Properties

Label 116.2.g.b.49.1
Level $116$
Weight $2$
Character 116.49
Analytic conductor $0.926$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [116,2,Mod(25,116)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(116, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("116.25");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 116 = 2^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 116.g (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.926264663447\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 5 x^{11} + 12 x^{10} - 16 x^{9} + 22 x^{8} + 28 x^{7} + 71 x^{6} + 154 x^{5} + 442 x^{4} + \cdots + 841 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 49.1
Root \(1.30120 + 1.63166i\) of defining polynomial
Character \(\chi\) \(=\) 116.49
Dual form 116.2.g.b.45.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.92469 - 2.41349i) q^{3} +(-3.16565 + 1.52449i) q^{5} +(-0.677712 - 0.849824i) q^{7} +(-1.45292 + 6.36565i) q^{9} +O(q^{10})\) \(q+(-1.92469 - 2.41349i) q^{3} +(-3.16565 + 1.52449i) q^{5} +(-0.677712 - 0.849824i) q^{7} +(-1.45292 + 6.36565i) q^{9} +(-0.411526 - 1.80301i) q^{11} +(-1.46407 - 6.41449i) q^{13} +(9.77224 + 4.70606i) q^{15} +0.658856 q^{17} +(2.07266 - 2.59903i) q^{19} +(-0.746652 + 3.27130i) q^{21} +(-3.50543 - 1.68813i) q^{23} +(4.57978 - 5.74286i) q^{25} +(9.81605 - 4.72716i) q^{27} +(0.417143 + 5.36898i) q^{29} +(-2.70350 + 1.30194i) q^{31} +(-3.55949 + 4.46346i) q^{33} +(3.44095 + 1.65707i) q^{35} +(-1.35480 + 5.93579i) q^{37} +(-12.6634 + 15.8794i) q^{39} +5.19016 q^{41} +(1.06039 + 0.510658i) q^{43} +(-5.10497 - 22.3664i) q^{45} +(-1.38222 - 6.05590i) q^{47} +(1.29474 - 5.67262i) q^{49} +(-1.26809 - 1.59014i) q^{51} +(1.26659 - 0.609959i) q^{53} +(4.05143 + 5.08034i) q^{55} -10.2619 q^{57} -9.55267 q^{59} +(-5.17547 - 6.48983i) q^{61} +(6.39434 - 3.07935i) q^{63} +(14.4136 + 18.0740i) q^{65} +(2.75876 - 12.0869i) q^{67} +(2.67260 + 11.7094i) q^{69} +(-1.80831 - 7.92271i) q^{71} +(7.76268 + 3.73831i) q^{73} -22.6750 q^{75} +(-1.25335 + 1.57165i) q^{77} +(-1.24667 + 5.46204i) q^{79} +(-12.6536 - 6.09364i) q^{81} +(-2.32045 + 2.90975i) q^{83} +(-2.08570 + 1.00442i) q^{85} +(12.1551 - 11.3404i) q^{87} +(-4.02735 + 1.93947i) q^{89} +(-4.45897 + 5.59137i) q^{91} +(8.34560 + 4.01903i) q^{93} +(-2.59909 + 11.3874i) q^{95} +(4.99069 - 6.25813i) q^{97} +12.0753 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 3 q^{3} - q^{5} - 7 q^{7} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 3 q^{3} - q^{5} - 7 q^{7} + q^{9} + 3 q^{11} - 21 q^{13} + 29 q^{15} - 10 q^{17} + 17 q^{19} + 3 q^{21} - 19 q^{23} - 3 q^{25} + 9 q^{27} - 5 q^{29} - 27 q^{31} - 47 q^{33} + 27 q^{35} - 3 q^{37} - 37 q^{39} - 2 q^{41} - 9 q^{43} + 22 q^{45} + 19 q^{47} + 17 q^{49} + 2 q^{51} + 22 q^{53} + 49 q^{55} + 30 q^{57} + 36 q^{59} - 33 q^{61} + 9 q^{63} + 38 q^{65} - 3 q^{67} + 47 q^{69} - 35 q^{71} + 34 q^{73} - 44 q^{75} - 27 q^{77} - 19 q^{79} - 39 q^{81} - q^{83} - 34 q^{85} - 25 q^{87} - 11 q^{89} - 23 q^{91} + 7 q^{93} - 105 q^{95} + 38 q^{97} - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/116\mathbb{Z}\right)^\times\).

\(n\) \(59\) \(89\)
\(\chi(n)\) \(1\) \(e\left(\frac{6}{7}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.92469 2.41349i −1.11122 1.39343i −0.910365 0.413806i \(-0.864199\pi\)
−0.200856 0.979621i \(-0.564372\pi\)
\(4\) 0 0
\(5\) −3.16565 + 1.52449i −1.41572 + 0.681775i −0.976283 0.216499i \(-0.930536\pi\)
−0.439437 + 0.898273i \(0.644822\pi\)
\(6\) 0 0
\(7\) −0.677712 0.849824i −0.256151 0.321203i 0.637083 0.770795i \(-0.280141\pi\)
−0.893234 + 0.449592i \(0.851569\pi\)
\(8\) 0 0
\(9\) −1.45292 + 6.36565i −0.484306 + 2.12188i
\(10\) 0 0
\(11\) −0.411526 1.80301i −0.124080 0.543629i −0.998310 0.0581172i \(-0.981490\pi\)
0.874230 0.485512i \(-0.161367\pi\)
\(12\) 0 0
\(13\) −1.46407 6.41449i −0.406059 1.77906i −0.602054 0.798455i \(-0.705651\pi\)
0.195996 0.980605i \(-0.437206\pi\)
\(14\) 0 0
\(15\) 9.77224 + 4.70606i 2.52318 + 1.21510i
\(16\) 0 0
\(17\) 0.658856 0.159796 0.0798980 0.996803i \(-0.474541\pi\)
0.0798980 + 0.996803i \(0.474541\pi\)
\(18\) 0 0
\(19\) 2.07266 2.59903i 0.475500 0.596258i −0.485008 0.874509i \(-0.661183\pi\)
0.960508 + 0.278252i \(0.0897549\pi\)
\(20\) 0 0
\(21\) −0.746652 + 3.27130i −0.162933 + 0.713855i
\(22\) 0 0
\(23\) −3.50543 1.68813i −0.730934 0.351999i 0.0311176 0.999516i \(-0.490093\pi\)
−0.762051 + 0.647517i \(0.775808\pi\)
\(24\) 0 0
\(25\) 4.57978 5.74286i 0.915956 1.14857i
\(26\) 0 0
\(27\) 9.81605 4.72716i 1.88910 0.909742i
\(28\) 0 0
\(29\) 0.417143 + 5.36898i 0.0774615 + 0.996995i
\(30\) 0 0
\(31\) −2.70350 + 1.30194i −0.485562 + 0.233835i −0.660615 0.750724i \(-0.729705\pi\)
0.175053 + 0.984559i \(0.443990\pi\)
\(32\) 0 0
\(33\) −3.55949 + 4.46346i −0.619628 + 0.776989i
\(34\) 0 0
\(35\) 3.44095 + 1.65707i 0.581626 + 0.280096i
\(36\) 0 0
\(37\) −1.35480 + 5.93579i −0.222729 + 0.975838i 0.732685 + 0.680568i \(0.238267\pi\)
−0.955414 + 0.295270i \(0.904590\pi\)
\(38\) 0 0
\(39\) −12.6634 + 15.8794i −2.02777 + 2.54274i
\(40\) 0 0
\(41\) 5.19016 0.810567 0.405284 0.914191i \(-0.367173\pi\)
0.405284 + 0.914191i \(0.367173\pi\)
\(42\) 0 0
\(43\) 1.06039 + 0.510658i 0.161708 + 0.0778747i 0.512987 0.858396i \(-0.328539\pi\)
−0.351279 + 0.936271i \(0.614253\pi\)
\(44\) 0 0
\(45\) −5.10497 22.3664i −0.761005 3.33418i
\(46\) 0 0
\(47\) −1.38222 6.05590i −0.201618 0.883344i −0.969952 0.243296i \(-0.921771\pi\)
0.768335 0.640048i \(-0.221086\pi\)
\(48\) 0 0
\(49\) 1.29474 5.67262i 0.184963 0.810375i
\(50\) 0 0
