Properties

Label 1160.2.a.j.1.2
Level $1160$
Weight $2$
Character 1160.1
Self dual yes
Analytic conductor $9.263$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1160,2,Mod(1,1160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1160.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1160 = 2^{3} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1160.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.26264663447\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.580484.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 7x^{3} - 3x^{2} + 8x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.366905\) of defining polynomial
Character \(\chi\) \(=\) 1160.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.02751 q^{3} +1.00000 q^{5} +0.377000 q^{7} -1.94422 q^{9} +2.73381 q^{11} -6.02446 q^{13} -1.02751 q^{15} +7.94117 q^{17} +6.56722 q^{19} -0.387372 q^{21} -6.75827 q^{23} +1.00000 q^{25} +5.08025 q^{27} +1.00000 q^{29} +5.67803 q^{31} -2.80903 q^{33} +0.377000 q^{35} -4.40955 q^{37} +6.19022 q^{39} +1.24600 q^{41} +9.94117 q^{43} -1.94422 q^{45} +2.30408 q^{47} -6.85787 q^{49} -8.15966 q^{51} +7.10471 q^{53} +2.73381 q^{55} -6.74790 q^{57} +13.4921 q^{59} -9.85787 q^{61} -0.732969 q^{63} -6.02446 q^{65} +2.02019 q^{67} +6.94422 q^{69} +4.11005 q^{71} +1.29874 q^{73} -1.02751 q^{75} +1.03065 q^{77} +6.04465 q^{79} +0.612628 q^{81} +5.09960 q^{83} +7.94117 q^{85} -1.02751 q^{87} +11.7218 q^{89} -2.27122 q^{91} -5.83425 q^{93} +6.56722 q^{95} +5.77542 q^{97} -5.31512 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 3 q^{3} + 5 q^{5} + 7 q^{7} + 8 q^{9} + 10 q^{11} + q^{13} + 3 q^{15} - q^{17} + 10 q^{19} - 8 q^{21} + q^{23} + 5 q^{25} + 12 q^{27} + 5 q^{29} + 7 q^{31} - 8 q^{33} + 7 q^{35} - 8 q^{37} + 3 q^{39}+ \cdots + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.02751 −0.593235 −0.296618 0.954996i \(-0.595859\pi\)
−0.296618 + 0.954996i \(0.595859\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 0.377000 0.142493 0.0712463 0.997459i \(-0.477302\pi\)
0.0712463 + 0.997459i \(0.477302\pi\)
\(8\) 0 0
\(9\) −1.94422 −0.648072
\(10\) 0 0
\(11\) 2.73381 0.824275 0.412137 0.911122i \(-0.364782\pi\)
0.412137 + 0.911122i \(0.364782\pi\)
\(12\) 0 0
\(13\) −6.02446 −1.67089 −0.835443 0.549577i \(-0.814789\pi\)
−0.835443 + 0.549577i \(0.814789\pi\)
\(14\) 0 0
\(15\) −1.02751 −0.265303
\(16\) 0 0
\(17\) 7.94117 1.92602 0.963008 0.269473i \(-0.0868494\pi\)
0.963008 + 0.269473i \(0.0868494\pi\)
\(18\) 0 0
\(19\) 6.56722 1.50662 0.753311 0.657664i \(-0.228455\pi\)
0.753311 + 0.657664i \(0.228455\pi\)
\(20\) 0 0
\(21\) −0.387372 −0.0845316
\(22\) 0 0
\(23\) −6.75827 −1.40920 −0.704599 0.709606i \(-0.748873\pi\)
−0.704599 + 0.709606i \(0.748873\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 5.08025 0.977694
\(28\) 0 0
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) 5.67803 1.01980 0.509902 0.860233i \(-0.329682\pi\)
