Properties

Label 1156.1.o.a.47.1
Level $1156$
Weight $1$
Character 1156.47
Analytic conductor $0.577$
Analytic rank $0$
Dimension $32$
Projective image $D_{68}$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1156,1,Mod(47,1156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1156, base_ring=CyclotomicField(68))
 
chi = DirichletCharacter(H, H._module([34, 25]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1156.47");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1156 = 2^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1156.o (of order \(68\), degree \(32\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.576919154604\)
Analytic rank: \(0\)
Dimension: \(32\)
Coefficient field: \(\Q(\zeta_{68})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{32} - x^{30} + x^{28} - x^{26} + x^{24} - x^{22} + x^{20} - x^{18} + x^{16} - x^{14} + x^{12} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{68}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{68} - \cdots)\)

Embedding invariants

Embedding label 47.1
Root \(0.526432 + 0.850217i\) of defining polynomial
Character \(\chi\) \(=\) 1156.47
Dual form 1156.1.o.a.123.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.895163 + 0.445738i) q^{2} +(0.602635 - 0.798017i) q^{4} +(-0.932472 - 0.638758i) q^{5} +(-0.183750 + 0.982973i) q^{8} +(-0.673696 + 0.739009i) q^{9} +(1.11943 + 0.156154i) q^{10} +(-1.32445 - 0.247582i) q^{13} +(-0.273663 - 0.961826i) q^{16} +(0.273663 + 0.961826i) q^{17} +(0.273663 - 0.961826i) q^{18} +(-1.07168 + 0.359191i) q^{20} +(0.100251 + 0.258777i) q^{25} +(1.29596 - 0.368731i) q^{26} +(-1.97871 + 0.276018i) q^{29} +(0.673696 + 0.739009i) q^{32} +(-0.673696 - 0.739009i) q^{34} +(0.183750 + 0.982973i) q^{36} +(0.434164 + 1.84595i) q^{37} +(0.799224 - 0.799224i) q^{40} +(-1.50941 + 0.666468i) q^{41} +(1.10025 - 0.258777i) q^{45} +(0.995734 - 0.0922684i) q^{49} +(-0.205087 - 0.186962i) q^{50} +(-0.995734 + 0.907732i) q^{52} +(-1.34164 + 1.47171i) q^{53} +(1.64823 - 1.12907i) q^{58} +(-1.40756 - 1.16883i) q^{61} +(-0.932472 - 0.361242i) q^{64} +(1.07687 + 1.07687i) q^{65} +(0.932472 + 0.361242i) q^{68} +(-0.602635 - 0.798017i) q^{72} +(0.0449462 - 0.0806938i) q^{73} +(-1.21146 - 1.45890i) q^{74} +(-0.359191 + 1.07168i) q^{80} +(-0.0922684 - 0.995734i) q^{81} +(1.05409 - 1.26940i) q^{82} +(0.359191 - 1.07168i) q^{85} +(1.75984 - 0.328972i) q^{89} +(-0.869557 + 0.722071i) q^{90} +(-0.0127611 - 0.276018i) q^{97} +(-0.850217 + 0.526432i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{4} + 2 q^{5} - 2 q^{10} - 2 q^{16} + 2 q^{17} + 2 q^{18} - 2 q^{20} - 34 q^{25} - 2 q^{29} + 2 q^{37} + 2 q^{40} - 2 q^{41} - 2 q^{45} + 2 q^{50} + 2 q^{58} + 2 q^{61} + 2 q^{64} - 2 q^{68}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1156\mathbb{Z}\right)^\times\).

\(n\) \(579\) \(581\)
\(\chi(n)\) \(-1\) \(e\left(\frac{25}{68}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.895163 + 0.445738i −0.895163 + 0.445738i
\(3\) 0 0 −0.403921 0.914794i \(-0.632353\pi\)
0.403921 + 0.914794i \(0.367647\pi\)
\(4\) 0.602635 0.798017i 0.602635 0.798017i
\(5\) −0.932472 0.638758i −0.932472 0.638758i 1.00000i \(-0.5\pi\)
−0.932472 + 0.361242i \(0.882353\pi\)
\(6\) 0 0
\(7\) 0 0 0.998933 0.0461835i \(-0.0147059\pi\)
−0.998933 + 0.0461835i \(0.985294\pi\)
\(8\) −0.183750 + 0.982973i −0.183750 + 0.982973i
\(9\) −0.673696 + 0.739009i −0.673696 + 0.739009i
\(10\) 1.11943 + 0.156154i 1.11943 + 0.156154i
\(11\) 0 0 −0.138156 0.990410i \(-0.544118\pi\)
0.138156 + 0.990410i \(0.455882\pi\)
\(12\) 0 0
\(13\) −1.32445 0.247582i −1.32445 0.247582i −0.526432 0.850217i \(-0.676471\pi\)
−0.798017 + 0.602635i \(0.794118\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.273663 0.961826i −0.273663 0.961826i
\(17\) 0.273663 + 0.961826i 0.273663 + 0.961826i
\(18\) 0.273663 0.961826i 0.273663 0.961826i
\(19\) 0 0 −0.895163 0.445738i \(-0.852941\pi\)
0.895163 + 0.445738i \(0.147059\pi\)
\(20\) −1.07168 + 0.359191i −1.07168 + 0.359191i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.998933 0.0461835i \(-0.0147059\pi\)
−0.998933 + 0.0461835i \(0.985294\pi\)
\(24\) 0 0
\(25\) 0.100251 + 0.258777i 0.100251 + 0.258777i
\(26\) 1.29596 0.368731i 1.29596 0.368731i
\(27\) 0 0
\(28\) 0 0
\(29\) −1.97871 + 0.276018i −1.97871 + 0.276018i −0.982973 + 0.183750i \(0.941176\pi\)
−0.995734 + 0.0922684i \(0.970588\pi\)
\(30\) 0 0
\(31\) 0 0 −0.565136 0.824997i \(-0.691176\pi\)
0.565136 + 0.824997i \(0.308824\pi\)
\(32\) 0.673696 + 0.739009i 0.673696 + 0.739009i
\(33\) 0 0
\(34\) −0.673696 0.739009i −0.673696 0.739009i
\(35\) 0 0
\(36\) 0.183750 + 0.982973i 0.183750 + 0.982973i
\(37\) 0.434164 + 1.84595i 0.434164 + 1.84595i 0.526432 + 0.850217i \(0.323529\pi\)
−0.0922684 + 0.995734i \(0.529412\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0.799224 0.799224i 0.799224 0.799224i