\(51\) −1.26809 1.59014i −0.177569 0.222664i
\(52\) 0 0
\(53\) 1.26659 0.609959i 0.173980 0.0837844i −0.344867 0.938652i \(-0.612076\pi\)
0.518847 + 0.854867i \(0.326362\pi\)
\(54\) 0 0
\(55\) 4.05143 + 5.08034i 0.546295 + 0.685032i
\(56\) 0 0
\(57\) −10.2619 −1.35923
\(58\) 0 0
\(59\) −9.55267 −1.24365 −0.621826 0.783156i \(-0.713609\pi\)
−0.621826 + 0.783156i \(0.713609\pi\)
\(60\) 0 0
\(61\) −5.17547 6.48983i −0.662651 0.830938i 0.330978 0.943638i \(-0.392621\pi\)
−0.993629 + 0.112701i \(0.964050\pi\)
\(62\) 0 0
\(63\) 6.39434 3.07935i 0.805611 0.387962i
\(64\) 0 0
\(65\) 14.4136 + 18.0740i 1.78778 + 2.24181i
\(66\) 0 0
\(67\) 2.75876 12.0869i 0.337036 1.47665i −0.468161 0.883643i \(-0.655083\pi\)
0.805197 0.593008i \(-0.202060\pi\)
\(68\) 0 0
\(69\) 2.67260 + 11.7094i 0.321744 + 1.40965i
\(70\) 0 0
\(71\) −1.80831 7.92271i −0.214606 0.940252i −0.961391 0.275186i \(-0.911260\pi\)
0.746784 0.665066i \(-0.231597\pi\)
\(72\) 0 0
\(73\) 7.76268 + 3.73831i 0.908553 + 0.437536i 0.828971 0.559292i \(-0.188927\pi\)
0.0795825 + 0.996828i \(0.474641\pi\)
\(74\) 0 0
\(75\) −22.6750 −2.61828
\(76\) 0 0
\(77\) −1.25335 + 1.57165i −0.142832 + 0.179106i
\(78\) 0 0
\(79\) −1.24667 + 5.46204i −0.140262 + 0.614527i 0.855111 + 0.518444i \(0.173489\pi\)
−0.995373 + 0.0960831i \(0.969369\pi\)
\(80\) 0 0
\(81\) −12.6536 6.09364i −1.40595 0.677071i
\(82\) 0 0
\(83\) −2.32045 + 2.90975i −0.254703 + 0.319387i −0.892700 0.450652i \(-0.851192\pi\)
0.637997 + 0.770039i \(0.279763\pi\)
\(84\) 0 0
\(85\) −2.08570 + 1.00442i −0.226226 + 0.108945i
\(86\) 0 0
\(87\) 12.1551 11.3404i 1.30316 1.21582i
\(88\) 0 0
\(89\) −4.02735 + 1.93947i −0.426898 + 0.205583i −0.634981 0.772528i \(-0.718992\pi\)
0.208083 + 0.978111i \(0.433278\pi\)
\(90\) 0 0
\(91\) −4.45897 + 5.59137i −0.467427 + 0.586135i
\(92\) 0 0
\(93\) 8.34560 + 4.01903i 0.865399 + 0.416754i
\(94\) 0 0
\(95\) −2.59909 + 11.3874i −0.266661 + 1.16832i
\(96\) 0 0
\(97\) 4.99069 6.25813i 0.506728 0.635417i −0.461004 0.887398i \(-0.652511\pi\)
0.967732 + 0.251981i \(0.0810820\pi\)
\(98\) 0 0
\(99\) 12.0753 1.21361
\(100\) 0 0
\(101\) 2.09230 + 1.00760i 0.208192 + 0.100260i 0.535074 0.844805i \(-0.320284\pi\)
−0.326882 + 0.945065i \(0.605998\pi\)
\(102\) 0 0
\(103\) 1.71349 + 7.50727i 0.168835 + 0.739714i 0.986465 + 0.163970i \(0.0524301\pi\)
−0.817630 + 0.575743i \(0.804713\pi\)
\(104\) 0 0
\(105\) −2.62344 11.4940i −0.256021 1.12170i
\(106\) 0 0
\(107\) −1.65462 + 7.24934i −0.159958 + 0.700821i 0.829800 + 0.558061i \(0.188455\pi\)
−0.989757 + 0.142759i \(0.954403\pi\)
\(108\) 0 0
\(109\) 3.71648 + 4.66032i 0.355974 + 0.446378i 0.927285 0.374356i \(-0.122136\pi\)
−0.571311 + 0.820734i \(0.693565\pi\)
\(110\) 0 0
\(111\) 16.9335 8.15476i 1.60726 0.774015i
\(112\) 0 0
\(113\) −11.3413 14.2216i −1.06690 1.33785i −0.938171 0.346173i \(-0.887481\pi\)
−0.128731 0.991680i \(-0.541090\pi\)
\(114\) 0 0
\(115\) 13.6705 1.27478
\(116\) 0 0
\(117\) 42.9596 3.97161
\(118\) 0 0
\(119\) −0.446514 0.559911i −0.0409319 0.0513270i
\(120\) 0 0
\(121\) 6.82915 3.28875i 0.620832 0.298977i
\(122\) 0 0
\(123\) −9.98946 12.5264i −0.900719 1.12947i
\(124\) 0 0
\(125\) −1.83375 + 8.03417i −0.164015 + 0.718598i
\(126\) 0 0
\(127\) 0.934500 + 4.09431i 0.0829235 + 0.363311i 0.999316 0.0369684i \(-0.0117701\pi\)
−0.916393 + 0.400280i \(0.868913\pi\)
\(128\) 0 0
\(129\) −0.808462 3.54210i −0.0711811 0.311865i
\(130\) 0 0
\(131\) 9.92965 + 4.78187i 0.867558 + 0.417794i 0.814065 0.580774i \(-0.197250\pi\)
0.0534933 + 0.998568i \(0.482964\pi\)
\(132\) 0 0
\(133\) −3.61338 −0.313320
\(134\) 0 0
\(135\) −23.8676 + 29.9290i −2.05420 + 2.57588i
\(136\) 0 0
\(137\) 2.07608 9.09590i 0.177371 0.777115i −0.805466 0.592642i \(-0.798085\pi\)
0.982838 0.184473i \(-0.0590579\pi\)
\(138\) 0 0
\(139\) −15.9167 7.66507i −1.35004 0.650143i −0.387644 0.921809i \(-0.626711\pi\)
−0.962391 + 0.271667i \(0.912425\pi\)
\(140\) 0 0
\(141\) −11.9555 + 14.9917i −1.00683 + 1.26253i
\(142\) 0 0
\(143\) −10.9629 + 5.27946i −0.916765 + 0.441491i
\(144\) 0 0
\(145\) −9.50551 16.3604i −0.789390 1.35865i
\(146\) 0 0
\(147\) −16.1828 + 7.79321i −1.33473 + 0.642774i
\(148\) 0 0
\(149\) 10.4619 13.1189i 0.857075 1.07474i −0.139349 0.990243i \(-0.544501\pi\)
0.996424 0.0844949i \(-0.0269277\pi\)
\(150\) 0 0
\(151\) −0.612042 0.294744i −0.0498073 0.0239859i 0.408814 0.912618i \(-0.365942\pi\)
−0.458622 + 0.888632i \(0.651657\pi\)
\(152\) 0 0
\(153\) −0.957264 + 4.19405i −0.0773902 + 0.339069i
\(154\) 0 0
\(155\) 6.57352 8.24293i 0.527998 0.662088i
\(156\) 0 0
\(157\) −1.22921 −0.0981018 −0.0490509 0.998796i \(-0.515620\pi\)
−0.0490509 + 0.998796i \(0.515620\pi\)
\(158\) 0 0
\(159\) −3.90993 1.88292i −0.310078 0.149326i
\(160\) 0 0
\(161\) 0.941063 + 4.12307i 0.0741661 + 0.324943i
\(162\) 0 0
\(163\) 2.25661 + 9.88685i 0.176751 + 0.774398i 0.983117 + 0.182980i \(0.0585743\pi\)
−0.806365 + 0.591418i \(0.798569\pi\)
\(164\) 0 0
\(165\) 4.46356 19.5562i 0.347488 1.52244i
\(166\) 0 0
\(167\) −12.3264 15.4569i −0.953849 1.19609i −0.980515 0.196445i \(-0.937060\pi\)
0.0266657 0.999644i \(-0.491511\pi\)
\(168\) 0 0
\(169\) −27.2896 + 13.1420i −2.09920 + 1.01092i
\(170\) 0 0
\(171\) 13.5331 + 16.9700i 1.03490 + 1.29773i
\(172\) 0 0
\(173\) −6.04054 −0.459254 −0.229627 0.973279i \(-0.573751\pi\)
−0.229627 + 0.973279i \(0.573751\pi\)
\(174\) 0 0
\(175\) −7.98419 −0.603548
\(176\) 0 0
\(177\) 18.3859 + 23.0552i 1.38197 + 1.73294i
\(178\) 0 0
\(179\) 12.0764 5.81568i 0.902631 0.434684i 0.0757925 0.997124i \(-0.475851\pi\)
0.826839 + 0.562439i \(0.190137\pi\)
\(180\) 0 0