0.509902 + 0.860233i \(0.329682\pi\)
\(32\) 0 0
\(33\) −2.80903 −0.488989
\(34\) 0 0
\(35\) 0.377000 0.0637246
\(36\) 0 0
\(37\) −4.40955 −0.724925 −0.362462 0.931998i \(-0.618064\pi\)
−0.362462 + 0.931998i \(0.618064\pi\)
\(38\) 0 0
\(39\) 6.19022 0.991228
\(40\) 0 0
\(41\) 1.24600 0.194593 0.0972963 0.995255i \(-0.468981\pi\)
0.0972963 + 0.995255i \(0.468981\pi\)
\(42\) 0 0
\(43\) 9.94117 1.51601 0.758007 0.652246i \(-0.226173\pi\)
0.758007 + 0.652246i \(0.226173\pi\)
\(44\) 0 0
\(45\) −1.94422 −0.289827
\(46\) 0 0
\(47\) 2.30408 0.336084 0.168042 0.985780i \(-0.446256\pi\)
0.168042 + 0.985780i \(0.446256\pi\)
\(48\) 0 0
\(49\) −6.85787 −0.979696
\(50\) 0 0
\(51\) −8.15966 −1.14258
\(52\) 0 0
\(53\) 7.10471 0.975907 0.487954 0.872870i \(-0.337744\pi\)
0.487954 + 0.872870i \(0.337744\pi\)
\(54\) 0 0
\(55\) 2.73381 0.368627
\(56\) 0 0
\(57\) −6.74790 −0.893781
\(58\) 0 0
\(59\) 13.4921 1.75652 0.878260 0.478184i \(-0.158705\pi\)
0.878260 + 0.478184i \(0.158705\pi\)
\(60\) 0 0
\(61\) −9.85787 −1.26217 −0.631086 0.775713i \(-0.717390\pi\)
−0.631086 + 0.775713i \(0.717390\pi\)
\(62\) 0 0
\(63\) −0.732969 −0.0923454
\(64\) 0 0
\(65\) −6.02446 −0.747243
\(66\) 0 0
\(67\) 2.02019 0.246805 0.123403 0.992357i \(-0.460619\pi\)
0.123403 + 0.992357i \(0.460619\pi\)
\(68\) 0 0
\(69\) 6.94422 0.835985
\(70\) 0 0
\(71\) 4.11005 0.487774 0.243887 0.969804i \(-0.421577\pi\)
0.243887 + 0.969804i \(0.421577\pi\)
\(72\) 0 0
\(73\) 1.29874 0.152005 0.0760027 0.997108i \(-0.475784\pi\)
0.0760027 + 0.997108i \(0.475784\pi\)
\(74\) 0 0
\(75\) −1.02751 −0.118647
\(76\) 0 0
\(77\) 1.03065 0.117453
\(78\) 0 0
\(79\) 6.04465 0.680077 0.340038 0.940412i \(-0.389560\pi\)
0.340038 + 0.940412i \(0.389560\pi\)
\(80\) 0 0
\(81\) 0.612628 0.0680697
\(82\) 0 0
\(83\) 5.09960 0.559753 0.279877 0.960036i \(-0.409706\pi\)
0.279877 + 0.960036i \(0.409706\pi\)
\(84\) 0 0
\(85\) 7.94117 0.861341
\(86\) 0 0
\(87\) −1.02751 −0.110161
\(88\) 0 0
\(89\) 11.7218 1.24251 0.621256 0.783607i \(-0.286623\pi\)
0.621256 + 0.783607i \(0.286623\pi\)
\(90\) 0 0
\(91\) −2.27122 −0.238089
\(92\) 0 0
\(93\) −5.83425 −0.604983
\(94\) 0 0
\(95\) 6.56722 0.673782
\(96\) 0 0
\(97\) 5.77542 0.586405 0.293202 0.956050i \(-0.405279\pi\)
0.293202 + 0.956050i \(0.405279\pi\)
\(98\) 0 0
\(99\) −5.31512 −0.534190
\(100\) 0 0
\(101\) 15.4355 1.53589 0.767947 0.640513i \(-0.221278\pi\)
0.767947 + 0.640513i \(0.221278\pi\)
\(102\) 0 0
\(103\) 4.51219 0.444599 0.222300 0.974978i \(-0.428644\pi\)
0.222300 + 0.974978i \(0.428644\pi\)
\(104\) 0 0
\(105\) −0.387372 −0.0378037
\(106\) 0 0
\(107\) −9.20965 −0.890330 −0.445165 0.895448i \(-0.646855\pi\)
−0.445165 + 0.895448i \(0.646855\pi\)
\(108\) 0 0
\(109\) 16.8580 1.61470 0.807350 0.590073i \(-0.200901\pi\)
0.807350 + 0.590073i \(0.200901\pi\)
\(110\) 0 0
\(111\) 4.53087 0.430051
\(112\) 0 0
\(113\) −19.9954 −1.88100 −0.940502 0.339787i \(-0.889645\pi\)
