Properties

Label 1160.2.a.i.1.4
Level $1160$
Weight $2$
Character 1160.1
Self dual yes
Analytic conductor $9.263$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1160,2,Mod(1,1160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1160.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1160 = 2^{3} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1160.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.26264663447\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.6083172.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 13x^{3} + 10x^{2} + 40x - 28 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-2.36347\) of defining polynomial
Character \(\chi\) \(=\) 1160.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.36347 q^{3} +1.00000 q^{5} +2.16993 q^{7} +2.58601 q^{9} +1.75593 q^{11} +2.60754 q^{13} +2.36347 q^{15} -5.49204 q^{17} +5.90603 q^{19} +5.12856 q^{21} -7.29849 q^{23} +1.00000 q^{25} -0.978465 q^{27} -1.00000 q^{29} -0.169927 q^{31} +4.15010 q^{33} +2.16993 q^{35} +3.75593 q^{37} +6.16285 q^{39} -10.3889 q^{41} +4.55702 q^{43} +2.58601 q^{45} +1.17909 q^{47} -2.29142 q^{49} -12.9803 q^{51} +11.8248 q^{53} +1.75593 q^{55} +13.9587 q^{57} -4.11941 q^{59} +1.00537 q^{61} +5.61144 q^{63} +2.60754 q^{65} -8.48288 q^{67} -17.2498 q^{69} +6.10703 q^{71} -1.72903 q^{73} +2.36347 q^{75} +3.81025 q^{77} -2.02544 q^{79} -10.0706 q^{81} +1.86296 q^{83} -5.49204 q^{85} -2.36347 q^{87} +16.5970 q^{89} +5.65817 q^{91} -0.401618 q^{93} +5.90603 q^{95} +0.464516 q^{97} +4.54085 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{3} + 5 q^{5} - q^{7} + 12 q^{9} - 4 q^{11} + 13 q^{13} - q^{15} + 3 q^{17} + 8 q^{21} - 7 q^{23} + 5 q^{25} - 4 q^{27} - 5 q^{29} + 11 q^{31} + 4 q^{33} - q^{35} + 6 q^{37} + 21 q^{39} + 16 q^{41}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.36347 1.36455 0.682276 0.731095i \(-0.260990\pi\)
0.682276 + 0.731095i \(0.260990\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 2.16993 0.820155 0.410078 0.912051i \(-0.365502\pi\)
0.410078 + 0.912051i \(0.365502\pi\)
\(8\) 0 0
\(9\) 2.58601 0.862002
\(10\) 0 0
\(11\) 1.75593 0.529434 0.264717 0.964326i \(-0.414722\pi\)
0.264717 + 0.964326i \(0.414722\pi\)
\(12\) 0 0
\(13\) 2.60754 0.723202 0.361601 0.932333i \(-0.382230\pi\)
0.361601 + 0.932333i \(0.382230\pi\)
\(14\) 0 0
\(15\) 2.36347 0.610246
\(16\) 0 0
\(17\) −5.49204 −1.33201 −0.666007 0.745945i \(-0.731998\pi\)
−0.666007 + 0.745945i \(0.731998\pi\)
\(18\) 0 0
\(19\) 5.90603 1.35494 0.677468 0.735552i \(-0.263077\pi\)
0.677468 + 0.735552i \(0.263077\pi\)
\(20\) 0 0
\(21\) 5.12856 1.11914
\(22\) 0 0
\(23\) −7.29849 −1.52184 −0.760920 0.648845i \(-0.775252\pi\)
−0.760920 + 0.648845i \(0.775252\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −0.978465 −0.188306
\(28\) 0 0
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) −0.169927 −0.0305198 −0.0152599 0.999884i \(-0.504858\pi\)
−0.0152599 + 0.999884i \(0.504858\pi\)
\(32\) 0 0
\(33\) 4.15010 0.722440
\(34\) 0 0
\(35\) 2.16993 0.366785
\(36\) 0 0
\(37\) 3.75593 0.617472 0.308736 0.951148i \(-0.400094\pi\)
0.308736 + 0.951148i \(0.400094\pi\)
\(38\) 0 0
\(39\) 6.16285 0.986846
\(40\) 0 0
\(41\) −10.3889 −1.62248 −0.811238 0.584717i \(-0.801206\pi\)
−0.811238 + 0.584717i \(0.801206\pi\)
\(42\) 0 0
\(43\) 4.55702 0.694939 0.347469 0.937691i \(-0.387041\pi\)
0.347469 + 0.937691i \(0.387041\pi\)
\(44\) 0 0
\(45\) 2.58601 0.385499
\(46\) 0 0
\(47\) 1.17909 0.171987 0.0859937 0.996296i \(-0.472594\pi\)
0.0859937 + 0.996296i \(0.472594\pi\)
\(48\) 0 0
\(49\) −2.29142 −0.327345
\(50\) 0 0
\(51\) −12.9803 −1.81760
\(52\) 0 0
\(53\) 11.8248 1.62426 0.812132 0.583474i \(-0.198307\pi\)
0.812132 + 0.583474i \(0.198307\pi\)
\(54\) 0 0
\(55\) 1.75593 0.236770
\(56\) 0 0
\(57\) 13.9587 1.84888
\(58\) 0 0
\(59\) −4.11941 −0.536301 −0.268150 0.963377i \(-0.586412\pi\)
−0.268150 + 0.963377i \(0.586412\pi\)
\(60\) 0 0
\(61\) 1.00537 0.128724 0.0643620 0.997927i \(-0.479499\pi\)
0.0643620 + 0.997927i \(0.479499\pi\)
\(62\) 0 0
\(63\) 5.61144 0.706975
\(64\) 0 0
\(65\) 2.60754 0.323426
\(66\) 0 0
\(67\) −8.48288 −1.03635 −0.518174 0.855275i \(-0.673388\pi\)
−0.518174 + 0.855275i \(0.673388\pi\)