\(181\) 1.43498 + 1.79941i 0.106661 + 0.133749i 0.832297 0.554330i \(-0.187026\pi\)
−0.725636 + 0.688079i \(0.758454\pi\)
\(182\) 0 0
\(183\) −5.70194 + 24.9818i −0.421500 + 1.84671i
\(184\) 0 0
\(185\) −4.76024 20.8560i −0.349980 1.53336i
\(186\) 0 0
\(187\) −0.271137 1.18793i −0.0198275 0.0868698i
\(188\) 0 0
\(189\) −10.6697 5.13826i −0.776107 0.373753i
\(190\) 0 0
\(191\) 26.8511 1.94287 0.971437 0.237298i \(-0.0762618\pi\)
0.971437 + 0.237298i \(0.0762618\pi\)
\(192\) 0 0
\(193\) 6.32809 7.93518i 0.455506 0.571187i −0.500050 0.865997i \(-0.666685\pi\)
0.955556 + 0.294810i \(0.0952564\pi\)
\(194\) 0 0
\(195\) 15.8798 69.5739i 1.13718 4.98229i
\(196\) 0 0
\(197\) −2.23137 1.07457i −0.158979 0.0765600i 0.352703 0.935736i \(-0.385263\pi\)
−0.511681 + 0.859175i \(0.670977\pi\)
\(198\) 0 0
\(199\) 5.77224 7.23816i 0.409183 0.513099i −0.533949 0.845516i \(-0.679293\pi\)
0.943132 + 0.332417i \(0.107864\pi\)
\(200\) 0 0
\(201\) −34.4814 + 16.6053i −2.43213 + 1.17125i
\(202\) 0 0
\(203\) 4.27999 3.99312i 0.300396 0.280262i
\(204\) 0 0
\(205\) −16.4302 + 7.91237i −1.14754 + 0.552624i
\(206\) 0 0
\(207\) 15.8391 19.8617i 1.10090 1.38048i
\(208\) 0 0
\(209\) −5.53904 2.66746i −0.383143 0.184512i
\(210\) 0 0
\(211\) −4.94301 + 21.6567i −0.340291 + 1.49091i 0.458170 + 0.888864i \(0.348505\pi\)
−0.798461 + 0.602046i \(0.794352\pi\)
\(212\) 0 0
\(213\) −15.6409 + 19.6131i −1.07170 + 1.34387i
\(214\) 0 0
\(215\) −4.13532 −0.282027
\(216\) 0 0
\(217\) 2.93861 + 1.41516i 0.199486 + 0.0960672i
\(218\) 0 0
\(219\) −5.91840 25.9302i −0.399929 1.75220i
\(220\) 0 0
\(221\) −0.964609 4.22623i −0.0648866 0.284287i
\(222\) 0 0
\(223\) −6.01393 + 26.3487i −0.402722 + 1.76444i 0.213573 + 0.976927i \(0.431490\pi\)
−0.616295 + 0.787515i \(0.711367\pi\)
\(224\) 0 0
\(225\) 29.9030 + 37.4972i 1.99353 + 2.49981i
\(226\) 0 0
\(227\) −1.95644 + 0.942171i −0.129853 + 0.0625341i −0.497682 0.867359i \(-0.665815\pi\)
0.367829 + 0.929893i \(0.380101\pi\)
\(228\) 0 0
\(229\) 8.78190 + 11.0122i 0.580325 + 0.727704i 0.982168 0.188004i \(-0.0602019\pi\)
−0.401844 + 0.915708i \(0.631630\pi\)
\(230\) 0 0
\(231\) 6.20546 0.408289
\(232\) 0 0
\(233\) 7.98101 0.522854 0.261427 0.965223i \(-0.415807\pi\)
0.261427 + 0.965223i \(0.415807\pi\)
\(234\) 0 0
\(235\) 13.6078 + 17.0637i 0.887676 + 1.11311i
\(236\) 0 0
\(237\) 15.5820 7.50390i 1.01216 0.487431i
\(238\) 0 0
\(239\) −11.7831 14.7756i −0.762188 0.955753i 0.237691 0.971341i \(-0.423610\pi\)
−0.999879 + 0.0155876i \(0.995038\pi\)
\(240\) 0 0
\(241\) 2.36797 10.3748i 0.152535 0.668297i −0.839609 0.543191i \(-0.817216\pi\)
0.992143 0.125106i \(-0.0399271\pi\)
\(242\) 0 0
\(243\) 2.37421 + 10.4021i 0.152305 + 0.667294i
\(244\) 0 0
\(245\) 4.54920 + 19.9313i 0.290638 + 1.27337i
\(246\) 0 0
\(247\) −19.7059 9.48988i −1.25386 0.603827i
\(248\) 0 0
\(249\) 11.4888 0.728074
\(250\) 0 0
\(251\) 0.786881 0.986717i 0.0496675 0.0622810i −0.756377 0.654136i \(-0.773033\pi\)
0.806045 + 0.591855i \(0.201604\pi\)
\(252\) 0 0
\(253\) −1.60114 + 7.01506i −0.100663 + 0.441033i
\(254\) 0 0
\(255\) 6.43850 + 3.10062i 0.403194 + 0.194168i
\(256\) 0 0
\(257\) −3.60427 + 4.51962i −0.224828 + 0.281926i −0.881433 0.472309i \(-0.843421\pi\)
0.656605 + 0.754235i \(0.271992\pi\)
\(258\) 0 0
\(259\) 5.96254 2.87141i 0.370494 0.178421i
\(260\) 0 0
\(261\) −34.7831 5.14531i −2.15302 0.318487i
\(262\) 0 0
\(263\) 21.5800 10.3924i 1.33068 0.640822i 0.372780 0.927920i \(-0.378405\pi\)
0.957901 + 0.287098i \(0.0926904\pi\)
\(264\) 0 0
\(265\) −3.07971 + 3.86183i −0.189185 + 0.237230i
\(266\) 0 0
\(267\) 12.4323 + 5.98707i 0.760843 + 0.366403i
\(268\) 0 0
\(269\) 1.68332 7.37511i 0.102634 0.449668i −0.897332 0.441357i \(-0.854497\pi\)
0.999965 0.00831130i \(-0.00264560\pi\)
\(270\) 0 0
\(271\) 11.8924 14.9126i 0.722410 0.905873i −0.276062 0.961140i \(-0.589029\pi\)
0.998472 + 0.0552665i \(0.0176009\pi\)
\(272\) 0 0
\(273\) 22.0768 1.33615
\(274\) 0 0
\(275\) −12.2392 5.89407i −0.738049 0.355426i
\(276\) 0 0
\(277\) 0.922042 + 4.03973i 0.0554001 + 0.242724i 0.995045 0.0994282i \(-0.0317014\pi\)
−0.939645 + 0.342152i \(0.888844\pi\)
\(278\) 0 0
\(279\) −4.35971 19.1011i −0.261009 1.14355i
\(280\) 0 0
\(281\) −0.128285 + 0.562052i −0.00765283 + 0.0335292i −0.978610 0.205723i \(-0.934045\pi\)
0.970957 + 0.239253i \(0.0769024\pi\)
\(282\) 0 0
\(283\) 14.7483 + 18.4938i 0.876697 + 1.09934i 0.994336 + 0.106287i \(0.0338961\pi\)
−0.117639 + 0.993056i \(0.537532\pi\)
\(284\) 0 0
\(285\) 32.4857 15.6443i 1.92428 0.926687i
\(286\) 0 0
\(287\) −3.51743 4.41072i −0.207628 0.260357i
\(288\) 0 0
\(289\) −16.5659 −0.974465
\(290\) 0 0
\(291\) −24.7095 −1.44849
\(292\) 0 0
\(293\) −3.17397 3.98003i −0.185425 0.232516i 0.680427 0.732816i \(-0.261794\pi\)
−0.865852 + 0.500300i \(0.833223\pi\)
\(294\) 0 0
\(295\) 30.2404 14.5630i 1.76066 0.847890i
\(296\) 0 0
\(297\) −12.5627 15.7531i −0.728962 0.914089i
\(298\) 0 0
\(299\) −5.69630 + 24.9571i −0.329425 + 1.44331i
\(300\) 0 0
\(301\) −0.284671 1.24723i −0.0164082 0.0718889i
\(302\) 0 0
\(303\) −1.59521 6.98907i −0.0916424 0.401512i
\(304\) 0 0
\(305\) 26.2774 + 12.6545i 1.50464 + 0.724596i
\(306\) 0 0
\(307\) −27.9505 −1.59522 −0.797609 0.603175i \(-0.793902\pi\)
−0.797609 + 0.603175i \(0.793902\pi\)
\(308\) 0 0
\(309\) 14.8208 18.5847i 0.843124 1.05724i
\(310\) 0 0
\(311\) −3.66039 + 16.0372i −0.207562 + 0.909386i 0.758622 + 0.651531i \(0.225873\pi\)
−0.966184 + 0.257855i \(0.916984\pi\)
\(312\) 0 0
\(313\) −2.57704 1.24104i −0.145663 0.0701475i 0.359632 0.933094i \(-0.382902\pi\)
−0.505295 + 0.862947i \(0.668616\pi\)