\(41\) −1.50941 + 0.666468i −1.50941 + 0.666468i −0.982973 0.183750i \(-0.941176\pi\)
−0.526432 + 0.850217i \(0.676471\pi\)
\(42\) 0 0
\(43\) 0 0 −0.961826 0.273663i \(-0.911765\pi\)
0.961826 + 0.273663i \(0.0882353\pi\)
\(44\) 0 0
\(45\) 1.10025 0.258777i 1.10025 0.258777i
\(46\) 0 0
\(47\) 0 0 0.739009 0.673696i \(-0.235294\pi\)
−0.739009 + 0.673696i \(0.764706\pi\)
\(48\) 0 0
\(49\) 0.995734 0.0922684i 0.995734 0.0922684i
\(50\) −0.205087 0.186962i −0.205087 0.186962i
\(51\) 0 0
\(52\) −0.995734 + 0.907732i −0.995734 + 0.907732i
\(53\) −1.34164 + 1.47171i −1.34164 + 1.47171i −0.602635 + 0.798017i \(0.705882\pi\)
−0.739009 + 0.673696i \(0.764706\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 1.64823 1.12907i 1.64823 1.12907i
\(59\) 0 0 −0.995734 0.0922684i \(-0.970588\pi\)
0.995734 + 0.0922684i \(0.0294118\pi\)
\(60\) 0 0
\(61\) −1.40756 1.16883i −1.40756 1.16883i −0.961826 0.273663i \(-0.911765\pi\)
−0.445738 0.895163i \(-0.647059\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −0.932472 0.361242i −0.932472 0.361242i
\(65\) 1.07687 + 1.07687i 1.07687 + 1.07687i
\(66\) 0 0
\(67\) 0 0 0.445738 0.895163i \(-0.352941\pi\)
−0.445738 + 0.895163i \(0.647059\pi\)
\(68\) 0.932472 + 0.361242i 0.932472 + 0.361242i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.0461835 0.998933i \(-0.514706\pi\)
0.0461835 + 0.998933i \(0.485294\pi\)
\(72\) −0.602635 0.798017i −0.602635 0.798017i
\(73\) 0.0449462 0.0806938i 0.0449462 0.0806938i −0.850217 0.526432i \(-0.823529\pi\)
0.895163 + 0.445738i \(0.147059\pi\)
\(74\) −1.21146 1.45890i −1.21146 1.45890i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.317791 0.948161i \(-0.602941\pi\)
0.317791 + 0.948161i \(0.397059\pi\)
\(80\) −0.359191 + 1.07168i −0.359191 + 1.07168i
\(81\) −0.0922684 0.995734i −0.0922684 0.995734i
\(82\) 1.05409 1.26940i 1.05409 1.26940i
\(83\) 0 0 −0.361242 0.932472i \(-0.617647\pi\)
0.361242 + 0.932472i \(0.382353\pi\)
\(84\) 0 0
\(85\) 0.359191 1.07168i 0.359191 1.07168i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.75984 0.328972i 1.75984 0.328972i 0.798017 0.602635i \(-0.205882\pi\)
0.961826 + 0.273663i \(0.0882353\pi\)
\(90\) −0.869557 + 0.722071i −0.869557 + 0.722071i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −0.0127611 0.276018i −0.0127611 0.276018i −0.995734 0.0922684i \(-0.970588\pi\)
0.982973 0.183750i \(-0.0588235\pi\)
\(98\) −0.850217 + 0.526432i −0.850217 + 0.526432i
\(99\) 0 0
\(100\) 0.266923 + 0.0759460i 0.266923 + 0.0759460i
\(101\) −0.177492 1.91545i −0.177492 1.91545i −0.361242 0.932472i \(-0.617647\pi\)
0.183750 0.982973i \(-0.441176\pi\)
\(102\) 0 0
\(103\) 0 0 0.0922684 0.995734i \(-0.470588\pi\)
−0.0922684 + 0.995734i \(0.529412\pi\)
\(104\) 0.486734 1.25640i 0.486734 1.25640i
\(105\) 0 0
\(106\) 0.544991 1.91545i 0.544991 1.91545i
\(107\) 0 0 0.948161 0.317791i \(-0.102941\pi\)
−0.948161 + 0.317791i \(0.897059\pi\)
\(108\) 0 0
\(109\) 0.256725 0.581427i 0.256725 0.581427i −0.739009 0.673696i \(-0.764706\pi\)
0.995734 + 0.0922684i \(0.0294118\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.29371 + 0.571231i −1.29371 + 0.571231i −0.932472 0.361242i \(-0.882353\pi\)
−0.361242 + 0.932472i \(0.617647\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −0.972171 + 1.74538i −0.972171 + 1.74538i
\(117\) 1.07524 0.811985i 1.07524 0.811985i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −0.961826 + 0.273663i −0.961826 + 0.273663i
\(122\) 1.78099 + 0.418885i 1.78099 + 0.418885i
\(123\) 0 0
\(124\) 0 0
\(125\) −0.186962 + 0.794913i −0.186962 + 0.794913i
\(126\) 0 0
\(127\) 0 0 −0.526432 0.850217i \(-0.676471\pi\)
0.526432 + 0.850217i \(0.323529\pi\)
\(128\) 0.995734 0.0922684i 0.995734 0.0922684i
\(129\) 0 0
\(130\) −1.44397 0.483971i −1.44397 0.483971i
\(131\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −0.995734 + 0.0922684i −0.995734 + 0.0922684i
\(137\) −0.221468 + 0.293271i −0.221468 + 0.293271i −0.895163 0.445738i \(-0.852941\pi\)
0.673696 + 0.739009i \(0.264706\pi\)
\(138\) 0 0
\(139\) 0 0 0.317791 0.948161i \(-0.397059\pi\)
−0.317791 + 0.948161i \(0.602941\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0.895163 + 0.445738i 0.895163 + 0.445738i
\(145\) 2.02140 + 1.00654i 2.02140 + 1.00654i
\(146\) −0.00426582 + 0.0922684i −0.00426582 + 0.0922684i
\(147\) 0 0
\(148\) 1.73474 + 0.765964i 1.73474 + 0.765964i
\(149\) 1.37821 0.533922i 1.37821 0.533922i 0.445738 0.895163i \(-0.352941\pi\)
0.932472 + 0.361242i \(0.117647\pi\)
\(150\) 0 0
\(151\) 0 0 −0.798017 0.602635i \(-0.794118\pi\)
0.798017 + 0.602635i \(0.205882\pi\)
\(152\) 0 0
\(153\) −0.895163 0.445738i −0.895163 0.445738i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −0.181395 + 1.95756i −0.181395 + 1.95756i 0.0922684 + 0.995734i \(0.470588\pi\)
−0.273663 + 0.961826i \(0.588235\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −0.156154 1.11943i −0.156154 1.11943i