\(68\) 0 0
\(69\) −17.2498 −2.07663
\(70\) 0 0
\(71\) 6.10703 0.724771 0.362386 0.932028i \(-0.381962\pi\)
0.362386 + 0.932028i \(0.381962\pi\)
\(72\) 0 0
\(73\) −1.72903 −0.202368 −0.101184 0.994868i \(-0.532263\pi\)
−0.101184 + 0.994868i \(0.532263\pi\)
\(74\) 0 0
\(75\) 2.36347 0.272910
\(76\) 0 0
\(77\) 3.81025 0.434218
\(78\) 0 0
\(79\) −2.02544 −0.227880 −0.113940 0.993488i \(-0.536347\pi\)
−0.113940 + 0.993488i \(0.536347\pi\)
\(80\) 0 0
\(81\) −10.0706 −1.11895
\(82\) 0 0
\(83\) 1.86296 0.204487 0.102243 0.994759i \(-0.467398\pi\)
0.102243 + 0.994759i \(0.467398\pi\)
\(84\) 0 0
\(85\) −5.49204 −0.595695
\(86\) 0 0
\(87\) −2.36347 −0.253391
\(88\) 0 0
\(89\) 16.5970 1.75928 0.879638 0.475643i \(-0.157785\pi\)
0.879638 + 0.475643i \(0.157785\pi\)
\(90\) 0 0
\(91\) 5.65817 0.593138
\(92\) 0 0
\(93\) −0.401618 −0.0416458
\(94\) 0 0
\(95\) 5.90603 0.605946
\(96\) 0 0
\(97\) 0.464516 0.0471644 0.0235822 0.999722i \(-0.492493\pi\)
0.0235822 + 0.999722i \(0.492493\pi\)
\(98\) 0 0
\(99\) 4.54085 0.456373
\(100\) 0 0
\(101\) −12.5663 −1.25039 −0.625196 0.780468i \(-0.714981\pi\)
−0.625196 + 0.780468i \(0.714981\pi\)
\(102\) 0 0
\(103\) −12.4829 −1.22997 −0.614987 0.788537i \(-0.710839\pi\)
−0.614987 + 0.788537i \(0.710839\pi\)
\(104\) 0 0
\(105\) 5.12856 0.500497
\(106\) 0 0
\(107\) −8.29312 −0.801727 −0.400863 0.916138i \(-0.631290\pi\)
−0.400863 + 0.916138i \(0.631290\pi\)
\(108\) 0 0
\(109\) 18.3889 1.76134 0.880669 0.473732i \(-0.157093\pi\)
0.880669 + 0.473732i \(0.157093\pi\)
\(110\) 0 0
\(111\) 8.87705 0.842572
\(112\) 0 0
\(113\) −0.0236192 −0.00222190 −0.00111095 0.999999i \(-0.500354\pi\)
−0.00111095 + 0.999999i \(0.500354\pi\)
\(114\) 0 0
\(115\) −7.29849 −0.680588
\(116\) 0 0
\(117\) 6.74311 0.623401
\(118\) 0 0
\(119\) −11.9173 −1.09246
\(120\) 0 0
\(121\) −7.91670 −0.719700
\(122\) 0 0
\(123\) −24.5539 −2.21395
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −15.3127 −1.35878 −0.679391 0.733777i \(-0.737756\pi\)
−0.679391 + 0.733777i \(0.737756\pi\)
\(128\) 0 0
\(129\) 10.7704 0.948280
\(130\) 0 0
\(131\) −20.1018 −1.75630 −0.878150 0.478385i \(-0.841222\pi\)
−0.878150 + 0.478385i \(0.841222\pi\)
\(132\) 0 0
\(133\) 12.8157 1.11126
\(134\) 0 0
\(135\) −0.978465 −0.0842128
\(136\) 0 0
\(137\) 10.8576 0.927627 0.463813 0.885933i \(-0.346481\pi\)
0.463813 + 0.885933i \(0.346481\pi\)
\(138\) 0 0
\(139\) 8.03289 0.681341 0.340670 0.940183i \(-0.389346\pi\)
0.340670 + 0.940183i \(0.389346\pi\)
\(140\) 0 0
\(141\) 2.78674 0.234686
\(142\) 0 0
\(143\) 4.57867 0.382887
\(144\) 0 0
\(145\) −1.00000 −0.0830455
\(146\) 0 0
\(147\) −5.41570 −0.446680
\(148\) 0 0
\(149\) 20.8830 1.71080 0.855402 0.517964i \(-0.173310\pi\)
0.855402 + 0.517964i \(0.173310\pi\)
\(150\) 0 0
\(151\) −3.32211 −0.270350 −0.135175 0.990822i \(-0.543160\pi\)
−0.135175 + 0.990822i \(0.543160\pi\)
\(152\) 0 0
\(153\) −14.2024 −1.14820
\(154\) 0 0
\(155\) −0.169927 −0.0136489
\(156\) 0 0
\(157\) 0.820914 0.0655161 0.0327581 0.999463i \(-0.489571\pi\)
0.0327581 + 0.999463i \(0.489571\pi\)
\(158\) 0 0
\(159\) 27.9476 2.21639
\(160\) 0 0
\(161\) −15.8372 −1.24815
\(162\) 0 0
\(163\) 3.03497 0.237717 0.118859 0.992911i \(-0.462076\pi\)
0.118859 + 0.992911i \(0.462076\pi\)
\(164\) 0 0
\(165\) 4.15010 0.323085
\(166\) 0 0
\(167\) −7.53511 −0.583084 −0.291542 0.956558i \(-0.594168\pi\)
−0.291542 + 0.956558i \(0.594168\pi\)
\(168\) 0 0
\(169\) −6.20073 −0.476979
\(170\) 0 0
\(171\) 15.2730 1.16796
\(172\) 0 0
\(173\) −0.177378 −0.0134858 −0.00674290 0.999977i \(-0.502146\pi\)
−0.00674290 + 0.999977i \(0.502146\pi\)
\(174\) 0 0
\(175\) 2.16993 0.164031
\(176\) 0 0
\(177\) −9.73610 −0.731810
\(178\) 0 0
\(179\) −23.4415 −1.75210 −0.876051 0.482219i \(-0.839831\pi\)
−0.876051 + 0.482219i \(0.839831\pi\)
\(180\) 0 0
\(181\) 21.7128 1.61390 0.806951 0.590618i \(-0.201116\pi\)
0.806951 + 0.590618i \(0.201116\pi\)
\(182\) 0 0
\(183\) 2.37616 0.175651
\(184\) 0 0
\(185\) 3.75593 0.276142
\(186\) 0 0
\(187\) −9.64365 −0.705213
\(188\) 0 0
\(189\) −2.12320 −0.154440
\(190\) 0 0
\(191\) 14.5630 1.05374 0.526871 0.849945i \(-0.323365\pi\)
0.526871 + 0.849945i \(0.323365\pi\)
\(192\) 0 0
\(193\) 11.2843 0.812265 0.406132 0.913814i \(-0.366877\pi\)