\(314\) 0 0
\(315\) −15.5478 + 19.4963i −0.876017 + 1.09849i
\(316\) 0 0
\(317\) −20.5844 + 9.91293i −1.15614 + 0.556766i −0.910871 0.412691i \(-0.864589\pi\)
−0.245264 + 0.969456i \(0.578875\pi\)
\(318\) 0 0
\(319\) 9.50869 2.96159i 0.532385 0.165817i
\(320\) 0 0
\(321\) 20.6808 9.95936i 1.15429 0.555877i
\(322\) 0 0
\(323\) 1.36558 1.71239i 0.0759830 0.0952797i
\(324\) 0 0
\(325\) −43.5426 20.9690i −2.41531 1.16315i
\(326\) 0 0
\(327\) 4.09454 17.9393i 0.226429 0.992048i
\(328\) 0 0
\(329\) −4.20970 + 5.27880i −0.232088 + 0.291030i
\(330\) 0 0
\(331\) 26.0822 1.43361 0.716803 0.697276i \(-0.245605\pi\)
0.716803 + 0.697276i \(0.245605\pi\)
\(332\) 0 0
\(333\) −35.8167 17.2484i −1.96274 0.945208i
\(334\) 0 0
\(335\) 9.69318 + 42.4686i 0.529595 + 2.32031i
\(336\) 0 0
\(337\) 7.04499 + 30.8661i 0.383765 + 1.68138i 0.685563 + 0.728013i \(0.259556\pi\)
−0.301798 + 0.953372i \(0.597587\pi\)
\(338\) 0 0
\(339\) −12.4950 + 54.7443i −0.678636 + 2.97330i
\(340\) 0 0
\(341\) 3.45997 + 4.33866i 0.187368 + 0.234952i
\(342\) 0 0
\(343\) −12.5534 + 6.04542i −0.677822 + 0.326422i
\(344\) 0 0
\(345\) −26.3115 32.9936i −1.41656 1.77631i
\(346\) 0 0
\(347\) −9.10528 −0.488797 −0.244399 0.969675i \(-0.578591\pi\)
−0.244399 + 0.969675i \(0.578591\pi\)
\(348\) 0 0
\(349\) −6.07146 −0.324998 −0.162499 0.986709i \(-0.551955\pi\)
−0.162499 + 0.986709i \(0.551955\pi\)
\(350\) 0 0
\(351\) −44.6937 56.0441i −2.38557 2.99141i
\(352\) 0 0
\(353\) −0.278327 + 0.134035i −0.0148138 + 0.00713397i −0.441276 0.897371i \(-0.645474\pi\)
0.426462 + 0.904505i \(0.359760\pi\)
\(354\) 0 0
\(355\) 17.8026 + 22.3237i 0.944863 + 1.18482i
\(356\) 0 0
\(357\) −0.491936 + 2.15531i −0.0260360 + 0.114071i
\(358\) 0 0
\(359\) −4.17453 18.2898i −0.220323 0.965299i −0.957235 0.289310i \(-0.906574\pi\)
0.736912 0.675988i \(-0.236283\pi\)
\(360\) 0 0
\(361\) 1.76885 + 7.74985i 0.0930976 + 0.407887i
\(362\) 0 0
\(363\) −21.0813 10.1522i −1.10648 0.532854i
\(364\) 0 0
\(365\) −30.2729 −1.58456
\(366\) 0 0
\(367\) −12.3943 + 15.5419i −0.646976 + 0.811283i −0.991856 0.127364i \(-0.959348\pi\)
0.344880 + 0.938647i \(0.387920\pi\)
\(368\) 0 0
\(369\) −7.54088 + 33.0388i −0.392563 + 1.71993i
\(370\) 0 0
\(371\) −1.37674 0.663005i −0.0714770 0.0344215i
\(372\) 0 0
\(373\) 8.58454 10.7647i 0.444491 0.557374i −0.508230 0.861221i \(-0.669700\pi\)
0.952721 + 0.303848i \(0.0982714\pi\)
\(374\) 0 0
\(375\) 22.9198 11.0376i 1.18357 0.569978i
\(376\) 0 0
\(377\) 33.8286 10.5363i 1.74226 0.542647i
\(378\) 0 0
\(379\) 23.6083 11.3692i 1.21268 0.583994i 0.285414 0.958404i \(-0.407869\pi\)
0.927263 + 0.374410i \(0.122155\pi\)
\(380\) 0 0
\(381\) 8.08294 10.1357i 0.414102 0.519267i
\(382\) 0 0
\(383\) −6.46418 3.11298i −0.330304 0.159066i 0.261380 0.965236i \(-0.415822\pi\)
−0.591684 + 0.806170i \(0.701537\pi\)
\(384\) 0 0
\(385\) 1.57169 6.88601i 0.0801005 0.350943i
\(386\) 0 0
\(387\) −4.79134 + 6.00814i −0.243557 + 0.305411i
\(388\) 0 0
\(389\) 14.1936 0.719642 0.359821 0.933021i \(-0.382838\pi\)
0.359821 + 0.933021i \(0.382838\pi\)
\(390\) 0 0
\(391\) −2.30958 1.11223i −0.116800 0.0562481i
\(392\) 0 0
\(393\) −7.57054 33.1687i −0.381883 1.67314i
\(394\) 0 0
\(395\) −4.38032 19.1914i −0.220398 0.965625i
\(396\) 0 0
\(397\) 6.40334 28.0548i 0.321374 1.40803i −0.513735 0.857949i \(-0.671739\pi\)
0.835110 0.550084i \(-0.185404\pi\)
\(398\) 0 0
\(399\) 6.95464 + 8.72084i 0.348167 + 0.436588i
\(400\) 0 0
\(401\) −15.4286 + 7.43002i −0.770467 + 0.371037i −0.777455 0.628938i \(-0.783490\pi\)
0.00698828 + 0.999976i \(0.497776\pi\)
\(402\) 0 0
\(403\) 12.3094 + 15.4354i 0.613172 + 0.768894i
\(404\) 0 0
\(405\) 49.3464 2.45204
\(406\) 0 0
\(407\) 11.2599 0.558130
\(408\) 0 0
\(409\) −1.84780 2.31707i −0.0913677 0.114572i 0.734046 0.679100i \(-0.237630\pi\)
−0.825414 + 0.564528i \(0.809058\pi\)
\(410\) 0 0
\(411\) −25.9486 + 12.4962i −1.27995 + 0.616393i
\(412\) 0 0
\(413\) 6.47395 + 8.11808i 0.318562 + 0.399465i
\(414\) 0 0
\(415\) 2.90982 12.7488i 0.142838 0.625812i
\(416\) 0 0
\(417\) 12.1352 + 53.1676i 0.594261 + 2.60363i
\(418\) 0 0
\(419\) −1.66052 7.27520i −0.0811216 0.355417i 0.918034 0.396501i \(-0.129776\pi\)
−0.999156 + 0.0410846i \(0.986919\pi\)
\(420\) 0 0
\(421\) 4.21662 + 2.03062i 0.205505 + 0.0989662i 0.533806 0.845607i \(-0.320761\pi\)
−0.328300 + 0.944573i \(0.606476\pi\)
\(422\) 0 0
\(423\) 40.5580 1.97200
\(424\) 0 0
\(425\) 3.01742 3.78372i 0.146366 0.183537i
\(426\) 0 0
\(427\) −2.00774 + 8.79647i −0.0971612 + 0.425691i
\(428\) 0 0
\(429\) 33.8422 + 16.2975i 1.63391 + 0.786852i
\(430\) 0 0
\(431\) 9.33159 11.7014i 0.449487 0.563639i −0.504529 0.863395i \(-0.668334\pi\)
0.954016 + 0.299756i \(0.0969052\pi\)
\(432\) 0 0
\(433\) 25.2638 12.1664i 1.21410 0.584681i 0.286440 0.958098i \(-0.407528\pi\)
0.927664 + 0.373417i \(0.121814\pi\)
\(434\) 0 0
\(435\) −21.1904 + 54.4301i −1.01600 + 2.60972i
\(436\) 0 0
\(437\) −11.6531 + 5.61181i −0.557441 + 0.268449i
\(438\) 0 0
\(439\) −12.0380 + 15.0952i −0.574543 + 0.720454i −0.981171 0.193140i \(-0.938133\pi\)
0.406629 + 0.913594i \(0.366704\pi\)
\(440\) 0 0
\(441\) 34.2288 + 16.4837i 1.62994 + 0.784939i
\(442\) 0 0
\(443\) 6.87527 30.1225i 0.326654 1.43116i −0.498812 0.866710i \(-0.666230\pi\)
0.825465 0.564453i \(-0.190913\pi\)
\(444\) 0 0
\(445\) 9.79244 12.2793i 0.464206 0.582096i
\(446\) 0 0
\(447\) −51.7982 −2.44997
\(448\) 0 0
\(449\) −25.9693 12.5062i −1.22557 0.590202i −0.294711 0.955586i \(-0.595223\pi\)
−0.930857 + 0.365384i \(0.880938\pi\)
\(450\) 0 0
\(451\) −2.13589 9.35794i −0.100575 0.440648i
\(452\) 0 0