\(161\) 0 0
\(162\) 0.526432 + 0.850217i 0.526432 + 0.850217i
\(163\) 0 0 0.228951 0.973438i \(-0.426471\pi\)
−0.228951 + 0.973438i \(0.573529\pi\)
\(164\) −0.377767 + 1.60617i −0.377767 + 1.60617i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.973438 0.228951i \(-0.926471\pi\)
0.973438 + 0.228951i \(0.0735294\pi\)
\(168\) 0 0
\(169\) 0.760397 + 0.294579i 0.760397 + 0.294579i
\(170\) 0.156154 + 1.11943i 0.156154 + 1.11943i
\(171\) 0 0
\(172\) 0 0
\(173\) 0.748723 1.34421i 0.748723 1.34421i −0.183750 0.982973i \(-0.558824\pi\)
0.932472 0.361242i \(-0.117647\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) −1.42871 + 1.07891i −1.42871 + 1.07891i
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0.456541 1.03397i 0.456541 1.03397i
\(181\) 0.666468 0.456541i 0.666468 0.456541i −0.183750 0.982973i \(-0.558824\pi\)
0.850217 + 0.526432i \(0.176471\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.774271 1.99862i 0.774271 1.99862i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.850217 0.526432i \(-0.176471\pi\)
−0.850217 + 0.526432i \(0.823529\pi\)
\(192\) 0 0
\(193\) −0.516087 + 1.16883i −0.516087 + 1.16883i 0.445738 + 0.895163i \(0.352941\pi\)
−0.961826 + 0.273663i \(0.911765\pi\)
\(194\) 0.134455 + 0.241393i 0.134455 + 0.241393i
\(195\) 0 0
\(196\) 0.526432 0.850217i 0.526432 0.850217i
\(197\) 0.987432 1.44147i 0.987432 1.44147i 0.0922684 0.995734i \(-0.470588\pi\)
0.895163 0.445738i \(-0.147059\pi\)
\(198\) 0 0
\(199\) 0 0 0.769334 0.638847i \(-0.220588\pi\)
−0.769334 + 0.638847i \(0.779412\pi\)
\(200\) −0.272791 + 0.0509936i −0.272791 + 0.0509936i
\(201\) 0 0
\(202\) 1.01267 + 1.63552i 1.01267 + 1.63552i
\(203\) 0 0
\(204\) 0 0
\(205\) 1.83319 + 0.342683i 1.83319 + 0.342683i
\(206\) 0 0
\(207\) 0 0
\(208\) 0.124322 + 1.34164i 0.124322 + 1.34164i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 −0.638847 0.769334i \(-0.720588\pi\)
0.638847 + 0.769334i \(0.279412\pi\)
\(212\) 0.365931 + 1.95756i 0.365931 + 1.95756i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0.0293534 + 0.634905i 0.0293534 + 0.634905i
\(219\) 0 0
\(220\) 0 0
\(221\) −0.124322 1.34164i −0.124322 1.34164i
\(222\) 0 0
\(223\) 0 0 0.526432 0.850217i \(-0.323529\pi\)
−0.526432 + 0.850217i \(0.676471\pi\)
\(224\) 0 0
\(225\) −0.258777 0.100251i −0.258777 0.100251i
\(226\) 0.903466 1.08800i 0.903466 1.08800i
\(227\) 0 0 −0.873622 0.486604i \(-0.838235\pi\)
0.873622 + 0.486604i \(0.161765\pi\)
\(228\) 0 0
\(229\) 1.14558 + 1.25664i 1.14558 + 1.25664i 0.961826 + 0.273663i \(0.0882353\pi\)
0.183750 + 0.982973i \(0.441176\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0.0922684 1.99573i 0.0922684 1.99573i
\(233\) 0.241393 1.73049i 0.241393 1.73049i −0.361242 0.932472i \(-0.617647\pi\)
0.602635 0.798017i \(-0.294118\pi\)
\(234\) −0.600584 + 1.20614i −0.600584 + 1.20614i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.739009 0.673696i \(-0.764706\pi\)
0.739009 + 0.673696i \(0.235294\pi\)
\(240\) 0 0
\(241\) 0.621500 0.516087i 0.621500 0.516087i −0.273663 0.961826i \(-0.588235\pi\)
0.895163 + 0.445738i \(0.147059\pi\)
\(242\) 0.739009 0.673696i 0.739009 0.673696i
\(243\) 0 0
\(244\) −1.78099 + 0.418885i −1.78099 + 0.418885i
\(245\) −0.987432 0.549996i −0.987432 0.549996i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) −0.186962 0.794913i −0.186962 0.794913i
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −0.850217 + 0.526432i −0.850217 + 0.526432i
\(257\) 0.600584 + 0.658809i 0.600584 + 0.658809i 0.961826 0.273663i \(-0.0882353\pi\)
−0.361242 + 0.932472i \(0.617647\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 1.50832 0.210401i 1.50832 0.210401i
\(261\) 1.12907 1.64823i 1.12907 1.64823i
\(262\) 0 0
\(263\) 0 0 0.961826 0.273663i \(-0.0882353\pi\)
−0.961826 + 0.273663i \(0.911765\pi\)
\(264\) 0 0
\(265\) 2.19111 0.515345i 2.19111 0.515345i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −0.922758 + 0.309277i −0.922758 + 0.309277i −0.739009 0.673696i \(-0.764706\pi\)
−0.183750 + 0.982973i \(0.558824\pi\)
\(270\) 0 0
\(271\) 0 0 0.273663 0.961826i \(-0.411765\pi\)
−0.273663 + 0.961826i \(0.588235\pi\)
\(272\) 0.850217 0.526432i 0.850217 0.526432i
\(273\) 0 0
\(274\) 0.0675278 0.361242i 0.0675278 0.361242i
\(275\) 0 0
\(276\) 0 0
\(277\) −1.49780 0.352279i −1.49780 0.352279i −0.602635 0.798017i \(-0.705882\pi\)
−0.895163 + 0.445738i \(0.852941\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −0.293271 + 1.56886i −0.293271 + 1.56886i 0.445738 + 0.895163i \(0.352941\pi\)
−0.739009 + 0.673696i \(0.764706\pi\)
\(282\) 0 0
\(283\) 0 0 −0.769334 0.638847i \(-0.779412\pi\)
0.769334 + 0.638847i \(0.220588\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −1.00000 −1.00000
\(289\) −0.850217 + 0.526432i −0.850217 + 0.526432i
\(290\) −2.25813 −2.25813
\(291\) 0 0
\(292\) −0.0373089 0.0844967i −0.0373089 0.0844967i