0.406132 + 0.913814i \(0.366877\pi\)
\(194\) 0 0
\(195\) 6.16285 0.441331
\(196\) 0 0
\(197\) −8.60375 −0.612992 −0.306496 0.951872i \(-0.599157\pi\)
−0.306496 + 0.951872i \(0.599157\pi\)
\(198\) 0 0
\(199\) 0.290797 0.0206141 0.0103070 0.999947i \(-0.496719\pi\)
0.0103070 + 0.999947i \(0.496719\pi\)
\(200\) 0 0
\(201\) −20.0491 −1.41415
\(202\) 0 0
\(203\) −2.16993 −0.152299
\(204\) 0 0
\(205\) −10.3889 −0.725593
\(206\) 0 0
\(207\) −18.8739 −1.31183
\(208\) 0 0
\(209\) 10.3706 0.717349
\(210\) 0 0
\(211\) −10.0561 −0.692293 −0.346146 0.938181i \(-0.612510\pi\)
−0.346146 + 0.938181i \(0.612510\pi\)
\(212\) 0 0
\(213\) 14.4338 0.988988
\(214\) 0 0
\(215\) 4.55702 0.310786
\(216\) 0 0
\(217\) −0.368729 −0.0250310
\(218\) 0 0
\(219\) −4.08652 −0.276141
\(220\) 0 0
\(221\) −14.3207 −0.963315
\(222\) 0 0
\(223\) −9.64251 −0.645710 −0.322855 0.946448i \(-0.604643\pi\)
−0.322855 + 0.946448i \(0.604643\pi\)
\(224\) 0 0
\(225\) 2.58601 0.172400
\(226\) 0 0
\(227\) 7.22814 0.479749 0.239874 0.970804i \(-0.422894\pi\)
0.239874 + 0.970804i \(0.422894\pi\)
\(228\) 0 0
\(229\) 20.5027 1.35486 0.677428 0.735589i \(-0.263094\pi\)
0.677428 + 0.735589i \(0.263094\pi\)
\(230\) 0 0
\(231\) 9.00541 0.592513
\(232\) 0 0
\(233\) −0.344022 −0.0225376 −0.0112688 0.999937i \(-0.503587\pi\)
−0.0112688 + 0.999937i \(0.503587\pi\)
\(234\) 0 0
\(235\) 1.17909 0.0769151
\(236\) 0 0
\(237\) −4.78707 −0.310953
\(238\) 0 0
\(239\) 5.30379 0.343074 0.171537 0.985178i \(-0.445127\pi\)
0.171537 + 0.985178i \(0.445127\pi\)
\(240\) 0 0
\(241\) −26.9492 −1.73595 −0.867976 0.496607i \(-0.834579\pi\)
−0.867976 + 0.496607i \(0.834579\pi\)
\(242\) 0 0
\(243\) −20.8662 −1.33857
\(244\) 0 0
\(245\) −2.29142 −0.146393
\(246\) 0 0
\(247\) 15.4002 0.979892
\(248\) 0 0
\(249\) 4.40306 0.279033
\(250\) 0 0
\(251\) −11.7270 −0.740202 −0.370101 0.928991i \(-0.620677\pi\)
−0.370101 + 0.928991i \(0.620677\pi\)
\(252\) 0 0
\(253\) −12.8157 −0.805714
\(254\) 0 0
\(255\) −12.9803 −0.812857
\(256\) 0 0
\(257\) −23.0911 −1.44038 −0.720192 0.693775i \(-0.755946\pi\)
−0.720192 + 0.693775i \(0.755946\pi\)
\(258\) 0 0
\(259\) 8.15010 0.506423
\(260\) 0 0
\(261\) −2.58601 −0.160070
\(262\) 0 0
\(263\) −26.9190 −1.65990 −0.829949 0.557839i \(-0.811631\pi\)
−0.829949 + 0.557839i \(0.811631\pi\)
\(264\) 0 0
\(265\) 11.8248 0.726393
\(266\) 0 0
\(267\) 39.2265 2.40062
\(268\) 0 0
\(269\) 9.45604 0.576545 0.288273 0.957548i \(-0.406919\pi\)
0.288273 + 0.957548i \(0.406919\pi\)
\(270\) 0 0
\(271\) 22.6820 1.37784 0.688918 0.724840i \(-0.258086\pi\)
0.688918 + 0.724840i \(0.258086\pi\)
\(272\) 0 0
\(273\) 13.3729 0.809367
\(274\) 0 0
\(275\) 1.75593 0.105887
\(276\) 0 0
\(277\) 1.76301 0.105929 0.0529644 0.998596i \(-0.483133\pi\)
0.0529644 + 0.998596i \(0.483133\pi\)
\(278\) 0 0
\(279\) −0.439432 −0.0263081
\(280\) 0 0
\(281\) −10.6959 −0.638062 −0.319031 0.947744i \(-0.603357\pi\)
−0.319031 + 0.947744i \(0.603357\pi\)
\(282\) 0 0
\(283\) 8.34218 0.495891 0.247946 0.968774i \(-0.420245\pi\)
0.247946 + 0.968774i \(0.420245\pi\)
\(284\) 0 0
\(285\) 13.9587 0.826845
\(286\) 0 0
\(287\) −22.5432 −1.33068
\(288\) 0 0
\(289\) 13.1625 0.774263
\(290\) 0 0
\(291\) 1.09787 0.0643583
\(292\) 0 0
\(293\) 5.86296 0.342518 0.171259 0.985226i \(-0.445217\pi\)
0.171259 + 0.985226i \(0.445217\pi\)
\(294\) 0 0
\(295\) −4.11941 −0.239841
\(296\) 0 0
\(297\) −1.71812 −0.0996953
\(298\) 0 0
\(299\) −19.0311 −1.10060
\(300\) 0 0
\(301\) 9.88840 0.569958
\(302\) 0 0
\(303\) −29.7001 −1.70623
\(304\) 0 0
\(305\) 1.00537 0.0575671
\(306\) 0 0
\(307\) −11.3127 −0.645649 −0.322825 0.946459i \(-0.604632\pi\)
−0.322825 + 0.946459i \(0.604632\pi\)
\(308\) 0 0
\(309\) −29.5029 −1.67836
\(310\) 0 0
\(311\) −14.5012 −0.822290 −0.411145 0.911570i \(-0.634871\pi\)
−0.411145 + 0.911570i \(0.634871\pi\)
\(312\) 0 0
\(313\) −28.1827 −1.59298 −0.796489 0.604653i \(-0.793312\pi\)
−0.796489 + 0.604653i \(0.793312\pi\)
\(314\) 0 0
\(315\) 5.61144 0.316169
\(316\) 0 0
\(317\) −1.01067 −0.0567648 −0.0283824 0.999597i \(-0.509036\pi\)
−0.0283824 + 0.999597i \(0.509036\pi\)
\(318\) 0 0
\(319\) −1.75593 −0.0983133
\(320\) 0 0
\(321\) −19.6006 −1.09400
\(322\) 0 0