−0.940502 + 0.339787i \(0.889645\pi\)
\(114\) 0 0
\(115\) −6.75827 −0.630212
\(116\) 0 0
\(117\) 11.7129 1.08285
\(118\) 0 0
\(119\) 2.99382 0.274443
\(120\) 0 0
\(121\) −3.52628 −0.320571
\(122\) 0 0
\(123\) −1.28028 −0.115439
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −2.83036 −0.251154 −0.125577 0.992084i \(-0.540078\pi\)
−0.125577 + 0.992084i \(0.540078\pi\)
\(128\) 0 0
\(129\) −10.2147 −0.899353
\(130\) 0 0
\(131\) 6.67269 0.582995 0.291498 0.956572i \(-0.405846\pi\)
0.291498 + 0.956572i \(0.405846\pi\)
\(132\) 0 0
\(133\) 2.47584 0.214683
\(134\) 0 0
\(135\) 5.08025 0.437238
\(136\) 0 0
\(137\) −7.19411 −0.614634 −0.307317 0.951607i \(-0.599431\pi\)
−0.307317 + 0.951607i \(0.599431\pi\)
\(138\) 0 0
\(139\) −17.7618 −1.50654 −0.753268 0.657714i \(-0.771524\pi\)
−0.753268 + 0.657714i \(0.771524\pi\)
\(140\) 0 0
\(141\) −2.36747 −0.199377
\(142\) 0 0
\(143\) −16.4697 −1.37727
\(144\) 0 0
\(145\) 1.00000 0.0830455
\(146\) 0 0
\(147\) 7.04655 0.581190
\(148\) 0 0
\(149\) −16.5409 −1.35509 −0.677543 0.735483i \(-0.736955\pi\)
−0.677543 + 0.735483i \(0.736955\pi\)
\(150\) 0 0
\(151\) 8.04893 0.655013 0.327506 0.944849i \(-0.393792\pi\)
0.327506 + 0.944849i \(0.393792\pi\)
\(152\) 0 0
\(153\) −15.4393 −1.24820
\(154\) 0 0
\(155\) 5.67803 0.456070
\(156\) 0 0
\(157\) −2.22830 −0.177838 −0.0889190 0.996039i \(-0.528341\pi\)
−0.0889190 + 0.996039i \(0.528341\pi\)
\(158\) 0 0
\(159\) −7.30019 −0.578942
\(160\) 0 0
\(161\) −2.54787 −0.200800
\(162\) 0 0
\(163\) 13.1574 1.03057 0.515285 0.857019i \(-0.327686\pi\)
0.515285 + 0.857019i \(0.327686\pi\)
\(164\) 0 0
\(165\) −2.80903 −0.218682
\(166\) 0 0
\(167\) −19.2350 −1.48845 −0.744223 0.667932i \(-0.767180\pi\)
−0.744223 + 0.667932i \(0.767180\pi\)
\(168\) 0 0
\(169\) 23.2942 1.79186
\(170\) 0 0
\(171\) −12.7681 −0.976400
\(172\) 0 0
\(173\) −24.4553 −1.85931 −0.929653 0.368437i \(-0.879893\pi\)
−0.929653 + 0.368437i \(0.879893\pi\)
\(174\) 0 0
\(175\) 0.377000 0.0284985
\(176\) 0 0
\(177\) −13.8633 −1.04203
\(178\) 0 0
\(179\) 2.50792 0.187450 0.0937252 0.995598i \(-0.470122\pi\)
0.0937252 + 0.995598i \(0.470122\pi\)
\(180\) 0 0
\(181\) 15.6831 1.16572 0.582859 0.812573i \(-0.301934\pi\)
0.582859 + 0.812573i \(0.301934\pi\)
\(182\) 0 0
\(183\) 10.1291 0.748764
\(184\) 0 0
\(185\) −4.40955 −0.324196
\(186\) 0 0
\(187\) 21.7096 1.58757
\(188\) 0 0
\(189\) 1.91525 0.139314
\(190\) 0 0
\(191\) −13.6780 −0.989707 −0.494854 0.868976i \(-0.664778\pi\)
−0.494854 + 0.868976i \(0.664778\pi\)
\(192\) 0 0
\(193\) 1.68611 0.121369 0.0606843 0.998157i \(-0.480672\pi\)
0.0606843 + 0.998157i \(0.480672\pi\)
\(194\) 0 0
\(195\) 6.19022 0.443291
\(196\) 0 0
\(197\) 6.08033 0.433206 0.216603 0.976260i \(-0.430502\pi\)
0.216603 + 0.976260i \(0.430502\pi\)
\(198\) 0 0
\(199\) −9.99849 −0.708774 −0.354387 0.935099i \(-0.615310\pi\)
−0.354387 + 0.935099i \(0.615310\pi\)
\(200\) 0 0
\(201\) −2.07577 −0.146414