\(293\) 0.537235 0.711414i 0.537235 0.711414i −0.445738 0.895163i \(-0.647059\pi\)
0.982973 + 0.183750i \(0.0588235\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −1.89430 + 0.0875787i −1.89430 + 0.0875787i
\(297\) 0 0
\(298\) −0.995734 + 1.09227i −0.995734 + 1.09227i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.565917 + 1.98899i 0.565917 + 1.98899i
\(306\) 1.00000 1.00000
\(307\) 0 0 0.273663 0.961826i \(-0.411765\pi\)
−0.273663 + 0.961826i \(0.588235\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.565136 0.824997i \(-0.691176\pi\)
0.565136 + 0.824997i \(0.308824\pi\)
\(312\) 0 0
\(313\) −0.947359 + 0.222817i −0.947359 + 0.222817i −0.673696 0.739009i \(-0.735294\pi\)
−0.273663 + 0.961826i \(0.588235\pi\)
\(314\) −0.710182 1.83319i −0.710182 1.83319i
\(315\) 0 0
\(316\) 0 0
\(317\) −0.549996 + 0.802895i −0.549996 + 0.802895i −0.995734 0.0922684i \(-0.970588\pi\)
0.445738 + 0.895163i \(0.352941\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0.638758 + 0.932472i 0.638758 + 0.932472i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −0.850217 0.526432i −0.850217 0.526432i
\(325\) −0.0687083 0.367557i −0.0687083 0.367557i
\(326\) 0 0
\(327\) 0 0
\(328\) −0.377767 1.60617i −0.377767 1.60617i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.798017 0.602635i \(-0.794118\pi\)
0.798017 + 0.602635i \(0.205882\pi\)
\(332\) 0 0
\(333\) −1.65667 0.922758i −1.65667 0.922758i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −1.49780 + 1.24376i −1.49780 + 1.24376i −0.602635 + 0.798017i \(0.705882\pi\)
−0.895163 + 0.445738i \(0.852941\pi\)
\(338\) −0.811985 + 0.0752415i −0.811985 + 0.0752415i
\(339\) 0 0
\(340\) −0.638758 0.932472i −0.638758 0.932472i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −0.0710610 + 1.53703i −0.0710610 + 1.53703i
\(347\) 0 0 0.824997 0.565136i \(-0.191176\pi\)
−0.824997 + 0.565136i \(0.808824\pi\)
\(348\) 0 0
\(349\) −0.709310 0.778076i −0.709310 0.778076i 0.273663 0.961826i \(-0.411765\pi\)
−0.982973 + 0.183750i \(0.941176\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0.510366 + 0.197717i 0.510366 + 0.197717i 0.602635 0.798017i \(-0.294118\pi\)
−0.0922684 + 0.995734i \(0.529412\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0.798017 1.60263i 0.798017 1.60263i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.995734 0.0922684i \(-0.970588\pi\)
0.995734 + 0.0922684i \(0.0294118\pi\)
\(360\) 0.0521999 + 1.12907i 0.0521999 + 1.12907i
\(361\) 0.602635 + 0.798017i 0.602635 + 0.798017i
\(362\) −0.393100 + 0.705749i −0.393100 + 0.705749i
\(363\) 0 0
\(364\) 0 0
\(365\) −0.0934549 + 0.0465350i −0.0934549 + 0.0465350i
\(366\) 0 0
\(367\) 0 0 −0.638847 0.769334i \(-0.720588\pi\)
0.638847 + 0.769334i \(0.279412\pi\)
\(368\) 0 0
\(369\) 0.524354 1.56446i 0.524354 1.56446i
\(370\) 0.197764 + 2.13422i 0.197764 + 2.13422i
\(371\) 0 0
\(372\) 0 0
\(373\) 1.03494 + 0.193463i 1.03494 + 0.193463i 0.673696 0.739009i \(-0.264706\pi\)
0.361242 + 0.932472i \(0.382353\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.68903 + 0.124322i 2.68903 + 0.124322i
\(378\) 0 0
\(379\) 0 0 0.769334 0.638847i \(-0.220588\pi\)
−0.769334 + 0.638847i \(0.779412\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.361242 0.932472i \(-0.382353\pi\)
−0.361242 + 0.932472i \(0.617647\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −0.0590083 1.27633i −0.0590083 1.27633i
\(387\) 0 0
\(388\) −0.227957 0.156154i −0.227957 0.156154i
\(389\) 0.177492 + 0.0505009i 0.177492 + 0.0505009i 0.361242 0.932472i \(-0.382353\pi\)
−0.183750 + 0.982973i \(0.558824\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.0922684 + 0.995734i −0.0922684 + 0.995734i
\(393\) 0 0
\(394\) −0.241393 + 1.73049i −0.241393 + 1.73049i
\(395\) 0 0
\(396\) 0 0
\(397\) −0.524354 + 0.359191i −0.524354 + 0.359191i −0.798017 0.602635i \(-0.794118\pi\)
0.273663 + 0.961826i \(0.411765\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0.221463 0.167241i 0.221463 0.167241i
\(401\) −0.488975 1.45890i −0.488975 1.45890i −0.850217 0.526432i \(-0.823529\pi\)
0.361242 0.932472i \(-0.382353\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −1.63552 1.01267i −1.63552 1.01267i
\(405\) −0.549996 + 0.987432i −0.549996 + 0.987432i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −1.73901 0.673696i −1.73901 0.673696i −0.739009 0.673696i \(-0.764706\pi\)
−1.00000 \(\pi\)
\(410\) −1.79375 + 0.510366i −1.79375 + 0.510366i
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −0.709310 1.14558i −0.709310 1.14558i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 −0.948161 0.317791i \(-0.897059\pi\)
0.948161 + 0.317791i \(0.102941\pi\)
\(420\) 0 0
\(421\) −0.177492 + 1.91545i −0.177492 + 1.91545i 0.183750 + 0.982973i \(0.441176\pi\)
−0.361242 + 0.932472i \(0.617647\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) −1.20013 1.58923i −1.20013 1.58923i