\(453\) 0.466632 + 2.04445i 0.0219243 + 0.0960565i
\(454\) 0 0
\(455\) 5.59150 24.4980i 0.262134 1.14848i
\(456\) 0 0
\(457\) −22.2867 27.9467i −1.04253 1.30729i −0.950227 0.311560i \(-0.899149\pi\)
−0.0923029 0.995731i \(-0.529423\pi\)
\(458\) 0 0
\(459\) 6.46736 3.11452i 0.301871 0.145373i
\(460\) 0 0
\(461\) 8.89894 + 11.1589i 0.414465 + 0.519723i 0.944615 0.328181i \(-0.106436\pi\)
−0.530150 + 0.847904i \(0.677864\pi\)
\(462\) 0 0
\(463\) −33.7695 −1.56940 −0.784701 0.619875i \(-0.787183\pi\)
−0.784701 + 0.619875i \(0.787183\pi\)
\(464\) 0 0
\(465\) −32.5462 −1.50929
\(466\) 0 0
\(467\) 19.9471 + 25.0129i 0.923042 + 1.15746i 0.987195 + 0.159518i \(0.0509941\pi\)
−0.0641528 + 0.997940i \(0.520434\pi\)
\(468\) 0 0
\(469\) −12.1414 + 5.84698i −0.560637 + 0.269989i
\(470\) 0 0
\(471\) 2.36585 + 2.96669i 0.109013 + 0.136698i
\(472\) 0 0
\(473\) 0.484345 2.12205i 0.0222702 0.0975721i
\(474\) 0 0
\(475\) −5.43355 23.8059i −0.249308 1.09229i
\(476\) 0 0
\(477\) 2.04253 + 8.94891i 0.0935211 + 0.409743i
\(478\) 0 0
\(479\) 32.4782 + 15.6407i 1.48397 + 0.714641i 0.988108 0.153763i \(-0.0491392\pi\)
0.495859 + 0.868403i \(0.334853\pi\)
\(480\) 0 0
\(481\) 40.0586 1.82651
\(482\) 0 0
\(483\) 8.13971 10.2069i 0.370369 0.464429i
\(484\) 0 0
\(485\) −6.25828 + 27.4193i −0.284174 + 1.24505i
\(486\) 0 0
\(487\) −23.2673 11.2049i −1.05434 0.507743i −0.175312 0.984513i \(-0.556093\pi\)
−0.879028 + 0.476769i \(0.841808\pi\)
\(488\) 0 0
\(489\) 19.5185 24.4754i 0.882657 1.10682i
\(490\) 0 0
\(491\) 1.85141 0.891590i 0.0835527 0.0402369i −0.391641 0.920118i \(-0.628092\pi\)
0.475193 + 0.879881i \(0.342378\pi\)
\(492\) 0 0
\(493\) 0.274837 + 3.53739i 0.0123780 + 0.159316i
\(494\) 0 0
\(495\) −38.2260 + 18.4087i −1.71813 + 0.827409i
\(496\) 0 0
\(497\) −5.50739 + 6.90605i −0.247040 + 0.309779i
\(498\) 0 0
\(499\) −2.90825 1.40054i −0.130191 0.0626968i 0.367654 0.929963i \(-0.380161\pi\)
−0.497845 + 0.867266i \(0.665875\pi\)
\(500\) 0 0
\(501\) −13.5804 + 59.4994i −0.606726 + 2.65824i
\(502\) 0 0
\(503\) −9.84479 + 12.3450i −0.438958 + 0.550435i −0.951268 0.308365i \(-0.900218\pi\)
0.512311 + 0.858800i \(0.328790\pi\)
\(504\) 0 0
\(505\) −8.15958 −0.363096
\(506\) 0 0
\(507\) 84.2421 + 40.5688i 3.74132 + 1.80173i
\(508\) 0 0
\(509\) 0.637926 + 2.79494i 0.0282756 + 0.123883i 0.987096 0.160130i \(-0.0511912\pi\)
−0.958820 + 0.284013i \(0.908334\pi\)
\(510\) 0 0
\(511\) −2.08396 9.13041i −0.0921888 0.403905i
\(512\) 0 0
\(513\) 8.05927 35.3099i 0.355825 1.55897i
\(514\) 0 0
\(515\) −16.8691 21.1532i −0.743341 0.932120i
\(516\) 0 0
\(517\) −10.3501 + 4.98433i −0.455195 + 0.219210i
\(518\) 0 0
\(519\) 11.6262 + 14.5788i 0.510332 + 0.639936i
\(520\) 0 0
\(521\) 24.8422 1.08835 0.544177 0.838970i \(-0.316842\pi\)
0.544177 + 0.838970i \(0.316842\pi\)
\(522\) 0 0
\(523\) −5.39629 −0.235963 −0.117982 0.993016i \(-0.537642\pi\)
−0.117982 + 0.993016i \(0.537642\pi\)
\(524\) 0 0
\(525\) 15.3671 + 19.2697i 0.670675 + 0.841000i
\(526\) 0 0
\(527\) −1.78122 + 0.857788i −0.0775910 + 0.0373658i
\(528\) 0 0
\(529\) −4.90197 6.14688i −0.213129 0.267255i
\(530\) 0 0
\(531\) 13.8792 60.8089i 0.602308 2.63888i
\(532\) 0 0
\(533\) −7.59874 33.2923i −0.329138 1.44205i
\(534\) 0 0
\(535\) −5.81366 25.4713i −0.251346 1.10122i
\(536\) 0 0
\(537\) −37.2794 17.9528i −1.60872 0.774720i
\(538\) 0 0
\(539\) −10.7606 −0.463494
\(540\) 0 0
\(541\) 18.4986 23.1965i 0.795318 0.997297i −0.204513 0.978864i \(-0.565561\pi\)
0.999830 0.0184327i \(-0.00586764\pi\)
\(542\) 0 0
\(543\) 1.58095 6.92660i 0.0678451 0.297249i
\(544\) 0 0
\(545\) −18.8697 9.08716i −0.808289 0.389251i
\(546\) 0 0
\(547\) 15.7762 19.7828i 0.674543 0.845850i −0.320296 0.947318i \(-0.603782\pi\)
0.994839 + 0.101467i \(0.0323538\pi\)
\(548\) 0 0
\(549\) 48.8315 23.5160i 2.08408 1.00364i
\(550\) 0 0
\(551\) 14.8187 + 10.0439i 0.631299 + 0.427884i
\(552\) 0 0
\(553\) 5.48665 2.64223i 0.233316 0.112359i
\(554\) 0 0
\(555\) −41.1737 + 51.6301i −1.74772 + 2.19158i
\(556\) 0 0
\(557\) −15.9825 7.69677i −0.677200 0.326122i 0.0634772 0.997983i \(-0.479781\pi\)
−0.740677 + 0.671861i \(0.765495\pi\)
\(558\) 0 0
\(559\) 1.72313 7.54952i 0.0728806 0.319311i
\(560\) 0 0
\(561\) −2.34519 + 2.94078i −0.0990141 + 0.124160i
\(562\) 0 0
\(563\) −38.5300 −1.62385 −0.811923 0.583764i \(-0.801579\pi\)
−0.811923 + 0.583764i \(0.801579\pi\)
\(564\) 0 0
\(565\) 57.5833 + 27.7307i 2.42255 + 1.16664i
\(566\) 0 0
\(567\) 3.39695 + 14.8830i 0.142659 + 0.625028i
\(568\) 0 0
\(569\) 9.30890 + 40.7850i 0.390249 + 1.70979i 0.663777 + 0.747931i \(0.268952\pi\)
−0.273527 + 0.961864i \(0.588190\pi\)
\(570\) 0 0
\(571\) 3.11838 13.6625i 0.130500 0.571758i −0.866822 0.498618i \(-0.833841\pi\)
0.997322 0.0731397i \(-0.0233019\pi\)
\(572\) 0 0
\(573\) −51.6800 64.8046i −2.15896 2.70725i
\(574\) 0 0
\(575\) −25.7488 + 12.4000i −1.07380 + 0.517115i
\(576\) 0 0
\(577\) −6.56773 8.23567i −0.273418 0.342856i 0.626097 0.779745i \(-0.284651\pi\)
−0.899515 + 0.436890i \(0.856080\pi\)
\(578\) 0 0
\(579\) −31.3311 −1.30208
\(580\) 0 0
\(581\) 4.04538 0.167830
\(582\) 0 0
\(583\) −1.62100 2.03267i −0.0671351 0.0841847i
\(584\) 0 0
\(585\) −135.995 + 65.4916i −5.62269 + 2.70775i
\(586\) 0 0
\(587\) −7.37897 9.25293i −0.304563 0.381909i 0.605872 0.795562i \(-0.292824\pi\)
−0.910435 + 0.413653i \(0.864253\pi\)
\(588\) 0 0
\(589\) −2.21965 + 9.72493i −0.0914591 + 0.400709i
\(590\) 0 0
\(591\) 1.70124 + 7.45360i 0.0699795 + 0.306600i
\(592\) 0 0
\(593\) −0.0268289 0.117545i −0.00110173 0.00482700i 0.974374 0.224934i \(-0.0722166\pi\)
−0.975476 + 0.220107i \(0.929359\pi\)