\(323\) −32.4361 −1.80480
\(324\) 0 0
\(325\) 2.60754 0.144640
\(326\) 0 0
\(327\) 43.4617 2.40344
\(328\) 0 0
\(329\) 2.55853 0.141056
\(330\) 0 0
\(331\) 8.81675 0.484612 0.242306 0.970200i \(-0.422096\pi\)
0.242306 + 0.970200i \(0.422096\pi\)
\(332\) 0 0
\(333\) 9.71286 0.532262
\(334\) 0 0
\(335\) −8.48288 −0.463469
\(336\) 0 0
\(337\) 10.9110 0.594361 0.297181 0.954821i \(-0.403954\pi\)
0.297181 + 0.954821i \(0.403954\pi\)
\(338\) 0 0
\(339\) −0.0558233 −0.00303190
\(340\) 0 0
\(341\) −0.298380 −0.0161582
\(342\) 0 0
\(343\) −20.1617 −1.08863
\(344\) 0 0
\(345\) −17.2498 −0.928697
\(346\) 0 0
\(347\) −3.21874 −0.172791 −0.0863955 0.996261i \(-0.527535\pi\)
−0.0863955 + 0.996261i \(0.527535\pi\)
\(348\) 0 0
\(349\) 0.0430703 0.00230550 0.00115275 0.999999i \(-0.499633\pi\)
0.00115275 + 0.999999i \(0.499633\pi\)
\(350\) 0 0
\(351\) −2.55139 −0.136183
\(352\) 0 0
\(353\) −8.95977 −0.476881 −0.238440 0.971157i \(-0.576636\pi\)
−0.238440 + 0.971157i \(0.576636\pi\)
\(354\) 0 0
\(355\) 6.10703 0.324127
\(356\) 0 0
\(357\) −28.1663 −1.49072
\(358\) 0 0
\(359\) 28.8347 1.52184 0.760918 0.648849i \(-0.224749\pi\)
0.760918 + 0.648849i \(0.224749\pi\)
\(360\) 0 0
\(361\) 15.8812 0.835853
\(362\) 0 0
\(363\) −18.7109 −0.982068
\(364\) 0 0
\(365\) −1.72903 −0.0905016
\(366\) 0 0
\(367\) −0.452139 −0.0236015 −0.0118007 0.999930i \(-0.503756\pi\)
−0.0118007 + 0.999930i \(0.503756\pi\)
\(368\) 0 0
\(369\) −26.8658 −1.39858
\(370\) 0 0
\(371\) 25.6590 1.33215
\(372\) 0 0
\(373\) −23.0375 −1.19284 −0.596420 0.802673i \(-0.703411\pi\)
−0.596420 + 0.802673i \(0.703411\pi\)
\(374\) 0 0
\(375\) 2.36347 0.122049
\(376\) 0 0
\(377\) −2.60754 −0.134295
\(378\) 0 0
\(379\) −18.2477 −0.937322 −0.468661 0.883378i \(-0.655263\pi\)
−0.468661 + 0.883378i \(0.655263\pi\)
\(380\) 0 0
\(381\) −36.1911 −1.85413
\(382\) 0 0
\(383\) −7.47190 −0.381796 −0.190898 0.981610i \(-0.561140\pi\)
−0.190898 + 0.981610i \(0.561140\pi\)
\(384\) 0 0
\(385\) 3.81025 0.194188
\(386\) 0 0
\(387\) 11.7845 0.599039
\(388\) 0 0
\(389\) −24.6708 −1.25086 −0.625429 0.780281i \(-0.715076\pi\)
−0.625429 + 0.780281i \(0.715076\pi\)
\(390\) 0 0
\(391\) 40.0836 2.02711
\(392\) 0 0
\(393\) −47.5100 −2.39656
\(394\) 0 0
\(395\) −2.02544 −0.101911
\(396\) 0 0
\(397\) −5.52985 −0.277535 −0.138768 0.990325i \(-0.544314\pi\)
−0.138768 + 0.990325i \(0.544314\pi\)
\(398\) 0 0
\(399\) 30.2895 1.51637
\(400\) 0 0
\(401\) 22.9594 1.14654 0.573268 0.819368i \(-0.305675\pi\)
0.573268 + 0.819368i \(0.305675\pi\)
\(402\) 0 0
\(403\) −0.443092 −0.0220720
\(404\) 0 0
\(405\) −10.0706 −0.500412
\(406\) 0 0
\(407\) 6.59516 0.326910
\(408\) 0 0
\(409\) 28.5698 1.41268 0.706342 0.707871i \(-0.250344\pi\)
0.706342 + 0.707871i \(0.250344\pi\)
\(410\) 0 0
\(411\) 25.6616 1.26580
\(412\) 0 0
\(413\) −8.93881 −0.439850
\(414\) 0 0
\(415\) 1.86296 0.0914492
\(416\) 0 0
\(417\) 18.9855 0.929725
\(418\) 0 0
\(419\) −4.94595 −0.241626 −0.120813 0.992675i \(-0.538550\pi\)
−0.120813 + 0.992675i \(0.538550\pi\)
\(420\) 0 0
\(421\) −1.83500 −0.0894324 −0.0447162 0.999000i \(-0.514238\pi\)
−0.0447162 + 0.999000i \(0.514238\pi\)
\(422\) 0 0
\(423\) 3.04912 0.148253
\(424\) 0 0
\(425\) −5.49204 −0.266403
\(426\) 0 0
\(427\) 2.18157 0.105574
\(428\) 0 0
\(429\) 10.8216 0.522470
\(430\) 0 0
\(431\) 21.8948 1.05463 0.527317 0.849668i \(-0.323198\pi\)
0.527317 + 0.849668i \(0.323198\pi\)
\(432\) 0 0
\(433\) −8.08164 −0.388379 −0.194189 0.980964i \(-0.562208\pi\)
−0.194189 + 0.980964i \(0.562208\pi\)
\(434\) 0 0
\(435\) −2.36347 −0.113320
\(436\) 0 0
\(437\) −43.1051 −2.06200
\(438\) 0 0
\(439\) 37.5320 1.79130 0.895652 0.444755i \(-0.146709\pi\)
0.895652 + 0.444755i \(0.146709\pi\)
\(440\) 0 0
\(441\) −5.92562 −0.282172
\(442\) 0 0
\(443\) 4.25826 0.202316 0.101158 0.994870i \(-0.467745\pi\)
0.101158 + 0.994870i \(0.467745\pi\)
\(444\) 0 0
\(445\) 16.5970 0.786772
\(446\) 0 0
\(447\) 49.3565 2.33448
\(448\) 0 0
\(449\) 4.53302 0.213927 0.106963 0.994263i \(-0.465887\pi\)
0.106963 + 0.994263i \(0.465887\pi\)
\(450\) 0 0
\(451\) −18.2422 −0.858993
\(452\) 0 0
\(453\) −7.85172 −0.368906
\(454\) 0 0
\(455\) 5.65817 0.265259
\(456\) 0 0
\(457\) −1.76301 −0.0824700 −0.0412350 0.999149i \(-0.513129\pi\)