\(425\) −0.221463 + 0.167241i −0.221463 + 0.167241i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.486604 0.873622i \(-0.661765\pi\)
0.486604 + 0.873622i \(0.338235\pi\)
\(432\) 0 0
\(433\) −1.75984 0.876298i −1.75984 0.876298i −0.961826 0.273663i \(-0.911765\pi\)
−0.798017 0.602635i \(-0.794118\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −0.309277 0.555259i −0.309277 0.555259i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.317791 0.948161i \(-0.397059\pi\)
−0.317791 + 0.948161i \(0.602941\pi\)
\(440\) 0 0
\(441\) −0.602635 + 0.798017i −0.602635 + 0.798017i
\(442\) 0.709310 + 1.14558i 0.709310 + 1.14558i
\(443\) 0 0 −0.602635 0.798017i \(-0.705882\pi\)
0.602635 + 0.798017i \(0.294118\pi\)
\(444\) 0 0
\(445\) −1.85114 0.817357i −1.85114 0.817357i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0.176521 + 1.26544i 0.176521 + 1.26544i 0.850217 + 0.526432i \(0.176471\pi\)
−0.673696 + 0.739009i \(0.735294\pi\)
\(450\) 0.276333 0.0256060i 0.276333 0.0256060i
\(451\) 0 0
\(452\) −0.323785 + 1.37665i −0.323785 + 1.37665i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −0.526432 + 0.149783i −0.526432 + 0.149783i −0.526432 0.850217i \(-0.676471\pi\)
1.00000i \(0.5\pi\)
\(458\) −1.58561 0.614268i −1.58561 0.614268i
\(459\) 0 0
\(460\) 0 0
\(461\) −1.27366 + 0.961826i −1.27366 + 0.961826i −0.273663 + 0.961826i \(0.588235\pi\)
−1.00000 \(1.00000\pi\)
\(462\) 0 0
\(463\) 0 0 −0.850217 0.526432i \(-0.823529\pi\)
0.850217 + 0.526432i \(0.176471\pi\)
\(464\) 0.806980 + 1.82764i 0.806980 + 1.82764i
\(465\) 0 0
\(466\) 0.555259 + 1.65667i 0.555259 + 1.65667i
\(467\) 0 0 0.798017 0.602635i \(-0.205882\pi\)
−0.798017 + 0.602635i \(0.794118\pi\)
\(468\) 1.34739i 1.34739i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −0.183750 1.98297i −0.183750 1.98297i
\(478\) 0 0
\(479\) 0 0 −0.824997 0.565136i \(-0.808824\pi\)
0.824997 + 0.565136i \(0.191176\pi\)
\(480\) 0 0
\(481\) −0.118003 2.55236i −0.118003 2.55236i
\(482\) −0.326304 + 0.739009i −0.326304 + 0.739009i
\(483\) 0 0
\(484\) −0.361242 + 0.932472i −0.361242 + 0.932472i
\(485\) −0.164409 + 0.265530i −0.164409 + 0.265530i
\(486\) 0 0
\(487\) 0 0 −0.990410 0.138156i \(-0.955882\pi\)
0.990410 + 0.138156i \(0.0441176\pi\)
\(488\) 1.40756 1.16883i 1.40756 1.16883i
\(489\) 0 0
\(490\) 1.12907 + 0.0521999i 1.12907 + 0.0521999i
\(491\) 0 0 −0.526432 0.850217i \(-0.676471\pi\)
0.526432 + 0.850217i \(0.323529\pi\)
\(492\) 0 0
\(493\) −0.806980 1.82764i −0.806980 1.82764i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 −0.317791 0.948161i \(-0.602941\pi\)
0.317791 + 0.948161i \(0.397059\pi\)
\(500\) 0.521684 + 0.628241i 0.521684 + 0.628241i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(504\) 0 0
\(505\) −1.05800 + 1.89947i −1.05800 + 1.89947i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −0.0822551 0.165190i −0.0822551 0.165190i 0.850217 0.526432i \(-0.176471\pi\)
−0.932472 + 0.361242i \(0.882353\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.526432 0.850217i 0.526432 0.850217i
\(513\) 0 0
\(514\) −0.831277 0.322039i −0.831277 0.322039i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) −1.25640 + 0.860657i −1.25640 + 0.860657i
\(521\) 0.0653133 1.41270i 0.0653133 1.41270i −0.673696 0.739009i \(-0.735294\pi\)
0.739009 0.673696i \(-0.235294\pi\)
\(522\) −0.276018 + 1.97871i −0.276018 + 1.97871i
\(523\) 0 0 0.445738 0.895163i \(-0.352941\pi\)
−0.445738 + 0.895163i \(0.647059\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 0.995734 0.0922684i 0.995734 0.0922684i
\(530\) −1.73170 + 1.43798i −1.73170 + 1.43798i
\(531\) 0 0
\(532\) 0 0
\(533\) 2.16414 0.509000i 2.16414 0.509000i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0.688163 0.688163i 0.688163 0.688163i
\(539\) 0 0
\(540\) 0 0
\(541\) 0.184956 + 0.786384i 0.184956 + 0.786384i 0.982973 + 0.183750i \(0.0588235\pi\)
−0.798017 + 0.602635i \(0.794118\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −0.526432 + 0.850217i −0.526432 + 0.850217i
\(545\) −0.610781 + 0.378179i −0.610781 + 0.378179i
\(546\) 0 0
\(547\) 0 0 −0.565136 0.824997i \(-0.691176\pi\)
0.565136 + 0.824997i \(0.308824\pi\)
\(548\) 0.100571 + 0.353470i 0.100571 + 0.353470i
\(549\) 1.81204 0.252769i 1.81204 0.252769i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 1.49780 0.352279i 1.49780 0.352279i
\(555\) 0 0
\(556\) 0 0
\(557\) 0.798017 + 1.60263i 0.798017 + 1.60263i 0.798017 + 0.602635i \(0.205882\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −0.436776 1.53511i −0.436776 1.53511i
\(563\) 0 0 0.183750 0.982973i \(-0.441176\pi\)
−0.183750 + 0.982973i \(0.558824\pi\)
\(564\) 0 0
\(565\) 1.57123 + 0.293714i 1.57123 + 0.293714i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 −0.739009 0.673696i \(-0.764706\pi\)
0.739009 + 0.673696i \(0.235294\pi\)
\(570\) 0 0
\(571\) 0 0 0.998933 0.0461835i \(-0.0147059\pi\)