\(202\) 0 0
\(203\) 0.377000 0.0264602
\(204\) 0 0
\(205\) 1.24600 0.0870244
\(206\) 0 0
\(207\) 13.1395 0.913262
\(208\) 0 0
\(209\) 17.9535 1.24187
\(210\) 0 0
\(211\) 8.20143 0.564610 0.282305 0.959325i \(-0.408901\pi\)
0.282305 + 0.959325i \(0.408901\pi\)
\(212\) 0 0
\(213\) −4.22313 −0.289364
\(214\) 0 0
\(215\) 9.94117 0.677982
\(216\) 0 0
\(217\) 2.14061 0.145314
\(218\) 0 0
\(219\) −1.33447 −0.0901750
\(220\) 0 0
\(221\) −47.8413 −3.21815
\(222\) 0 0
\(223\) −18.8683 −1.26352 −0.631758 0.775165i \(-0.717666\pi\)
−0.631758 + 0.775165i \(0.717666\pi\)
\(224\) 0 0
\(225\) −1.94422 −0.129614
\(226\) 0 0
\(227\) −27.6018 −1.83200 −0.915999 0.401181i \(-0.868600\pi\)
−0.915999 + 0.401181i \(0.868600\pi\)
\(228\) 0 0
\(229\) −0.0253054 −0.00167222 −0.000836112 1.00000i \(-0.500266\pi\)
−0.000836112 1.00000i \(0.500266\pi\)
\(230\) 0 0
\(231\) −1.05900 −0.0696772
\(232\) 0 0
\(233\) −24.6021 −1.61173 −0.805867 0.592097i \(-0.798300\pi\)
−0.805867 + 0.592097i \(0.798300\pi\)
\(234\) 0 0
\(235\) 2.30408 0.150301
\(236\) 0 0
\(237\) −6.21096 −0.403445
\(238\) 0 0
\(239\) 18.3806 1.18894 0.594471 0.804117i \(-0.297361\pi\)
0.594471 + 0.804117i \(0.297361\pi\)
\(240\) 0 0
\(241\) −11.8725 −0.764776 −0.382388 0.924002i \(-0.624898\pi\)
−0.382388 + 0.924002i \(0.624898\pi\)
\(242\) 0 0
\(243\) −15.8702 −1.01808
\(244\) 0 0
\(245\) −6.85787 −0.438133
\(246\) 0 0
\(247\) −39.5640 −2.51739
\(248\) 0 0
\(249\) −5.23990 −0.332065
\(250\) 0 0
\(251\) 13.7359 0.867004 0.433502 0.901153i \(-0.357278\pi\)
0.433502 + 0.901153i \(0.357278\pi\)
\(252\) 0 0
\(253\) −18.4758 −1.16157
\(254\) 0 0
\(255\) −8.15966 −0.510977
\(256\) 0 0
\(257\) −6.75400 −0.421303 −0.210651 0.977561i \(-0.567559\pi\)
−0.210651 + 0.977561i \(0.567559\pi\)
\(258\) 0 0
\(259\) −1.66240 −0.103296
\(260\) 0 0
\(261\) −1.94422 −0.120344
\(262\) 0 0
\(263\) −32.1849 −1.98461 −0.992303 0.123834i \(-0.960481\pi\)
−0.992303 + 0.123834i \(0.960481\pi\)
\(264\) 0 0
\(265\) 7.10471 0.436439
\(266\) 0 0
\(267\) −12.0443 −0.737102
\(268\) 0 0
\(269\) 2.93812 0.179140 0.0895701 0.995981i \(-0.471451\pi\)
0.0895701 + 0.995981i \(0.471451\pi\)
\(270\) 0 0
\(271\) −5.07885 −0.308518 −0.154259 0.988030i \(-0.549299\pi\)
−0.154259 + 0.988030i \(0.549299\pi\)
\(272\) 0 0
\(273\) 2.33371 0.141243
\(274\) 0 0
\(275\) 2.73381 0.164855
\(276\) 0 0
\(277\) 21.0183 1.26287 0.631433 0.775430i \(-0.282467\pi\)
0.631433 + 0.775430i \(0.282467\pi\)
\(278\) 0 0
\(279\) −11.0393 −0.660906
\(280\) 0 0
\(281\) −4.34065 −0.258941 −0.129471 0.991583i \(-0.541328\pi\)
−0.129471 + 0.991583i \(0.541328\pi\)
\(282\) 0 0
\(283\) 19.3136 1.14807 0.574037 0.818829i \(-0.305376\pi\)
0.574037 + 0.818829i \(0.305376\pi\)
\(284\) 0 0
\(285\) −6.74790 −0.399711
\(286\) 0 0
\(287\) 0.469742 0.0277280
\(288\) 0 0
\(289\) 46.0621 2.70954
\(290\) 0 0
\(291\) −5.93432 −0.347876
\(292\) 0 0
\(293\) 11.5379 0.674050 0.337025 0.941496i \(-0.390579\pi\)