\(594\) 0 0
\(595\) 2.26709 + 1.09177i 0.0929416 + 0.0447583i
\(596\) 0 0
\(597\) −28.5790 −1.16966
\(598\) 0 0
\(599\) 7.03657 8.82358i 0.287506 0.360522i −0.617014 0.786952i \(-0.711658\pi\)
0.904520 + 0.426431i \(0.140229\pi\)
\(600\) 0 0
\(601\) 7.81458 34.2379i 0.318763 1.39659i −0.520961 0.853581i \(-0.674426\pi\)
0.839724 0.543013i \(-0.182717\pi\)
\(602\) 0 0
\(603\) 72.9328 + 35.1226i 2.97005 + 1.43030i
\(604\) 0 0
\(605\) −16.6050 + 20.8220i −0.675089 + 0.846535i
\(606\) 0 0
\(607\) 9.90776 4.77132i 0.402143 0.193662i −0.221869 0.975076i \(-0.571216\pi\)
0.624012 + 0.781414i \(0.285501\pi\)
\(608\) 0 0
\(609\) −17.8750 2.64416i −0.724331 0.107147i
\(610\) 0 0
\(611\) −36.8219 + 17.7325i −1.48965 + 0.717379i
\(612\) 0 0
\(613\) 9.39569 11.7818i 0.379488 0.475863i −0.555003 0.831848i \(-0.687283\pi\)
0.934492 + 0.355985i \(0.115854\pi\)
\(614\) 0 0
\(615\) 50.7195 + 24.4252i 2.04521 + 0.984920i
\(616\) 0 0
\(617\) 6.36173 27.8726i 0.256114 1.12211i −0.669253 0.743034i \(-0.733386\pi\)
0.925367 0.379073i \(-0.123757\pi\)
\(618\) 0 0
\(619\) 11.4439 14.3502i 0.459969 0.576783i −0.496714 0.867914i \(-0.665460\pi\)
0.956683 + 0.291131i \(0.0940317\pi\)
\(620\) 0 0
\(621\) −42.3896 −1.70103
\(622\) 0 0
\(623\) 4.37758 + 2.10813i 0.175384 + 0.0844606i
\(624\) 0 0
\(625\) 1.72946 + 7.57728i 0.0691785 + 0.303091i
\(626\) 0 0
\(627\) 4.22306 + 18.5024i 0.168653 + 0.738916i
\(628\) 0 0
\(629\) −0.892621 + 3.91083i −0.0355911 + 0.155935i
\(630\) 0 0
\(631\) −7.33112 9.19294i −0.291847 0.365965i 0.614193 0.789156i \(-0.289482\pi\)
−0.906041 + 0.423190i \(0.860910\pi\)
\(632\) 0 0
\(633\) 61.7820 29.7526i 2.45561 1.18256i
\(634\) 0 0
\(635\) −9.20005 11.5365i −0.365093 0.457812i
\(636\) 0 0
\(637\) −38.2826 −1.51681
\(638\) 0 0
\(639\) 53.0605 2.09904
\(640\) 0 0
\(641\) −13.7003 17.1796i −0.541128 0.678553i 0.433816 0.901001i \(-0.357167\pi\)
−0.974945 + 0.222448i \(0.928595\pi\)
\(642\) 0 0
\(643\) 4.28523 2.06366i 0.168993 0.0813828i −0.347475 0.937689i \(-0.612961\pi\)
0.516468 + 0.856307i \(0.327247\pi\)
\(644\) 0 0
\(645\) 7.95922 + 9.98055i 0.313394 + 0.392984i
\(646\) 0 0
\(647\) −4.36680 + 19.1322i −0.171677 + 0.752165i 0.813632 + 0.581381i \(0.197487\pi\)
−0.985308 + 0.170784i \(0.945370\pi\)
\(648\) 0 0
\(649\) 3.93117 + 17.2236i 0.154312 + 0.676085i
\(650\) 0 0
\(651\) −2.24045 9.81603i −0.0878100 0.384721i
\(652\) 0 0
\(653\) 24.4943 + 11.7958i 0.958535 + 0.461606i 0.846671 0.532117i \(-0.178603\pi\)
0.111864 + 0.993723i \(0.464318\pi\)
\(654\) 0 0
\(655\) −38.7237 −1.51306
\(656\) 0 0
\(657\) −35.0753 + 43.9830i −1.36842 + 1.71594i
\(658\) 0 0
\(659\) −10.3160 + 45.1974i −0.401855 + 1.76064i 0.218025 + 0.975943i \(0.430038\pi\)
−0.619880 + 0.784697i \(0.712819\pi\)
\(660\) 0 0
\(661\) 6.61825 + 3.18718i 0.257420 + 0.123967i 0.558144 0.829744i \(-0.311514\pi\)
−0.300724 + 0.953711i \(0.597228\pi\)
\(662\) 0 0
\(663\) −8.34337 + 10.4623i −0.324030 + 0.406320i
\(664\) 0 0
\(665\) 11.4387 5.50857i 0.443573 0.213613i
\(666\) 0 0
\(667\) 7.60127 19.5248i 0.294322 0.756004i
\(668\) 0 0
\(669\) 75.1673 36.1987i 2.90614 1.39952i
\(670\) 0 0
\(671\) −9.57142 + 12.0022i −0.369500 + 0.463339i
\(672\) 0 0
\(673\) 31.0497 + 14.9528i 1.19688 + 0.576387i 0.922785 0.385316i \(-0.125908\pi\)
0.274094 + 0.961703i \(0.411622\pi\)
\(674\) 0 0
\(675\) 17.8079 78.0216i 0.685427 3.00305i
\(676\) 0 0
\(677\) 13.6693 17.1408i 0.525356 0.658775i −0.446381 0.894843i \(-0.647287\pi\)
0.971737 + 0.236068i \(0.0758588\pi\)
\(678\) 0 0
\(679\) −8.70056 −0.333897
\(680\) 0 0
\(681\) 6.03946 + 2.90845i 0.231433 + 0.111452i
\(682\) 0 0
\(683\) 6.82679 + 29.9101i 0.261220 + 1.14448i 0.919930 + 0.392082i \(0.128245\pi\)
−0.658710 + 0.752397i \(0.728898\pi\)
\(684\) 0 0
\(685\) 7.29452 + 31.9594i 0.278709 + 1.22110i
\(686\) 0 0
\(687\) 9.67524 42.3900i 0.369134 1.61728i
\(688\) 0 0
\(689\) −5.76696 7.23153i −0.219704 0.275500i
\(690\) 0 0
\(691\) −5.24069 + 2.52378i −0.199365 + 0.0960092i −0.530902 0.847433i \(-0.678147\pi\)
0.331537 + 0.943442i \(0.392433\pi\)
\(692\) 0 0
\(693\) −8.18355 10.2619i −0.310867 0.389815i
\(694\) 0 0
\(695\) 62.0719 2.35452
\(696\) 0 0
\(697\) 3.41957 0.129525
\(698\) 0 0
\(699\) −15.3610 19.2621i −0.581006 0.728558i
\(700\) 0 0
\(701\) −2.16767 + 1.04389i −0.0818717 + 0.0394273i −0.474372 0.880325i \(-0.657325\pi\)
0.392500 + 0.919752i \(0.371610\pi\)
\(702\) 0 0
\(703\) 12.6192 + 15.8240i 0.475943 + 0.596814i
\(704\) 0 0
\(705\) 14.9921 65.6845i 0.564634 2.47382i
\(706\) 0 0
\(707\) −0.561696 2.46095i −0.0211248 0.0925536i
\(708\) 0 0
\(709\) −3.01173 13.1952i −0.113108 0.495558i −0.999470 0.0325644i \(-0.989633\pi\)
0.886362 0.462993i \(-0.153225\pi\)
\(710\) 0 0
\(711\) −32.9581 15.8718i −1.23603 0.595238i
\(712\) 0 0
\(713\) 11.6748 0.437223
\(714\) 0 0
\(715\) 26.6562 33.4258i 0.996886 1.25005i
\(716\) 0 0
\(717\) −12.9818 + 56.8769i −0.484813 + 2.12411i
\(718\) 0 0
\(719\) 1.65460 + 0.796816i 0.0617063 + 0.0297162i 0.464482 0.885582i \(-0.346240\pi\)
−0.402776 + 0.915299i \(0.631955\pi\)
\(720\) 0 0
\(721\) 5.21861 6.54393i 0.194351 0.243709i
\(722\) 0 0
\(723\) −29.5970 + 14.2532i −1.10072 + 0.530080i
\(724\) 0 0
\(725\) 32.7438 + 22.1932i 1.21607 + 0.824234i
\(726\) 0 0
\(727\) −0.917603 + 0.441894i −0.0340320 + 0.0163890i −0.450822 0.892614i \(-0.648869\pi\)
0.416790 + 0.909003i \(0.363155\pi\)
\(728\) 0 0
\(729\) −5.73395 + 7.19015i −0.212369 + 0.266302i
\(730\) 0 0
\(731\) 0.698646 + 0.336450i 0.0258404 + 0.0124441i
\(732\) 0 0
\(733\) −7.87707 + 34.5117i −0.290946 + 1.27472i 0.592265 + 0.805743i \(0.298234\pi\)