−0.998933 + 0.0461835i \(0.985294\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0.895163 0.445738i 0.895163 0.445738i
\(577\) 1.05286 1.05286 0.526432 0.850217i \(-0.323529\pi\)
0.526432 + 0.850217i \(0.323529\pi\)
\(578\) 0.526432 0.850217i 0.526432 0.850217i
\(579\) 0 0
\(580\) 2.02140 1.00654i 2.02140 1.00654i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0.0710610 + 0.0590083i 0.0710610 + 0.0590083i
\(585\) −1.52129 + 0.0703337i −1.52129 + 0.0703337i
\(586\) −0.163808 + 0.876298i −0.163808 + 0.876298i
\(587\) 0 0 0.673696 0.739009i \(-0.264706\pi\)
−0.673696 + 0.739009i \(0.735294\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 1.65667 0.922758i 1.65667 0.922758i
\(593\) 0.0675278 0.361242i 0.0675278 0.361242i −0.932472 0.361242i \(-0.882353\pi\)
1.00000 \(0\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0.404479 1.42160i 0.404479 1.42160i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.445738 0.895163i \(-0.647059\pi\)
0.445738 + 0.895163i \(0.352941\pi\)
\(600\) 0 0
\(601\) 0.0922684 0.00426582i 0.0922684 0.00426582i 1.00000i \(-0.5\pi\)
0.0922684 + 0.995734i \(0.470588\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.07168 + 0.359191i 1.07168 + 0.359191i
\(606\) 0 0
\(607\) 0 0 0.990410 0.138156i \(-0.0441176\pi\)
−0.990410 + 0.138156i \(0.955882\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −1.39316 1.52822i −1.39316 1.52822i
\(611\) 0 0
\(612\) −0.895163 + 0.445738i −0.895163 + 0.445738i
\(613\) 1.02474 + 0.634493i 1.02474 + 0.634493i 0.932472 0.361242i \(-0.117647\pi\)
0.0922684 + 0.995734i \(0.470588\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0.0211475 + 0.0899135i 0.0211475 + 0.0899135i 0.982973 0.183750i \(-0.0588235\pi\)
−0.961826 + 0.273663i \(0.911765\pi\)
\(618\) 0 0
\(619\) 0 0 0.914794 0.403921i \(-0.132353\pi\)
−0.914794 + 0.403921i \(0.867647\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0.887181 0.808772i 0.887181 0.808772i
\(626\) 0.748723 0.621731i 0.748723 0.621731i
\(627\) 0 0
\(628\) 1.45285 + 1.32445i 1.45285 + 1.32445i
\(629\) −1.65667 + 0.922758i −1.65667 + 0.922758i
\(630\) 0 0
\(631\) 0 0 0.673696 0.739009i \(-0.264706\pi\)
−0.673696 + 0.739009i \(0.735294\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0.134455 0.963876i 0.134455 0.963876i
\(635\) 0 0
\(636\) 0 0
\(637\) −1.34164 0.124322i −1.34164 0.124322i
\(638\) 0 0
\(639\) 0 0
\(640\) −0.987432 0.549996i −0.987432 0.549996i
\(641\) −1.24376 + 1.49780i −1.24376 + 1.49780i −0.445738 + 0.895163i \(0.647059\pi\)
−0.798017 + 0.602635i \(0.794118\pi\)
\(642\) 0 0
\(643\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.445738 0.895163i \(-0.647059\pi\)
0.445738 + 0.895163i \(0.352941\pi\)
\(648\) 0.995734 + 0.0922684i 0.995734 + 0.0922684i
\(649\) 0 0
\(650\) 0.225339 + 0.298397i 0.225339 + 0.298397i
\(651\) 0 0
\(652\) 0 0
\(653\) −0.323785 + 0.323785i −0.323785 + 0.323785i −0.850217 0.526432i \(-0.823529\pi\)
0.526432 + 0.850217i \(0.323529\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 1.05409 + 1.26940i 1.05409 + 1.26940i
\(657\) 0.0293534 + 0.0875787i 0.0293534 + 0.0875787i
\(658\) 0 0
\(659\) 0 0 −0.0922684 0.995734i \(-0.529412\pi\)
0.0922684 + 0.995734i \(0.470588\pi\)
\(660\) 0 0
\(661\) 0 0 0.932472 0.361242i \(-0.117647\pi\)
−0.932472 + 0.361242i \(0.882353\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 1.89430 + 0.0875787i 1.89430 + 0.0875787i
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0.963876 + 1.73049i 0.963876 + 1.73049i 0.602635 + 0.798017i \(0.294118\pi\)
0.361242 + 0.932472i \(0.382353\pi\)
\(674\) 0.786384 1.78099i 0.786384 1.78099i
\(675\) 0 0
\(676\) 0.693321 0.429286i 0.693321 0.429286i
\(677\) 1.63417 + 1.11943i 1.63417 + 1.11943i 0.895163 + 0.445738i \(0.147059\pi\)
0.739009 + 0.673696i \(0.235294\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0.987432 + 0.549996i 0.987432 + 0.549996i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.138156 0.990410i \(-0.455882\pi\)
−0.138156 + 0.990410i \(0.544118\pi\)
\(684\) 0 0
\(685\) 0.393841 0.132002i 0.393841 0.132002i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2.14131 1.61704i 2.14131 1.61704i
\(690\) 0 0
\(691\) 0 0 0.914794 0.403921i \(-0.132353\pi\)
−0.914794 + 0.403921i \(0.867647\pi\)
\(692\) −0.621500 1.40756i −0.621500 1.40756i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −1.05409 1.26940i −1.05409 1.26940i
\(698\) 0.981767 + 0.380338i 0.981767 + 0.380338i
\(699\) 0 0
\(700\) 0 0
\(701\) −1.42160 1.29596i −1.42160 1.29596i −0.895163 0.445738i \(-0.852941\pi\)
−0.526432 0.850217i \(-0.676471\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) −0.544991 + 0.0505009i −0.544991 + 0.0505009i
\(707\) 0 0
\(708\) 0 0
\(709\) −0.323785 0.323785i −0.323785 0.323785i 0.526432 0.850217i \(-0.323529\pi\)
−0.850217 + 0.526432i \(0.823529\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 1.79033i 1.79033i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.914794 0.403921i \(-0.867647\pi\)