0.337025 + 0.941496i \(0.390579\pi\)
\(294\) 0 0
\(295\) 13.4921 0.785540
\(296\) 0 0
\(297\) 13.8884 0.805889
\(298\) 0 0
\(299\) 40.7150 2.35461
\(300\) 0 0
\(301\) 3.74782 0.216021
\(302\) 0 0
\(303\) −15.8602 −0.911146
\(304\) 0 0
\(305\) −9.85787 −0.564460
\(306\) 0 0
\(307\) 23.7595 1.35603 0.678013 0.735050i \(-0.262841\pi\)
0.678013 + 0.735050i \(0.262841\pi\)
\(308\) 0 0
\(309\) −4.63634 −0.263752
\(310\) 0 0
\(311\) −31.9982 −1.81445 −0.907225 0.420645i \(-0.861804\pi\)
−0.907225 + 0.420645i \(0.861804\pi\)
\(312\) 0 0
\(313\) −15.4554 −0.873592 −0.436796 0.899561i \(-0.643887\pi\)
−0.436796 + 0.899561i \(0.643887\pi\)
\(314\) 0 0
\(315\) −0.732969 −0.0412981
\(316\) 0 0
\(317\) 29.8903 1.67881 0.839403 0.543509i \(-0.182905\pi\)
0.839403 + 0.543509i \(0.182905\pi\)
\(318\) 0 0
\(319\) 2.73381 0.153064
\(320\) 0 0
\(321\) 9.46304 0.528175
\(322\) 0 0
\(323\) 52.1514 2.90178
\(324\) 0 0
\(325\) −6.02446 −0.334177
\(326\) 0 0
\(327\) −17.3218 −0.957896
\(328\) 0 0
\(329\) 0.868636 0.0478895
\(330\) 0 0
\(331\) −17.0431 −0.936771 −0.468386 0.883524i \(-0.655164\pi\)
−0.468386 + 0.883524i \(0.655164\pi\)
\(332\) 0 0
\(333\) 8.57311 0.469804
\(334\) 0 0
\(335\) 2.02019 0.110375
\(336\) 0 0
\(337\) −9.40879 −0.512529 −0.256265 0.966607i \(-0.582492\pi\)
−0.256265 + 0.966607i \(0.582492\pi\)
\(338\) 0 0
\(339\) 20.5455 1.11588
\(340\) 0 0
\(341\) 15.5226 0.840598
\(342\) 0 0
\(343\) −5.22441 −0.282092
\(344\) 0 0
\(345\) 6.94422 0.373864
\(346\) 0 0
\(347\) −19.2439 −1.03307 −0.516534 0.856267i \(-0.672778\pi\)
−0.516534 + 0.856267i \(0.672778\pi\)
\(348\) 0 0
\(349\) −24.4907 −1.31095 −0.655477 0.755215i \(-0.727533\pi\)
−0.655477 + 0.755215i \(0.727533\pi\)
\(350\) 0 0
\(351\) −30.6058 −1.63362
\(352\) 0 0
\(353\) −3.52416 −0.187572 −0.0937861 0.995592i \(-0.529897\pi\)
−0.0937861 + 0.995592i \(0.529897\pi\)
\(354\) 0 0
\(355\) 4.11005 0.218139
\(356\) 0 0
\(357\) −3.07619 −0.162809
\(358\) 0 0
\(359\) 3.34110 0.176336 0.0881682 0.996106i \(-0.471899\pi\)
0.0881682 + 0.996106i \(0.471899\pi\)
\(360\) 0 0
\(361\) 24.1283 1.26991
\(362\) 0 0
\(363\) 3.62330 0.190174
\(364\) 0 0
\(365\) 1.29874 0.0679789
\(366\) 0 0
\(367\) 29.6036 1.54529 0.772647 0.634835i \(-0.218932\pi\)
0.772647 + 0.634835i \(0.218932\pi\)
\(368\) 0 0
\(369\) −2.42249 −0.126110
\(370\) 0 0
\(371\) 2.67848 0.139059
\(372\) 0 0
\(373\) 13.7471 0.711800 0.355900 0.934524i \(-0.384174\pi\)
0.355900 + 0.934524i \(0.384174\pi\)
\(374\) 0 0
\(375\) −1.02751 −0.0530606
\(376\) 0 0
\(377\) −6.02446 −0.310276
\(378\) 0 0
\(379\) 8.32485 0.427619 0.213809 0.976875i \(-0.431413\pi\)
0.213809 + 0.976875i \(0.431413\pi\)
\(380\) 0 0
\(381\) 2.90823 0.148993
\(382\) 0 0
\(383\) 14.5910 0.745566 0.372783 0.927919i \(-0.378404\pi\)
0.372783 + 0.927919i \(0.378404\pi\)
\(384\) 0 0
\(385\) 1.03065 0.0525266
\(386\) 0 0
\(387\) −19.3278 −0.982486
\(388\) 0 0