−0.0412350 + 0.999149i \(0.513129\pi\)
\(458\) 0 0
\(459\) 5.37377 0.250826
\(460\) 0 0
\(461\) 32.3148 1.50505 0.752524 0.658564i \(-0.228836\pi\)
0.752524 + 0.658564i \(0.228836\pi\)
\(462\) 0 0
\(463\) 20.3894 0.947577 0.473788 0.880639i \(-0.342886\pi\)
0.473788 + 0.880639i \(0.342886\pi\)
\(464\) 0 0
\(465\) −0.401618 −0.0186246
\(466\) 0 0
\(467\) −31.6392 −1.46409 −0.732044 0.681257i \(-0.761433\pi\)
−0.732044 + 0.681257i \(0.761433\pi\)
\(468\) 0 0
\(469\) −18.4072 −0.849967
\(470\) 0 0
\(471\) 1.94021 0.0894001
\(472\) 0 0
\(473\) 8.00182 0.367924
\(474\) 0 0
\(475\) 5.90603 0.270987
\(476\) 0 0
\(477\) 30.5790 1.40012
\(478\) 0 0
\(479\) 8.02741 0.366782 0.183391 0.983040i \(-0.441293\pi\)
0.183391 + 0.983040i \(0.441293\pi\)
\(480\) 0 0
\(481\) 9.79375 0.446556
\(482\) 0 0
\(483\) −37.4308 −1.70316
\(484\) 0 0
\(485\) 0.464516 0.0210926
\(486\) 0 0
\(487\) 6.05911 0.274564 0.137282 0.990532i \(-0.456163\pi\)
0.137282 + 0.990532i \(0.456163\pi\)
\(488\) 0 0
\(489\) 7.17308 0.324378
\(490\) 0 0
\(491\) 15.1106 0.681932 0.340966 0.940076i \(-0.389246\pi\)
0.340966 + 0.940076i \(0.389246\pi\)
\(492\) 0 0
\(493\) 5.49204 0.247349
\(494\) 0 0
\(495\) 4.54085 0.204096
\(496\) 0 0
\(497\) 13.2518 0.594425
\(498\) 0 0
\(499\) −43.2431 −1.93583 −0.967913 0.251286i \(-0.919146\pi\)
−0.967913 + 0.251286i \(0.919146\pi\)
\(500\) 0 0
\(501\) −17.8090 −0.795649
\(502\) 0 0
\(503\) 26.4309 1.17850 0.589248 0.807952i \(-0.299424\pi\)
0.589248 + 0.807952i \(0.299424\pi\)
\(504\) 0 0
\(505\) −12.5663 −0.559193
\(506\) 0 0
\(507\) −14.6553 −0.650863
\(508\) 0 0
\(509\) −25.4126 −1.12640 −0.563198 0.826322i \(-0.690429\pi\)
−0.563198 + 0.826322i \(0.690429\pi\)
\(510\) 0 0
\(511\) −3.75187 −0.165973
\(512\) 0 0
\(513\) −5.77884 −0.255142
\(514\) 0 0
\(515\) −12.4829 −0.550061
\(516\) 0 0
\(517\) 2.07039 0.0910559
\(518\) 0 0
\(519\) −0.419228 −0.0184021
\(520\) 0 0
\(521\) 37.8715 1.65918 0.829591 0.558372i \(-0.188574\pi\)
0.829591 + 0.558372i \(0.188574\pi\)
\(522\) 0 0
\(523\) 6.19341 0.270819 0.135410 0.990790i \(-0.456765\pi\)
0.135410 + 0.990790i \(0.456765\pi\)
\(524\) 0 0
\(525\) 5.12856 0.223829
\(526\) 0 0
\(527\) 0.933246 0.0406528
\(528\) 0 0
\(529\) 30.2680 1.31600
\(530\) 0 0
\(531\) −10.6528 −0.462292
\(532\) 0 0
\(533\) −27.0895 −1.17338
\(534\) 0 0
\(535\) −8.29312 −0.358543
\(536\) 0 0
\(537\) −55.4034 −2.39083
\(538\) 0 0
\(539\) −4.02357 −0.173308
\(540\) 0 0
\(541\) −26.0329 −1.11924 −0.559621 0.828749i \(-0.689053\pi\)
−0.559621 + 0.828749i \(0.689053\pi\)
\(542\) 0 0
\(543\) 51.3177 2.20225
\(544\) 0 0
\(545\) 18.3889 0.787694
\(546\) 0 0
\(547\) 36.4847 1.55997 0.779987 0.625796i \(-0.215226\pi\)
0.779987 + 0.625796i \(0.215226\pi\)
\(548\) 0 0
\(549\) 2.59988 0.110960
\(550\) 0 0
\(551\) −5.90603 −0.251605
\(552\) 0 0
\(553\) −4.39505 −0.186897
\(554\) 0 0
\(555\) 8.87705 0.376810
\(556\) 0 0
\(557\) 42.0173 1.78033 0.890164 0.455640i \(-0.150590\pi\)
0.890164 + 0.455640i \(0.150590\pi\)
\(558\) 0 0
\(559\) 11.8826 0.502581
\(560\) 0 0
\(561\) −22.7925 −0.962300
\(562\) 0 0
\(563\) 10.8636 0.457845 0.228923 0.973445i \(-0.426480\pi\)
0.228923 + 0.973445i \(0.426480\pi\)
\(564\) 0 0
\(565\) −0.0236192 −0.000993666 0
\(566\) 0 0
\(567\) −21.8524 −0.917717
\(568\) 0 0
\(569\) 16.2696 0.682055 0.341028 0.940053i \(-0.389225\pi\)
0.341028 + 0.940053i \(0.389225\pi\)
\(570\) 0 0
\(571\) 29.2502 1.22408 0.612041 0.790826i \(-0.290349\pi\)
0.612041 + 0.790826i \(0.290349\pi\)
\(572\) 0 0
\(573\) 34.4193 1.43789
\(574\) 0 0
\(575\) −7.29849 −0.304368
\(576\) 0 0
\(577\) 39.6878 1.65222 0.826112 0.563506i \(-0.190548\pi\)
0.826112 + 0.563506i \(0.190548\pi\)
\(578\) 0 0
\(579\) 26.6702 1.10838
\(580\) 0 0
\(581\) 4.04249 0.167711
\(582\) 0 0
\(583\) 20.7636 0.859940
\(584\) 0 0
\(585\) 6.74311 0.278793
\(586\) 0 0
\(587\) 41.6739 1.72007 0.860033 0.510238i \(-0.170443\pi\)
0.860033 + 0.510238i \(0.170443\pi\)
\(588\) 0 0
\(589\) −1.00359 −0.0413524
\(590\) 0 0
\(591\) −20.3347 −0.836459
\(592\) 0 0
\(593\) 47.8719 1.96586 0.982931 0.183976i \(-0.0588969\pi\)
0.982931 + 0.183976i \(0.0588969\pi\)
\(594\) 0 0
\(595\) −11.9173 −0.488563
\(596\) 0 0