−0.883211 + 0.468975i \(0.844623\pi\)
\(734\) 0 0
\(735\) 39.3482 49.3411i 1.45138 1.81997i
\(736\) 0 0
\(737\) −22.9282 −0.844570
\(738\) 0 0
\(739\) 2.75105 + 1.32484i 0.101199 + 0.0487349i 0.483798 0.875179i \(-0.339257\pi\)
−0.382599 + 0.923914i \(0.624971\pi\)
\(740\) 0 0
\(741\) 15.0242 + 65.8251i 0.551926 + 2.41815i
\(742\) 0 0
\(743\) −9.69509 42.4770i −0.355679 1.55833i −0.763831 0.645416i \(-0.776684\pi\)
0.408153 0.912914i \(-0.366173\pi\)
\(744\) 0 0
\(745\) −13.1192 + 57.4788i −0.480649 + 2.10586i
\(746\) 0 0
\(747\) −15.1511 18.9988i −0.554348 0.695130i
\(748\) 0 0
\(749\) 7.28202 3.50683i 0.266079 0.128137i
\(750\) 0 0
\(751\) −23.2415 29.1440i −0.848096 1.06348i −0.997209 0.0746582i \(-0.976213\pi\)
0.149114 0.988820i \(-0.452358\pi\)
\(752\) 0 0
\(753\) −3.89593 −0.141976
\(754\) 0 0
\(755\) 2.38684 0.0868662
\(756\) 0 0
\(757\) 22.5409 + 28.2654i 0.819262 + 1.02732i 0.999048 + 0.0436167i \(0.0138880\pi\)
−0.179786 + 0.983706i \(0.557541\pi\)
\(758\) 0 0
\(759\) 20.0125 9.63749i 0.726406 0.349819i
\(760\) 0 0
\(761\) 28.2947 + 35.4804i 1.02568 + 1.28616i 0.957482 + 0.288491i \(0.0931537\pi\)
0.0681984 + 0.997672i \(0.478275\pi\)
\(762\) 0 0
\(763\) 1.44175 6.31670i 0.0521947 0.228680i
\(764\) 0 0
\(765\) −3.36344 14.7362i −0.121606 0.532789i
\(766\) 0 0
\(767\) 13.9857 + 61.2755i 0.504995 + 2.21253i
\(768\) 0 0
\(769\) 7.01291 + 3.37724i 0.252892 + 0.121786i 0.556035 0.831159i \(-0.312322\pi\)
−0.303144 + 0.952945i \(0.598036\pi\)
\(770\) 0 0
\(771\) 17.8451 0.642677
\(772\) 0 0
\(773\) −4.86134 + 6.09593i −0.174850 + 0.219255i −0.861532 0.507702i \(-0.830495\pi\)
0.686682 + 0.726958i \(0.259066\pi\)
\(774\) 0 0
\(775\) −4.90458 + 21.4884i −0.176178 + 0.771886i
\(776\) 0 0
\(777\) −18.4062 8.86393i −0.660317 0.317992i
\(778\) 0 0
\(779\) 10.7574 13.4894i 0.385425 0.483307i
\(780\) 0 0
\(781\) −13.5406 + 6.52081i −0.484520 + 0.233333i
\(782\) 0 0
\(783\) 29.4747 + 50.7303i 1.05334 + 1.81295i
\(784\) 0 0
\(785\) 3.89125 1.87393i 0.138885 0.0668833i
\(786\) 0 0
\(787\) −21.0520 + 26.3984i −0.750424 + 0.941003i −0.999623 0.0274499i \(-0.991261\pi\)
0.249199 + 0.968452i \(0.419833\pi\)
\(788\) 0 0
\(789\) −66.6168 32.0809i −2.37162 1.14211i
\(790\) 0 0
\(791\) −4.39968 + 19.2762i −0.156435 + 0.685384i
\(792\) 0 0
\(793\) −34.0517 + 42.6995i −1.20921 + 1.51630i
\(794\) 0 0
\(795\) 15.2480 0.540790
\(796\) 0 0
\(797\) −36.4754 17.5656i −1.29202 0.622206i −0.343572 0.939126i \(-0.611637\pi\)
−0.948452 + 0.316921i \(0.897351\pi\)
\(798\) 0 0
\(799\) −0.910684 3.98997i −0.0322177 0.141155i
\(800\) 0 0
\(801\) −6.49457 28.4546i −0.229474 1.00539i
\(802\) 0 0
\(803\) 3.54568 15.5346i 0.125124 0.548206i
\(804\) 0 0
\(805\) −9.26466 11.6175i −0.326536 0.409464i
\(806\) 0 0
\(807\) −21.0396 + 10.1321i −0.740629 + 0.356668i
\(808\) 0 0
\(809\) −30.0090 37.6301i −1.05506 1.32300i −0.944274 0.329159i \(-0.893235\pi\)
−0.110786 0.993844i \(-0.535337\pi\)
\(810\) 0 0
\(811\) 26.2797 0.922806 0.461403 0.887191i \(-0.347346\pi\)
0.461403 + 0.887191i \(0.347346\pi\)
\(812\) 0 0
\(813\) −58.8804 −2.06503
\(814\) 0 0
\(815\) −22.2161 27.8581i −0.778195 0.975825i
\(816\) 0 0
\(817\) 3.52504 1.69757i 0.123326 0.0593905i
\(818\) 0 0
\(819\) −29.1142 36.5081i −1.01733 1.27569i
\(820\) 0 0
\(821\) 9.85273 43.1676i 0.343863 1.50656i −0.446981 0.894543i \(-0.647501\pi\)
0.790844 0.612018i \(-0.209642\pi\)
\(822\) 0 0
\(823\) −2.19430 9.61387i −0.0764886 0.335119i 0.922177 0.386769i \(-0.126409\pi\)
−0.998665 + 0.0516505i \(0.983552\pi\)
\(824\) 0 0
\(825\) 9.33135 + 40.8833i 0.324876 + 1.42337i
\(826\) 0 0
\(827\) −16.2539 7.82747i −0.565204 0.272188i 0.129386 0.991594i \(-0.458700\pi\)
−0.694589 + 0.719407i \(0.744414\pi\)
\(828\) 0 0
\(829\) 11.5967 0.402770 0.201385 0.979512i \(-0.435456\pi\)
0.201385 + 0.979512i \(0.435456\pi\)
\(830\) 0 0
\(831\) 7.97519 10.0006i 0.276656 0.346916i
\(832\) 0 0
\(833\) 0.853047 3.73744i 0.0295563 0.129495i
\(834\) 0 0
\(835\) 62.5851 + 30.1394i 2.16585 + 1.04302i
\(836\) 0 0
\(837\) −20.3832 + 25.5597i −0.704546 + 0.883473i
\(838\) 0 0
\(839\) −0.749420 + 0.360902i −0.0258729 + 0.0124597i −0.446775 0.894646i \(-0.647428\pi\)
0.420903 + 0.907106i \(0.361713\pi\)
\(840\) 0 0
\(841\) −28.6520 + 4.47927i −0.987999 + 0.154458i
\(842\) 0 0
\(843\) 1.60341 0.772164i 0.0552245 0.0265947i
\(844\) 0 0
\(845\) 66.3544 83.2057i 2.28266 2.86236i
\(846\) 0 0
\(847\) −7.42305 3.57475i −0.255059 0.122830i
\(848\) 0 0
\(849\) 16.2486 71.1898i 0.557650 2.44323i
\(850\) 0 0
\(851\) 14.7696 18.5204i 0.506294 0.634872i
\(852\) 0 0
\(853\) 3.70379 0.126815 0.0634077 0.997988i \(-0.479803\pi\)
0.0634077 + 0.997988i \(0.479803\pi\)
\(854\) 0 0
\(855\) −68.7116 33.0898i −2.34989 1.13165i
\(856\) 0 0
\(857\) 2.26556 + 9.92607i 0.0773901 + 0.339068i 0.998769 0.0495967i \(-0.0157936\pi\)
−0.921379 + 0.388665i \(0.872936\pi\)
\(858\) 0 0
\(859\) −4.88508 21.4029i −0.166677 0.730259i −0.987310 0.158804i \(-0.949236\pi\)
0.820633 0.571455i \(-0.193621\pi\)
\(860\) 0 0
\(861\) −3.87525 + 16.9786i −0.132068 + 0.578628i
\(862\) 0 0
\(863\) 22.1822 + 27.8156i 0.755092 + 0.946855i 0.999741 0.0227565i \(-0.00724423\pi\)
−0.244649 + 0.969612i \(0.578673\pi\)
\(864\) 0 0
\(865\) 19.1222 9.20877i 0.650174 0.313107i
\(866\) 0 0
\(867\) 31.8843 + 39.9816i 1.08285 + 1.35785i
\(868\) 0 0
\(869\) 10.3612 0.351479
\(870\) 0 0
\(871\) −81.5704 −2.76391
\(872\) 0 0
\(873\) 32.5860 + 40.8616i 1.10287 + 1.38295i
\(874\) 0 0
\(875\) 8.07038 3.88649i 0.272829 0.131387i
\(876\) 0 0
\(877\) 2.05777 + 2.58037i 0.0694861 + 0.0871328i 0.815360 0.578955i \(-0.196539\pi\)
