Properties

Label 1160.1.o.a
Level $1160$
Weight $1$
Character orbit 1160.o
Self dual yes
Analytic conductor $0.579$
Analytic rank $0$
Dimension $2$
Projective image $D_{5}$
CM discriminant -1160
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1160,1,Mod(579,1160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1160.579");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1160 = 2^{3} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1160.o (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.578915414654\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{5}\)
Projective field: Galois closure of 5.1.1345600.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + \beta q^{3} + q^{4} - q^{5} - \beta q^{6} + ( - \beta + 1) q^{7} - q^{8} + \beta q^{9} + q^{10} + \beta q^{12} + \beta q^{13} + (\beta - 1) q^{14} - \beta q^{15} + q^{16} + ( - \beta + 1) q^{17} + \cdots + (\beta - 1) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + q^{3} + 2 q^{4} - 2 q^{5} - q^{6} + q^{7} - 2 q^{8} + q^{9} + 2 q^{10} + q^{12} + q^{13} - q^{14} - q^{15} + 2 q^{16} + q^{17} - q^{18} - 2 q^{20} - 2 q^{21} + q^{23} - q^{24}+ \cdots - q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1160\mathbb{Z}\right)^\times\).

\(n\) \(321\) \(581\) \(697\) \(871\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
579.1
−0.618034
1.61803
−1.00000 −0.618034 1.00000 −1.00000 0.618034 1.61803 −1.00000 −0.618034 1.00000
579.2 −1.00000 1.61803 1.00000 −1.00000 −1.61803 −0.618034 −1.00000 1.61803 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
1160.o odd 2 1 CM by \(\Q(\sqrt{-290}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1160.1.o.a 2
5.b even 2 1 1160.1.o.d yes 2
8.d odd 2 1 1160.1.o.b yes 2
29.b even 2 1 1160.1.o.c yes 2
40.e odd 2 1 1160.1.o.c yes 2
145.d even 2 1 1160.1.o.b yes 2
232.b odd 2 1 1160.1.o.d yes 2
1160.o odd 2 1 CM 1160.1.o.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1160.1.o.a 2 1.a even 1 1 trivial
1160.1.o.a 2 1160.o odd 2 1 CM
1160.1.o.b yes 2 8.d odd 2 1
1160.1.o.b yes 2 145.d even 2 1
1160.1.o.c yes 2 29.b even 2 1
1160.1.o.c yes 2 40.e odd 2 1
1160.1.o.d yes 2 5.b even 2 1
1160.1.o.d yes 2 232.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(1160, [\chi])\):

\( T_{3}^{2} - T_{3} - 1 \) Copy content Toggle raw display
\( T_{7}^{2} - T_{7} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$5$ \( (T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$17$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$29$ \( (T - 1)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + T - 1 \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$59$ \( T^{2} + T - 1 \) Copy content Toggle raw display
$61$ \( T^{2} + T - 1 \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$79$ \( T^{2} + T - 1 \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - T - 1 \) Copy content Toggle raw display
show more
show less