\(597\) 0.687291 0.0281290
\(598\) 0 0
\(599\) 41.8248 1.70891 0.854457 0.519521i \(-0.173890\pi\)
0.854457 + 0.519521i \(0.173890\pi\)
\(600\) 0 0
\(601\) −10.4180 −0.424958 −0.212479 0.977166i \(-0.568154\pi\)
−0.212479 + 0.977166i \(0.568154\pi\)
\(602\) 0 0
\(603\) −21.9368 −0.893334
\(604\) 0 0
\(605\) −7.91670 −0.321860
\(606\) 0 0
\(607\) 26.4309 1.07280 0.536398 0.843965i \(-0.319784\pi\)
0.536398 + 0.843965i \(0.319784\pi\)
\(608\) 0 0
\(609\) −5.12856 −0.207820
\(610\) 0 0
\(611\) 3.07451 0.124382
\(612\) 0 0
\(613\) 26.9696 1.08929 0.544646 0.838666i \(-0.316664\pi\)
0.544646 + 0.838666i \(0.316664\pi\)
\(614\) 0 0
\(615\) −24.5539 −0.990109
\(616\) 0 0
\(617\) −17.3067 −0.696740 −0.348370 0.937357i \(-0.613265\pi\)
−0.348370 + 0.937357i \(0.613265\pi\)
\(618\) 0 0
\(619\) 32.9250 1.32337 0.661684 0.749783i \(-0.269842\pi\)
0.661684 + 0.749783i \(0.269842\pi\)
\(620\) 0 0
\(621\) 7.14132 0.286571
\(622\) 0 0
\(623\) 36.0142 1.44288
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 24.5106 0.978860
\(628\) 0 0
\(629\) −20.6277 −0.822481
\(630\) 0 0
\(631\) 17.8551 0.710802 0.355401 0.934714i \(-0.384344\pi\)
0.355401 + 0.934714i \(0.384344\pi\)
\(632\) 0 0
\(633\) −23.7674 −0.944669
\(634\) 0 0
\(635\) −15.3127 −0.607665
\(636\) 0 0
\(637\) −5.97496 −0.236737
\(638\) 0 0
\(639\) 15.7928 0.624754
\(640\) 0 0
\(641\) 10.1749 0.401883 0.200941 0.979603i \(-0.435600\pi\)
0.200941 + 0.979603i \(0.435600\pi\)
\(642\) 0 0
\(643\) 28.7293 1.13297 0.566486 0.824071i \(-0.308303\pi\)
0.566486 + 0.824071i \(0.308303\pi\)
\(644\) 0 0
\(645\) 10.7704 0.424084
\(646\) 0 0
\(647\) −44.7235 −1.75826 −0.879131 0.476580i \(-0.841876\pi\)
−0.879131 + 0.476580i \(0.841876\pi\)
\(648\) 0 0
\(649\) −7.23340 −0.283936
\(650\) 0 0
\(651\) −0.871482 −0.0341561
\(652\) 0 0
\(653\) 10.6401 0.416378 0.208189 0.978089i \(-0.433243\pi\)
0.208189 + 0.978089i \(0.433243\pi\)
\(654\) 0 0
\(655\) −20.1018 −0.785441
\(656\) 0 0
\(657\) −4.47128 −0.174441
\(658\) 0 0
\(659\) 7.08878 0.276140 0.138070 0.990423i \(-0.455910\pi\)
0.138070 + 0.990423i \(0.455910\pi\)
\(660\) 0 0
\(661\) −16.1804 −0.629344 −0.314672 0.949200i \(-0.601895\pi\)
−0.314672 + 0.949200i \(0.601895\pi\)
\(662\) 0 0
\(663\) −33.8466 −1.31449
\(664\) 0 0
\(665\) 12.8157 0.496970
\(666\) 0 0
\(667\) 7.29849 0.282599
\(668\) 0 0
\(669\) −22.7898 −0.881105
\(670\) 0 0
\(671\) 1.76536 0.0681508
\(672\) 0 0
\(673\) 16.2677 0.627075 0.313538 0.949576i \(-0.398486\pi\)
0.313538 + 0.949576i \(0.398486\pi\)
\(674\) 0 0
\(675\) −0.978465 −0.0376611
\(676\) 0 0
\(677\) −26.3795 −1.01385 −0.506923 0.861991i \(-0.669217\pi\)
−0.506923 + 0.861991i \(0.669217\pi\)
\(678\) 0 0
\(679\) 1.00797 0.0386822
\(680\) 0 0
\(681\) 17.0835 0.654642
\(682\) 0 0
\(683\) −40.4356 −1.54723 −0.773613 0.633658i \(-0.781553\pi\)
−0.773613 + 0.633658i \(0.781553\pi\)
\(684\) 0 0
\(685\) 10.8576 0.414847
\(686\) 0 0
\(687\) 48.4576 1.84877
\(688\) 0 0
\(689\) 30.8337 1.17467
\(690\) 0 0
\(691\) −25.1960 −0.958500 −0.479250 0.877678i \(-0.659091\pi\)
−0.479250 + 0.877678i \(0.659091\pi\)
\(692\) 0 0
\(693\) 9.85332 0.374297
\(694\) 0 0
\(695\) 8.03289 0.304705
\(696\) 0 0
\(697\) 57.0563 2.16116
\(698\) 0 0
\(699\) −0.813087 −0.0307538
\(700\) 0 0
\(701\) 12.0823 0.456341 0.228171 0.973621i \(-0.426726\pi\)
0.228171 + 0.973621i \(0.426726\pi\)
\(702\) 0 0
\(703\) 22.1827 0.836635
\(704\) 0 0
\(705\) 2.78674 0.104955
\(706\) 0 0
\(707\) −27.2679 −1.02552
\(708\) 0 0
\(709\) −4.14012 −0.155485 −0.0777427 0.996973i \(-0.524771\pi\)
−0.0777427 + 0.996973i \(0.524771\pi\)
\(710\) 0 0
\(711\) −5.23779 −0.196433
\(712\) 0 0
\(713\) 1.24021 0.0464463
\(714\) 0 0
\(715\) 4.57867 0.171232
\(716\) 0 0
\(717\) 12.5354 0.468142
\(718\) 0 0
\(719\) −32.0138 −1.19391 −0.596956 0.802274i \(-0.703624\pi\)
−0.596956 + 0.802274i \(0.703624\pi\)
\(720\) 0 0
\(721\) −27.0869 −1.00877
\(722\) 0 0
\(723\) −63.6937 −2.36880
\(724\) 0 0
\(725\) −1.00000 −0.0371391
\(726\) 0 0
\(727\) −29.4823 −1.09344 −0.546719 0.837316i \(-0.684123\pi\)
−0.546719 + 0.837316i \(0.684123\pi\)
\(728\) 0 0
\(729\) −19.1049 −0.707588
\(730\) 0 0
\(731\) −25.0273 −0.925669
\(732\) 0 0
\(733\) 9.57873 0.353798 0.176899 0.984229i \(-0.443393\pi\)