−0.745874 + 0.666087i \(0.767968\pi\)
\(878\) 0 0
\(879\) −3.49684 + 15.3206i −0.117945 + 0.516752i
\(880\) 0 0
\(881\) 12.1239 + 53.1184i 0.408466 + 1.78960i 0.591290 + 0.806459i \(0.298619\pi\)
−0.182825 + 0.983146i \(0.558524\pi\)
\(882\) 0 0
\(883\) 10.3680 + 45.4253i 0.348912 + 1.52868i 0.779655 + 0.626209i \(0.215394\pi\)
−0.430743 + 0.902475i \(0.641748\pi\)
\(884\) 0 0
\(885\) −93.3509 44.9554i −3.13796 1.51116i
\(886\) 0 0
\(887\) 41.1122 1.38041 0.690206 0.723613i \(-0.257520\pi\)
0.690206 + 0.723613i \(0.257520\pi\)
\(888\) 0 0
\(889\) 2.84612 3.56892i 0.0954558 0.119698i
\(890\) 0 0
\(891\) −5.77964 + 25.3223i −0.193625 + 0.848327i
\(892\) 0 0
\(893\) −18.6043 8.95937i −0.622570 0.299814i
\(894\) 0 0
\(895\) −29.3636 + 36.8208i −0.981516 + 1.23078i
\(896\) 0 0
\(897\) 71.1973 34.2868i 2.37721 1.14480i
\(898\) 0 0
\(899\) −8.11782 13.9719i −0.270744 0.465990i
\(900\) 0 0
\(901\) 0.834503 0.401876i 0.0278013 0.0133884i
\(902\) 0 0
\(903\) −2.46226 + 3.08757i −0.0819388 + 0.102748i
\(904\) 0 0
\(905\) −7.28582 3.50866i −0.242189 0.116632i
\(906\) 0 0
\(907\) 4.97208 21.7841i 0.165095 0.723330i −0.822816 0.568308i \(-0.807598\pi\)
0.987911 0.155021i \(-0.0495447\pi\)
\(908\) 0 0
\(909\) −9.45398 + 11.8549i −0.313569 + 0.393203i
\(910\) 0 0
\(911\) 32.2237 1.06762 0.533810 0.845605i \(-0.320760\pi\)
0.533810 + 0.845605i \(0.320760\pi\)
\(912\) 0 0
\(913\) 6.20126 + 2.98637i 0.205232 + 0.0988344i
\(914\) 0 0
\(915\) −20.0344 87.7762i −0.662315 2.90179i
\(916\) 0 0
\(917\) −2.66570 11.6792i −0.0880291 0.385681i
\(918\) 0 0
\(919\) 7.53651 33.0196i 0.248606 1.08922i −0.684329 0.729173i \(-0.739905\pi\)
0.932936 0.360043i \(-0.117238\pi\)
\(920\) 0 0
\(921\) 53.7960 + 67.4581i 1.77264 + 2.22282i
\(922\) 0 0
\(923\) −48.1727 + 23.1987i −1.58562 + 0.763595i
\(924\) 0 0
\(925\) 27.8837 + 34.9651i 0.916810 + 1.14964i
\(926\) 0 0
\(927\) −50.2782 −1.65135
\(928\) 0 0
\(929\) −42.4834 −1.39383 −0.696917 0.717152i \(-0.745445\pi\)
−0.696917 + 0.717152i \(0.745445\pi\)
\(930\) 0 0
\(931\) −12.0598 15.1225i −0.395243 0.495619i
\(932\) 0 0
\(933\) 45.7507 22.0324i 1.49781 0.721307i
\(934\) 0 0
\(935\) 2.66931 + 3.34721i 0.0872958 + 0.109465i
\(936\) 0 0
\(937\) −4.08435 + 17.8947i −0.133430 + 0.584595i 0.863364 + 0.504582i \(0.168353\pi\)
−0.996794 + 0.0800130i \(0.974504\pi\)
\(938\) 0 0
\(939\) 1.96478 + 8.60825i 0.0641181 + 0.280920i
\(940\) 0 0
\(941\) −12.2586 53.7084i −0.399618 1.75084i −0.628904 0.777483i \(-0.716496\pi\)
0.229285 0.973359i \(-0.426361\pi\)
\(942\) 0 0
\(943\) −18.1938 8.76166i −0.592471 0.285319i
\(944\) 0 0
\(945\) 41.6097 1.35356
\(946\) 0 0
\(947\) −30.0768 + 37.7151i −0.977364 + 1.22558i −0.00313982 + 0.999995i \(0.500999\pi\)
−0.974224 + 0.225581i \(0.927572\pi\)
\(948\) 0 0
\(949\) 12.6143 55.2668i 0.409477 1.79404i
\(950\) 0 0
\(951\) 63.5434 + 30.6009i 2.06053 + 0.992301i
\(952\) 0 0
\(953\) 19.7048 24.7090i 0.638300 0.800403i −0.352489 0.935816i \(-0.614665\pi\)
0.990789 + 0.135413i \(0.0432361\pi\)
\(954\) 0 0
\(955\) −85.0009 + 40.9343i −2.75056 + 1.32460i
\(956\) 0 0
\(957\) −25.4491 17.2489i −0.822651 0.557579i
\(958\) 0 0
\(959\) −9.13689 + 4.40010i −0.295046 + 0.142087i
\(960\) 0 0
\(961\) −13.7143 + 17.1972i −0.442398 + 0.554749i
\(962\) 0 0
\(963\) −43.7428 21.0654i −1.40959 0.678823i
\(964\) 0 0
\(965\) −7.93537 + 34.7671i −0.255448 + 1.11919i
\(966\) 0 0
\(967\) 4.83947 6.06851i 0.155627 0.195150i −0.697905 0.716190i \(-0.745884\pi\)
0.853532 + 0.521040i \(0.174456\pi\)
\(968\) 0 0
\(969\) −6.76114 −0.217199
\(970\) 0 0
\(971\) −1.17291 0.564846i −0.0376406 0.0181268i 0.414969 0.909836i \(-0.363793\pi\)
−0.452609 + 0.891709i \(0.649507\pi\)
\(972\) 0 0
\(973\) 4.27296 + 18.7211i 0.136985 + 0.600170i
\(974\) 0 0
\(975\) 33.1977 + 145.448i 1.06318 + 4.65808i
\(976\) 0 0
\(977\) −5.70479 + 24.9943i −0.182512 + 0.799639i 0.797917 + 0.602767i \(0.205935\pi\)
−0.980429 + 0.196871i \(0.936922\pi\)
\(978\) 0 0
\(979\) 5.15425 + 6.46322i 0.164730 + 0.206565i
\(980\) 0 0
\(981\) −35.0657 + 16.8867i −1.11956 + 0.539152i
\(982\) 0 0
\(983\) −6.69209 8.39161i −0.213444 0.267651i 0.663571 0.748114i \(-0.269040\pi\)
−0.877015 + 0.480463i \(0.840469\pi\)
\(984\) 0 0
\(985\) 8.70190 0.277266
\(986\) 0 0
\(987\) 20.8427 0.663430
\(988\) 0 0
\(989\) −2.85508 3.58016i −0.0907863 0.113842i
\(990\) 0 0
\(991\) −20.6729 + 9.95553i −0.656695 + 0.316248i −0.732392 0.680883i \(-0.761596\pi\)
0.0756967 + 0.997131i \(0.475882\pi\)
\(992\) 0 0
\(993\) −50.2001 62.9490i −1.59305 1.99763i
\(994\) 0 0
\(995\) −7.23833 + 31.7132i −0.229470 + 1.00538i
\(996\) 0 0
\(997\) −9.54388 41.8145i −0.302258 1.32428i −0.866710 0.498812i \(-0.833770\pi\)
0.564453 0.825465i \(-0.309087\pi\)
\(998\) 0 0
\(999\) 14.7606 + 64.6704i 0.467004 + 2.04608i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 116.2.g.b.49.1 yes 12
3.2 odd 2 1044.2.u.c.397.2 12
4.3 odd 2 464.2.u.g.49.2 12
29.4 even 14 3364.2.a.p.1.6 6
29.10 odd 28 3364.2.c.j.1681.1 12
29.16 even 7 inner 116.2.g.b.45.1 12
29.19 odd 28 3364.2.c.j.1681.12 12
29.25 even 7 3364.2.a.m.1.1 6
87.74 odd 14 1044.2.u.c.973.2 12
116.103 odd 14 464.2.u.g.161.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
116.2.g.b.45.1 12 29.16 even 7 inner
116.2.g.b.49.1 yes 12 1.1 even 1 trivial
464.2.u.g.49.2 12 4.3 odd 2
464.2.u.g.161.2 12 116.103 odd 14
1044.2.u.c.397.2 12 3.2 odd 2
1044.2.u.c.973.2 12 87.74 odd 14
3364.2.a.m.1.1 6 29.25 even 7
3364.2.a.p.1.6 6 29.4 even 14
3364.2.c.j.1681.1 12 29.10 odd 28
3364.2.c.j.1681.12 12 29.19 odd 28