0.914794 + 0.403921i \(0.132353\pi\)
\(720\) −0.549996 0.987432i −0.549996 0.987432i
\(721\) 0 0
\(722\) −0.895163 0.445738i −0.895163 0.445738i
\(723\) 0 0
\(724\) 0.0373089 0.806980i 0.0373089 0.806980i
\(725\) −0.269794 0.484372i −0.269794 0.484372i
\(726\) 0 0
\(727\) 0 0 0.932472 0.361242i \(-0.117647\pi\)
−0.932472 + 0.361242i \(0.882353\pi\)
\(728\) 0 0
\(729\) 0.798017 + 0.602635i 0.798017 + 0.602635i
\(730\) 0.0629149 0.0833129i 0.0629149 0.0833129i
\(731\) 0 0
\(732\) 0 0
\(733\) 0.367499i 0.367499i −0.982973 0.183750i \(-0.941176\pi\)
0.982973 0.183750i \(-0.0588235\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0.227957 + 1.63417i 0.227957 + 1.63417i
\(739\) 0 0 0.995734 0.0922684i \(-0.0294118\pi\)
−0.995734 + 0.0922684i \(0.970588\pi\)
\(740\) −1.12833 1.82232i −1.12833 1.82232i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.998933 0.0461835i \(-0.985294\pi\)
0.998933 + 0.0461835i \(0.0147059\pi\)
\(744\) 0 0
\(745\) −1.62619 0.382476i −1.62619 0.382476i
\(746\) −1.01267 + 0.288130i −1.01267 + 0.288130i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.486604 0.873622i \(-0.338235\pi\)
−0.486604 + 0.873622i \(0.661765\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −2.46254 + 1.08732i −2.46254 + 1.08732i
\(755\) 0 0
\(756\) 0 0
\(757\) 1.20527i 1.20527i 0.798017 + 0.602635i \(0.205882\pi\)
−0.798017 + 0.602635i \(0.794118\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0.100571 0.353470i 0.100571 0.353470i −0.895163 0.445738i \(-0.852941\pi\)
0.995734 + 0.0922684i \(0.0294118\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0.549996 + 0.987432i 0.549996 + 0.987432i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −1.52217 + 0.942485i −1.52217 + 0.942485i −0.526432 + 0.850217i \(0.676471\pi\)
−0.995734 + 0.0922684i \(0.970588\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0.621731 + 1.11622i 0.621731 + 1.11622i
\(773\) 0.710182 1.83319i 0.710182 1.83319i 0.183750 0.982973i \(-0.441176\pi\)
0.526432 0.850217i \(-0.323529\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0.273663 + 0.0381744i 0.273663 + 0.0381744i
\(777\) 0 0
\(778\) −0.181395 + 0.0339085i −0.181395 + 0.0339085i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −0.361242 0.932472i −0.361242 0.932472i
\(785\) 1.41955 1.70950i 1.41955 1.70950i
\(786\) 0 0
\(787\) 0 0 0.317791 0.948161i \(-0.397059\pi\)
−0.317791 + 0.948161i \(0.602941\pi\)
\(788\) −0.555259 1.65667i −0.555259 1.65667i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 1.57487 + 1.89654i 1.57487 + 1.89654i
\(794\) 0.309277 0.555259i 0.309277 0.555259i
\(795\) 0 0
\(796\) 0 0
\(797\) −1.98297 0.183750i −1.98297 0.183750i −0.982973 0.183750i \(-0.941176\pi\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −0.123700 + 0.248423i −0.123700 + 0.248423i
\(801\) −0.942485 + 1.52217i −0.942485 + 1.52217i
\(802\) 1.08800 + 1.08800i 1.08800 + 1.08800i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 1.91545 + 0.177492i 1.91545 + 0.177492i
\(809\) −1.44147 + 0.987432i −1.44147 + 0.987432i −0.445738 + 0.895163i \(0.647059\pi\)
−0.995734 + 0.0922684i \(0.970588\pi\)
\(810\) 0.0521999 1.12907i 0.0521999 1.12907i
\(811\) 0 0 0.138156 0.990410i \(-0.455882\pi\)
−0.138156 + 0.990410i \(0.544118\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 1.85699 0.172075i 1.85699 0.172075i
\(819\) 0 0
\(820\) 1.37821 1.25640i 1.37821 1.25640i
\(821\) −1.59837 + 0.890286i −1.59837 + 0.890286i −0.602635 + 0.798017i \(0.705882\pi\)
−0.995734 + 0.0922684i \(0.970588\pi\)
\(822\) 0 0
\(823\) 0 0 −0.873622 0.486604i \(-0.838235\pi\)
0.873622 + 0.486604i \(0.161765\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(828\) 0 0
\(829\) 1.47802 1.47802 0.739009 0.673696i \(-0.235294\pi\)
0.739009 + 0.673696i \(0.235294\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 1.14558 + 0.709310i 1.14558 + 0.709310i
\(833\) 0.361242 + 0.932472i 0.361242 + 0.932472i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.565136 0.824997i \(-0.308824\pi\)
−0.565136 + 0.824997i \(0.691176\pi\)
\(840\) 0 0
\(841\) 2.87727 0.818654i 2.87727 0.818654i
\(842\) −0.694903 1.79375i −0.694903 1.79375i
\(843\) 0 0
\(844\) 0 0
\(845\) −0.520884 0.760397i −0.520884 0.760397i
\(846\) 0 0
\(847\) 0 0
\(848\) 1.78269 + 0.887674i 1.78269 + 0.887674i
\(849\) 0 0
\(850\) 0.123700 0.248423i 0.123700 0.248423i
\(851\) 0 0
\(852\) 0 0
\(853\) −1.70083 + 0.947359i −1.70083 + 0.947359i −0.739009 + 0.673696i \(0.764706\pi\)
−0.961826 + 0.273663i \(0.911765\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0.453510 + 0.0632619i 0.453510 + 0.0632619i 0.361242 0.932472i \(-0.382353\pi\)
0.0922684 + 0.995734i \(0.470588\pi\)
\(858\) 0 0
\(859\) 0 0 0.183750 0.982973i \(-0.441176\pi\)