\(389\) −3.91086 −0.198288 −0.0991442 0.995073i \(-0.531611\pi\)
−0.0991442 + 0.995073i \(0.531611\pi\)
\(390\) 0 0
\(391\) −53.6686 −2.71414
\(392\) 0 0
\(393\) −6.85627 −0.345853
\(394\) 0 0
\(395\) 6.04465 0.304140
\(396\) 0 0
\(397\) 4.59028 0.230380 0.115190 0.993343i \(-0.463252\pi\)
0.115190 + 0.993343i \(0.463252\pi\)
\(398\) 0 0
\(399\) −2.54396 −0.127357
\(400\) 0 0
\(401\) −21.9068 −1.09397 −0.546987 0.837141i \(-0.684225\pi\)
−0.546987 + 0.837141i \(0.684225\pi\)
\(402\) 0 0
\(403\) −34.2071 −1.70398
\(404\) 0 0
\(405\) 0.612628 0.0304417
\(406\) 0 0
\(407\) −12.0549 −0.597537
\(408\) 0 0
\(409\) −4.58589 −0.226758 −0.113379 0.993552i \(-0.536167\pi\)
−0.113379 + 0.993552i \(0.536167\pi\)
\(410\) 0 0
\(411\) 7.39204 0.364622
\(412\) 0 0
\(413\) 5.08651 0.250291
\(414\) 0 0
\(415\) 5.09960 0.250329
\(416\) 0 0
\(417\) 18.2505 0.893730
\(418\) 0 0
\(419\) −16.7272 −0.817176 −0.408588 0.912719i \(-0.633979\pi\)
−0.408588 + 0.912719i \(0.633979\pi\)
\(420\) 0 0
\(421\) 2.20529 0.107479 0.0537396 0.998555i \(-0.482886\pi\)
0.0537396 + 0.998555i \(0.482886\pi\)
\(422\) 0 0
\(423\) −4.47962 −0.217807
\(424\) 0 0
\(425\) 7.94117 0.385203
\(426\) 0 0
\(427\) −3.71642 −0.179850
\(428\) 0 0
\(429\) 16.9229 0.817044
\(430\) 0 0
\(431\) −1.55693 −0.0749946 −0.0374973 0.999297i \(-0.511939\pi\)
−0.0374973 + 0.999297i \(0.511939\pi\)
\(432\) 0 0
\(433\) −13.7999 −0.663180 −0.331590 0.943424i \(-0.607585\pi\)
−0.331590 + 0.943424i \(0.607585\pi\)
\(434\) 0 0
\(435\) −1.02751 −0.0492655
\(436\) 0 0
\(437\) −44.3831 −2.12313
\(438\) 0 0
\(439\) −4.69288 −0.223979 −0.111989 0.993709i \(-0.535722\pi\)
−0.111989 + 0.993709i \(0.535722\pi\)
\(440\) 0 0
\(441\) 13.3332 0.634914
\(442\) 0 0
\(443\) 38.3821 1.82359 0.911793 0.410650i \(-0.134698\pi\)
0.911793 + 0.410650i \(0.134698\pi\)
\(444\) 0 0
\(445\) 11.7218 0.555668
\(446\) 0 0
\(447\) 16.9960 0.803884
\(448\) 0 0
\(449\) −22.7967 −1.07584 −0.537921 0.842996i \(-0.680790\pi\)
−0.537921 + 0.842996i \(0.680790\pi\)
\(450\) 0 0
\(451\) 3.40633 0.160398
\(452\) 0 0
\(453\) −8.27038 −0.388576
\(454\) 0 0
\(455\) −2.27122 −0.106477
\(456\) 0 0
\(457\) −20.0636 −0.938535 −0.469267 0.883056i \(-0.655482\pi\)
−0.469267 + 0.883056i \(0.655482\pi\)
\(458\) 0 0
\(459\) 40.3431 1.88305
\(460\) 0 0
\(461\) 30.3996 1.41585 0.707926 0.706286i \(-0.249631\pi\)
0.707926 + 0.706286i \(0.249631\pi\)
\(462\) 0 0
\(463\) 37.6896 1.75159 0.875793 0.482687i \(-0.160339\pi\)
0.875793 + 0.482687i \(0.160339\pi\)
\(464\) 0 0
\(465\) −5.83425 −0.270557
\(466\) 0 0
\(467\) 2.92288 0.135255 0.0676275 0.997711i \(-0.478457\pi\)
0.0676275 + 0.997711i \(0.478457\pi\)
\(468\) 0 0
\(469\) 0.761611 0.0351679
\(470\) 0 0
\(471\) 2.28961 0.105500
\(472\) 0 0
\(473\) 27.1773 1.24961
\(474\) 0 0
\(475\) 6.56722 0.301325
\(476\) 0 0
\(477\) −13.8131 −0.632458
\(478\) 0 0
\(479\) −26.4648 −1.20921 −0.604604 0.796526i \(-0.706668\pi\)