0.176899 + 0.984229i \(0.443393\pi\)
\(734\) 0 0
\(735\) −5.41570 −0.199761
\(736\) 0 0
\(737\) −14.8954 −0.548678
\(738\) 0 0
\(739\) 31.5043 1.15890 0.579451 0.815007i \(-0.303267\pi\)
0.579451 + 0.815007i \(0.303267\pi\)
\(740\) 0 0
\(741\) 36.3980 1.33711
\(742\) 0 0
\(743\) −13.2845 −0.487362 −0.243681 0.969855i \(-0.578355\pi\)
−0.243681 + 0.969855i \(0.578355\pi\)
\(744\) 0 0
\(745\) 20.8830 0.765095
\(746\) 0 0
\(747\) 4.81763 0.176268
\(748\) 0 0
\(749\) −17.9955 −0.657540
\(750\) 0 0
\(751\) 1.19323 0.0435418 0.0217709 0.999763i \(-0.493070\pi\)
0.0217709 + 0.999763i \(0.493070\pi\)
\(752\) 0 0
\(753\) −27.7165 −1.01004
\(754\) 0 0
\(755\) −3.32211 −0.120904
\(756\) 0 0
\(757\) −39.5804 −1.43857 −0.719287 0.694713i \(-0.755532\pi\)
−0.719287 + 0.694713i \(0.755532\pi\)
\(758\) 0 0
\(759\) −30.2895 −1.09944
\(760\) 0 0
\(761\) 4.79093 0.173671 0.0868356 0.996223i \(-0.472325\pi\)
0.0868356 + 0.996223i \(0.472325\pi\)
\(762\) 0 0
\(763\) 39.9026 1.44457
\(764\) 0 0
\(765\) −14.2024 −0.513490
\(766\) 0 0
\(767\) −10.7415 −0.387854
\(768\) 0 0
\(769\) 13.3712 0.482177 0.241088 0.970503i \(-0.422496\pi\)
0.241088 + 0.970503i \(0.422496\pi\)
\(770\) 0 0
\(771\) −54.5752 −1.96548
\(772\) 0 0
\(773\) 51.9115 1.86713 0.933563 0.358413i \(-0.116682\pi\)
0.933563 + 0.358413i \(0.116682\pi\)
\(774\) 0 0
\(775\) −0.169927 −0.00610396
\(776\) 0 0
\(777\) 19.2625 0.691040
\(778\) 0 0
\(779\) −61.3572 −2.19835
\(780\) 0 0
\(781\) 10.7235 0.383718
\(782\) 0 0
\(783\) 0.978465 0.0349675
\(784\) 0 0
\(785\) 0.820914 0.0292997
\(786\) 0 0
\(787\) 16.3073 0.581292 0.290646 0.956831i \(-0.406130\pi\)
0.290646 + 0.956831i \(0.406130\pi\)
\(788\) 0 0
\(789\) −63.6224 −2.26502
\(790\) 0 0
\(791\) −0.0512519 −0.00182231
\(792\) 0 0
\(793\) 2.62154 0.0930934
\(794\) 0 0
\(795\) 27.9476 0.991201
\(796\) 0 0
\(797\) −7.24349 −0.256578 −0.128289 0.991737i \(-0.540948\pi\)
−0.128289 + 0.991737i \(0.540948\pi\)
\(798\) 0 0
\(799\) −6.47558 −0.229090
\(800\) 0 0
\(801\) 42.9199 1.51650
\(802\) 0 0
\(803\) −3.03606 −0.107140
\(804\) 0 0
\(805\) −15.8372 −0.558188
\(806\) 0 0
\(807\) 22.3491 0.786726
\(808\) 0 0
\(809\) 50.1813 1.76428 0.882141 0.470986i \(-0.156102\pi\)
0.882141 + 0.470986i \(0.156102\pi\)
\(810\) 0 0
\(811\) 46.3184 1.62646 0.813230 0.581943i \(-0.197707\pi\)
0.813230 + 0.581943i \(0.197707\pi\)
\(812\) 0 0
\(813\) 53.6084 1.88013
\(814\) 0 0
\(815\) 3.03497 0.106310
\(816\) 0 0
\(817\) 26.9139 0.941598
\(818\) 0 0
\(819\) 14.6321 0.511286
\(820\) 0 0
\(821\) 3.80865 0.132923 0.0664614 0.997789i \(-0.478829\pi\)
0.0664614 + 0.997789i \(0.478829\pi\)
\(822\) 0 0
\(823\) −26.8321 −0.935309 −0.467655 0.883911i \(-0.654901\pi\)
−0.467655 + 0.883911i \(0.654901\pi\)
\(824\) 0 0
\(825\) 4.15010 0.144488
\(826\) 0 0
\(827\) −30.5168 −1.06117 −0.530587 0.847630i \(-0.678029\pi\)
−0.530587 + 0.847630i \(0.678029\pi\)
\(828\) 0 0
\(829\) 31.2716 1.08611 0.543054 0.839698i \(-0.317268\pi\)
0.543054 + 0.839698i \(0.317268\pi\)
\(830\) 0 0
\(831\) 4.16682 0.144545
\(832\) 0 0
\(833\) 12.5845 0.436029
\(834\) 0 0
\(835\) −7.53511 −0.260763
\(836\) 0 0
\(837\) 0.166268 0.00574705
\(838\) 0 0
\(839\) −51.3879 −1.77411 −0.887053 0.461667i \(-0.847251\pi\)
−0.887053 + 0.461667i \(0.847251\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) −25.2794 −0.870669
\(844\) 0 0
\(845\) −6.20073 −0.213312
\(846\) 0 0
\(847\) −17.1787 −0.590266
\(848\) 0 0
\(849\) 19.7165 0.676669
\(850\) 0 0
\(851\) −27.4126 −0.939693
\(852\) 0 0
\(853\) −2.98175 −0.102093 −0.0510466 0.998696i \(-0.516256\pi\)
−0.0510466 + 0.998696i \(0.516256\pi\)
\(854\) 0 0
\(855\) 15.2730 0.522327
\(856\) 0 0
\(857\) −42.5514 −1.45353 −0.726765 0.686887i \(-0.758977\pi\)
−0.726765 + 0.686887i \(0.758977\pi\)
\(858\) 0 0
\(859\) 52.3972 1.78777 0.893885 0.448296i \(-0.147969\pi\)
0.893885 + 0.448296i \(0.147969\pi\)
\(860\) 0 0
\(861\) −53.2802 −1.81578
\(862\) 0 0
\(863\) −34.4446 −1.17251 −0.586255 0.810127i \(-0.699398\pi\)
−0.586255 + 0.810127i \(0.699398\pi\)
\(864\) 0 0
\(865\) −0.177378 −0.00603103
\(866\) 0 0
\(867\) 31.1092 1.05652
\(868\) 0 0
\(869\) −3.55653 −0.120647
\(870\) 0 0
\(871\) −22.1195 −0.749489