−0.183750 + 0.982973i \(0.558824\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.602635 0.798017i \(-0.294118\pi\)
−0.602635 + 0.798017i \(0.705882\pi\)
\(864\) 0 0
\(865\) −1.55679 + 0.775190i −1.55679 + 0.775190i
\(866\) 1.96595 1.96595
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0.524354 + 0.359191i 0.524354 + 0.359191i
\(873\) 0.212577 + 0.176521i 0.212577 + 0.176521i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0.0914812 + 0.0127611i 0.0914812 + 0.0127611i 0.183750 0.982973i \(-0.441176\pi\)
−0.0922684 + 0.995734i \(0.529412\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −0.241393 + 0.134455i −0.241393 + 0.134455i −0.602635 0.798017i \(-0.705882\pi\)
0.361242 + 0.932472i \(0.382353\pi\)
\(882\) 0.183750 0.982973i 0.183750 0.982973i
\(883\) 0 0 −0.273663 0.961826i \(-0.588235\pi\)
0.273663 + 0.961826i \(0.411765\pi\)
\(884\) −1.14558 0.709310i −1.14558 0.709310i
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.948161 0.317791i \(-0.102941\pi\)
−0.948161 + 0.317791i \(0.897059\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 2.02140 0.0934549i 2.02140 0.0934549i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −0.722071 1.05409i −0.722071 1.05409i
\(899\) 0 0
\(900\) −0.235949 + 0.146094i −0.235949 + 0.146094i
\(901\) −1.78269 0.887674i −1.78269 0.887674i
\(902\) 0 0
\(903\) 0 0
\(904\) −0.323785 1.37665i −0.323785 1.37665i
\(905\) −0.913082 −0.913082
\(906\) 0 0
\(907\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(908\) 0 0
\(909\) 1.53511 + 1.15926i 1.53511 + 1.15926i
\(910\) 0 0
\(911\) 0 0 −0.873622 0.486604i \(-0.838235\pi\)
0.873622 + 0.486604i \(0.161765\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0.404479 0.368731i 0.404479 0.368731i
\(915\) 0 0
\(916\) 1.69318 0.156896i 1.69318 0.156896i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 0.739009 0.673696i \(-0.235294\pi\)
−0.739009 + 0.673696i \(0.764706\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0.711414 1.42871i 0.711414 1.42871i
\(923\) 0 0
\(924\) 0 0
\(925\) −0.434164 + 0.297409i −0.434164 + 0.297409i
\(926\) 0 0
\(927\) 0 0
\(928\) −1.53703 1.27633i −1.53703 1.27633i
\(929\) 1.73049 + 0.963876i 1.73049 + 0.963876i 0.932472 + 0.361242i \(0.117647\pi\)
0.798017 + 0.602635i \(0.205882\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −1.23549 1.23549i −1.23549 1.23549i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0.600584 + 1.20614i 0.600584 + 1.20614i
\(937\) 1.58923 + 0.147263i 1.58923 + 0.147263i 0.850217 0.526432i \(-0.176471\pi\)
0.739009 + 0.673696i \(0.235294\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.26544 + 1.52391i 1.26544 + 1.52391i 0.739009 + 0.673696i \(0.235294\pi\)
0.526432 + 0.850217i \(0.323529\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.317791 0.948161i \(-0.397059\pi\)
−0.317791 + 0.948161i \(0.602941\pi\)
\(948\) 0 0
\(949\) −0.0795073 + 0.0957470i −0.0795073 + 0.0957470i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1.75984 + 0.328972i −1.75984 + 0.328972i −0.961826 0.273663i \(-0.911765\pi\)
−0.798017 + 0.602635i \(0.794118\pi\)
\(954\) 1.04837 + 1.69318i 1.04837 + 1.69318i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −0.361242 + 0.932472i −0.361242 + 0.932472i
\(962\) 1.24332 + 2.23218i 1.24332 + 2.23218i
\(963\) 0 0
\(964\) −0.0373089 0.806980i −0.0373089 0.806980i
\(965\) 1.22783 0.760243i 1.22783 0.760243i
\(966\) 0 0
\(967\) 0 0 −0.961826 0.273663i \(-0.911765\pi\)
0.961826 + 0.273663i \(0.0882353\pi\)
\(968\) −0.0922684 0.995734i −0.0922684 0.995734i
\(969\) 0 0
\(970\) 0.0288162 0.310976i 0.0288162 0.310976i
\(971\) 0 0 0.361242 0.932472i \(-0.382353\pi\)
−0.361242 + 0.932472i \(0.617647\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) −0.739009 + 1.67370i −0.739009 + 1.67370i
\(977\) 1.05286i 1.05286i −0.850217 0.526432i \(-0.823529\pi\)
0.850217 0.526432i \(-0.176471\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −1.03397 + 0.456541i −1.03397 + 0.456541i
\(981\) 0.256725 + 0.581427i 0.256725 + 0.581427i
\(982\) 0 0
\(983\) 0 0 0.486604 0.873622i \(-0.338235\pi\)
−0.486604 + 0.873622i \(0.661765\pi\)
\(984\) 0 0
\(985\) −1.84151 + 0.713403i −1.84151 + 0.713403i
\(986\) 1.53703 + 1.27633i 1.53703 + 1.27633i
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 −0.998933 0.0461835i \(-0.985294\pi\)
0.998933 + 0.0461835i \(0.0147059\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −1.21146 0.406040i −1.21146 0.406040i −0.361242 0.932472i \(-0.617647\pi\)
−0.850217 + 0.526432i \(0.823529\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1156.1.o.a.47.1 32
4.3 odd 2 CM 1156.1.o.a.47.1 32
289.123 even 68 inner 1156.1.o.a.123.1 yes 32
1156.123 odd 68 inner 1156.1.o.a.123.1 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1156.1.o.a.47.1 32 1.1 even 1 trivial
1156.1.o.a.47.1 32 4.3 odd 2 CM
1156.1.o.a.123.1 yes 32 289.123 even 68 inner
1156.1.o.a.123.1 yes 32 1156.123 odd 68 inner