−0.604604 + 0.796526i \(0.706668\pi\)
\(480\) 0 0
\(481\) 26.5651 1.21127
\(482\) 0 0
\(483\) 2.61797 0.119122
\(484\) 0 0
\(485\) 5.77542 0.262248
\(486\) 0 0
\(487\) 19.8927 0.901425 0.450712 0.892669i \(-0.351170\pi\)
0.450712 + 0.892669i \(0.351170\pi\)
\(488\) 0 0
\(489\) −13.5195 −0.611371
\(490\) 0 0
\(491\) −6.42305 −0.289868 −0.144934 0.989441i \(-0.546297\pi\)
−0.144934 + 0.989441i \(0.546297\pi\)
\(492\) 0 0
\(493\) 7.94117 0.357652
\(494\) 0 0
\(495\) −5.31512 −0.238897
\(496\) 0 0
\(497\) 1.54949 0.0695041
\(498\) 0 0
\(499\) −3.65090 −0.163437 −0.0817183 0.996655i \(-0.526041\pi\)
−0.0817183 + 0.996655i \(0.526041\pi\)
\(500\) 0 0
\(501\) 19.7642 0.882998
\(502\) 0 0
\(503\) −16.2801 −0.725895 −0.362948 0.931810i \(-0.618230\pi\)
−0.362948 + 0.931810i \(0.618230\pi\)
\(504\) 0 0
\(505\) 15.4355 0.686873
\(506\) 0 0
\(507\) −23.9351 −1.06299
\(508\) 0 0
\(509\) −22.5053 −0.997530 −0.498765 0.866737i \(-0.666213\pi\)
−0.498765 + 0.866737i \(0.666213\pi\)
\(510\) 0 0
\(511\) 0.489623 0.0216596
\(512\) 0 0
\(513\) 33.3631 1.47302
\(514\) 0 0
\(515\) 4.51219 0.198831
\(516\) 0 0
\(517\) 6.29891 0.277026
\(518\) 0 0
\(519\) 25.1282 1.10300
\(520\) 0 0
\(521\) 20.9320 0.917049 0.458524 0.888682i \(-0.348378\pi\)
0.458524 + 0.888682i \(0.348378\pi\)
\(522\) 0 0
\(523\) −20.1034 −0.879060 −0.439530 0.898228i \(-0.644855\pi\)
−0.439530 + 0.898228i \(0.644855\pi\)
\(524\) 0 0
\(525\) −0.387372 −0.0169063
\(526\) 0 0
\(527\) 45.0902 1.96416
\(528\) 0 0
\(529\) 22.6743 0.985838
\(530\) 0 0
\(531\) −26.2315 −1.13835
\(532\) 0 0
\(533\) −7.50649 −0.325142
\(534\) 0 0
\(535\) −9.20965 −0.398168
\(536\) 0 0
\(537\) −2.57692 −0.111202
\(538\) 0 0
\(539\) −18.7481 −0.807539
\(540\) 0 0
\(541\) 10.4926 0.451112 0.225556 0.974230i \(-0.427580\pi\)
0.225556 + 0.974230i \(0.427580\pi\)
\(542\) 0 0
\(543\) −16.1146 −0.691545
\(544\) 0 0
\(545\) 16.8580 0.722115
\(546\) 0 0
\(547\) 2.90040 0.124012 0.0620061 0.998076i \(-0.480250\pi\)
0.0620061 + 0.998076i \(0.480250\pi\)
\(548\) 0 0
\(549\) 19.1658 0.817978
\(550\) 0 0
\(551\) 6.56722 0.279773
\(552\) 0 0
\(553\) 2.27883 0.0969058
\(554\) 0 0
\(555\) 4.53087 0.192325
\(556\) 0 0
\(557\) 24.0005 1.01693 0.508467 0.861081i \(-0.330212\pi\)
0.508467 + 0.861081i \(0.330212\pi\)
\(558\) 0 0
\(559\) −59.8902 −2.53309
\(560\) 0 0
\(561\) −22.3069 −0.941800
\(562\) 0 0
\(563\) −1.09719 −0.0462409 −0.0231205 0.999733i \(-0.507360\pi\)
−0.0231205 + 0.999733i \(0.507360\pi\)
\(564\) 0 0
\(565\) −19.9954 −0.841211
\(566\) 0 0
\(567\) 0.230961 0.00969943
\(568\) 0 0
\(569\) 40.9362 1.71613 0.858067 0.513538i \(-0.171665\pi\)
0.858067 + 0.513538i \(0.171665\pi\)
\(570\) 0 0
\(571\) −12.5374 −0.524673 −0.262336 0.964976i \(-0.584493\pi\)
−0.262336 + 0.964976i \(0.584493\pi\)
\(572\) 0 0
\(573\) 14.0544 0.587129
\(574\) 0 0
\(575\) −6.75827 −0.281840
\(576\) 0 0
\(577\) 0.983392 0.0409391 0.0204696 0.999790i \(-0.493484\pi\)