\(872\) 0 0
\(873\) 1.20124 0.0406558
\(874\) 0 0
\(875\) 2.16993 0.0733569
\(876\) 0 0
\(877\) −28.6880 −0.968723 −0.484362 0.874868i \(-0.660948\pi\)
−0.484362 + 0.874868i \(0.660948\pi\)
\(878\) 0 0
\(879\) 13.8570 0.467383
\(880\) 0 0
\(881\) 27.0686 0.911965 0.455982 0.889989i \(-0.349288\pi\)
0.455982 + 0.889989i \(0.349288\pi\)
\(882\) 0 0
\(883\) −9.08146 −0.305615 −0.152808 0.988256i \(-0.548832\pi\)
−0.152808 + 0.988256i \(0.548832\pi\)
\(884\) 0 0
\(885\) −9.73610 −0.327276
\(886\) 0 0
\(887\) −50.6083 −1.69926 −0.849630 0.527378i \(-0.823175\pi\)
−0.849630 + 0.527378i \(0.823175\pi\)
\(888\) 0 0
\(889\) −33.2274 −1.11441
\(890\) 0 0
\(891\) −17.6833 −0.592412
\(892\) 0 0
\(893\) 6.96372 0.233032
\(894\) 0 0
\(895\) −23.4415 −0.783563
\(896\) 0 0
\(897\) −44.9795 −1.50182
\(898\) 0 0
\(899\) 0.169927 0.00566738
\(900\) 0 0
\(901\) −64.9423 −2.16354
\(902\) 0 0
\(903\) 23.3710 0.777737
\(904\) 0 0
\(905\) 21.7128 0.721759
\(906\) 0 0
\(907\) 14.2527 0.473252 0.236626 0.971601i \(-0.423958\pi\)
0.236626 + 0.971601i \(0.423958\pi\)
\(908\) 0 0
\(909\) −32.4965 −1.07784
\(910\) 0 0
\(911\) −5.33340 −0.176703 −0.0883517 0.996089i \(-0.528160\pi\)
−0.0883517 + 0.996089i \(0.528160\pi\)
\(912\) 0 0
\(913\) 3.27124 0.108262
\(914\) 0 0
\(915\) 2.37616 0.0785534
\(916\) 0 0
\(917\) −43.6194 −1.44044
\(918\) 0 0
\(919\) −4.80076 −0.158362 −0.0791812 0.996860i \(-0.525231\pi\)
−0.0791812 + 0.996860i \(0.525231\pi\)
\(920\) 0 0
\(921\) −26.7372 −0.881022
\(922\) 0 0
\(923\) 15.9243 0.524156
\(924\) 0 0
\(925\) 3.75593 0.123494
\(926\) 0 0
\(927\) −32.2808 −1.06024
\(928\) 0 0
\(929\) 35.1469 1.15313 0.576567 0.817050i \(-0.304392\pi\)
0.576567 + 0.817050i \(0.304392\pi\)
\(930\) 0 0
\(931\) −13.5332 −0.443532
\(932\) 0 0
\(933\) −34.2733 −1.12206
\(934\) 0 0
\(935\) −9.64365 −0.315381
\(936\) 0 0
\(937\) −33.4126 −1.09154 −0.545772 0.837934i \(-0.683763\pi\)
−0.545772 + 0.837934i \(0.683763\pi\)
\(938\) 0 0
\(939\) −66.6090 −2.17370
\(940\) 0 0
\(941\) 44.5207 1.45133 0.725667 0.688047i \(-0.241532\pi\)
0.725667 + 0.688047i \(0.241532\pi\)
\(942\) 0 0
\(943\) 75.8234 2.46915
\(944\) 0 0
\(945\) −2.12320 −0.0690676
\(946\) 0 0
\(947\) −0.670769 −0.0217971 −0.0108985 0.999941i \(-0.503469\pi\)
−0.0108985 + 0.999941i \(0.503469\pi\)
\(948\) 0 0
\(949\) −4.50852 −0.146353
\(950\) 0 0
\(951\) −2.38869 −0.0774585
\(952\) 0 0
\(953\) 59.0039 1.91132 0.955661 0.294469i \(-0.0951427\pi\)
0.955661 + 0.294469i \(0.0951427\pi\)
\(954\) 0 0
\(955\) 14.5630 0.471248
\(956\) 0 0
\(957\) −4.15010 −0.134154
\(958\) 0 0
\(959\) 23.5602 0.760798
\(960\) 0 0
\(961\) −30.9711 −0.999069
\(962\) 0 0
\(963\) −21.4461 −0.691090
\(964\) 0 0
\(965\) 11.2843 0.363256
\(966\) 0 0
\(967\) −53.6065 −1.72387 −0.861935 0.507019i \(-0.830748\pi\)
−0.861935 + 0.507019i \(0.830748\pi\)
\(968\) 0 0
\(969\) −76.6620 −2.46274
\(970\) 0 0
\(971\) 12.4238 0.398700 0.199350 0.979928i \(-0.436117\pi\)
0.199350 + 0.979928i \(0.436117\pi\)
\(972\) 0 0
\(973\) 17.4308 0.558805
\(974\) 0 0
\(975\) 6.16285 0.197369
\(976\) 0 0
\(977\) −9.39410 −0.300544 −0.150272 0.988645i \(-0.548015\pi\)
−0.150272 + 0.988645i \(0.548015\pi\)
\(978\) 0 0
\(979\) 29.1432 0.931420
\(980\) 0 0
\(981\) 47.5538 1.51828
\(982\) 0 0
\(983\) −21.4859 −0.685292 −0.342646 0.939465i \(-0.611323\pi\)
−0.342646 + 0.939465i \(0.611323\pi\)
\(984\) 0 0
\(985\) −8.60375 −0.274138
\(986\) 0 0
\(987\) 6.04702 0.192479
\(988\) 0 0
\(989\) −33.2594 −1.05759
\(990\) 0 0
\(991\) 24.8912 0.790695 0.395347 0.918532i \(-0.370624\pi\)
0.395347 + 0.918532i \(0.370624\pi\)
\(992\) 0 0
\(993\) 20.8381 0.661278
\(994\) 0 0
\(995\) 0.290797 0.00921889
\(996\) 0 0
\(997\) −34.9298 −1.10624 −0.553118 0.833103i \(-0.686562\pi\)
−0.553118 + 0.833103i \(0.686562\pi\)
\(998\) 0 0
\(999\) −3.67505 −0.116273
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1160.2.a.i.1.4 5
4.3 odd 2 2320.2.a.w.1.2 5
5.4 even 2 5800.2.a.v.1.2 5
8.3 odd 2 9280.2.a.ch.1.4 5
8.5 even 2 9280.2.a.cj.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1160.2.a.i.1.4 5 1.1 even 1 trivial
2320.2.a.w.1.2 5 4.3 odd 2
5800.2.a.v.1.2 5 5.4 even 2
9280.2.a.ch.1.4 5 8.3 odd 2
9280.2.a.cj.1.2 5 8.5 even 2