.21146 + 0.406040i −1.21146 + 0.406040i −0.850217 0.526432i \(-0.823529\pi\)
−0.361242 + 0.932472i \(0.617647\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.0461835 0.998933i \(-0.485294\pi\)
−0.0461835 + 0.998933i \(0.514706\pi\)
\(948\) 0 0
\(949\) −1.94354 0.651408i −1.94354 0.651408i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −0.811985 + 1.07524i −0.811985 + 1.07524i 0.183750 + 0.982973i \(0.441176\pi\)
−0.995734 + 0.0922684i \(0.970588\pi\)
\(954\) 0.646741 1.66943i 0.646741 1.66943i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 0.961826 + 0.273663i 0.961826 + 0.273663i
\(962\) −1.73537 1.18875i −1.73537 1.18875i
\(963\) 0 0
\(964\) 0.947359 0.222817i 0.947359 0.222817i
\(965\) 3.50262 + 1.35692i 3.50262 + 1.35692i
\(966\) 0 0
\(967\) 0 0 −0.183750 0.982973i \(-0.558824\pi\)
0.183750 + 0.982973i \(0.441176\pi\)
\(968\) −0.445738 0.895163i −0.445738 0.895163i
\(969\) 0 0
\(970\) 1.35853 2.72830i 1.35853 2.72830i
\(971\) 0 0 −0.961826 0.273663i \(-0.911765\pi\)
0.961826 + 0.273663i \(0.0882353\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0.850217 1.52643i 0.850217 1.52643i
\(977\) 0.722483i 0.722483i −0.932472 0.361242i \(-0.882353\pi\)
0.932472 0.361242i \(-0.117647\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 1.73049 0.963876i 1.73049 0.963876i
\(981\) −0.0449462 0.0806938i −0.0449462 0.0806938i
\(982\) 0 0
\(983\) 0 0 0.824997 0.565136i \(-0.191176\pi\)
−0.824997 + 0.565136i \(0.808824\pi\)
\(984\) 0 0
\(985\) 0.612695 + 2.15340i 0.612695 + 2.15340i
\(986\) 0.145517 0.434164i 0.145517 0.434164i
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 0.228951 0.973438i \(-0.426471\pi\)
−0.228951 + 0.973438i \(0.573529\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1.89430 + 0.0875787i 1.89430 + 0.0875787i 0.961826 0.273663i \(-0.0882353\pi\)
0.932472 + 0.361242i \(0.117647\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1156.1.o.a.191.1 yes 32
4.3 odd 2 CM 1156.1.o.a.191.1 yes 32
289.115 even 68 inner 1156.1.o.a.115.1 32
1156.115 odd 68 inner 1156.1.o.a.115.1 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1156.1.o.a.115.1 32 289.115 even 68 inner
1156.1.o.a.115.1 32 1156.115 odd 68 inner
1156.1.o.a.191.1 yes 32 1.1 even 1 trivial
1156.1.o.a.191.1 yes 32 4.3 odd 2 CM