0.0204696 + 0.999790i \(0.493484\pi\)
\(578\) 0 0
\(579\) −1.73250 −0.0720001
\(580\) 0 0
\(581\) 1.92255 0.0797607
\(582\) 0 0
\(583\) 19.4229 0.804416
\(584\) 0 0
\(585\) 11.7129 0.484267
\(586\) 0 0
\(587\) −7.40309 −0.305558 −0.152779 0.988260i \(-0.548822\pi\)
−0.152779 + 0.988260i \(0.548822\pi\)
\(588\) 0 0
\(589\) 37.2888 1.53646
\(590\) 0 0
\(591\) −6.24762 −0.256993
\(592\) 0 0
\(593\) −7.03065 −0.288714 −0.144357 0.989526i \(-0.546111\pi\)
−0.144357 + 0.989526i \(0.546111\pi\)
\(594\) 0 0
\(595\) 2.99382 0.122735
\(596\) 0 0
\(597\) 10.2736 0.420470
\(598\) 0 0
\(599\) −26.8048 −1.09522 −0.547608 0.836735i \(-0.684462\pi\)
−0.547608 + 0.836735i \(0.684462\pi\)
\(600\) 0 0
\(601\) −24.1350 −0.984489 −0.492244 0.870457i \(-0.663823\pi\)
−0.492244 + 0.870457i \(0.663823\pi\)
\(602\) 0 0
\(603\) −3.92769 −0.159948
\(604\) 0 0
\(605\) −3.52628 −0.143364
\(606\) 0 0
\(607\) 28.2431 1.14635 0.573176 0.819432i \(-0.305711\pi\)
0.573176 + 0.819432i \(0.305711\pi\)
\(608\) 0 0
\(609\) −0.387372 −0.0156971
\(610\) 0 0
\(611\) −13.8808 −0.561558
\(612\) 0 0
\(613\) −36.3416 −1.46782 −0.733911 0.679245i \(-0.762307\pi\)
−0.733911 + 0.679245i \(0.762307\pi\)
\(614\) 0 0
\(615\) −1.28028 −0.0516259
\(616\) 0 0
\(617\) 19.8932 0.800869 0.400435 0.916325i \(-0.368859\pi\)
0.400435 + 0.916325i \(0.368859\pi\)
\(618\) 0 0
\(619\) 36.5535 1.46921 0.734605 0.678495i \(-0.237368\pi\)
0.734605 + 0.678495i \(0.237368\pi\)
\(620\) 0 0
\(621\) −34.3337 −1.37776
\(622\) 0 0
\(623\) 4.41913 0.177049
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −18.4475 −0.736722
\(628\) 0 0
\(629\) −35.0169 −1.39622
\(630\) 0 0
\(631\) 45.8848 1.82664 0.913322 0.407238i \(-0.133508\pi\)
0.913322 + 0.407238i \(0.133508\pi\)
\(632\) 0 0
\(633\) −8.42708 −0.334946
\(634\) 0 0
\(635\) −2.83036 −0.112319
\(636\) 0 0
\(637\) 41.3150 1.63696
\(638\) 0 0
\(639\) −7.99083 −0.316112
\(640\) 0 0
\(641\) 11.2948 0.446116 0.223058 0.974805i \(-0.428396\pi\)
0.223058 + 0.974805i \(0.428396\pi\)
\(642\) 0 0
\(643\) 3.77039 0.148689 0.0743447 0.997233i \(-0.476313\pi\)
0.0743447 + 0.997233i \(0.476313\pi\)
\(644\) 0 0
\(645\) −10.2147 −0.402203
\(646\) 0 0
\(647\) −23.1694 −0.910885 −0.455442 0.890265i \(-0.650519\pi\)
−0.455442 + 0.890265i \(0.650519\pi\)
\(648\) 0 0
\(649\) 36.8848 1.44785
\(650\) 0 0
\(651\) −2.19951 −0.0862056
\(652\) 0 0
\(653\) −42.8732 −1.67776 −0.838879 0.544318i \(-0.816788\pi\)
−0.838879 + 0.544318i \(0.816788\pi\)
\(654\) 0 0
\(655\) 6.67269 0.260723
\(656\) 0 0
\(657\) −2.52502 −0.0985105
\(658\) 0 0
\(659\) −48.0213 −1.87064 −0.935322 0.353797i \(-0.884890\pi\)
−0.935322 + 0.353797i \(0.884890\pi\)
\(660\) 0 0
\(661\) 20.8563 0.811215 0.405608 0.914047i \(-0.367060\pi\)
0.405608 + 0.914047i \(0.367060\pi\)
\(662\) 0 0
\(663\) 49.1576 1.90912
\(664\) 0 0
\(665\) 2.47584 0.0960089
\(666\) 0 0
\(667\) −6.75827 −0.261681
\(668\) 0 0
\(669\) 19.3875 0.749562
\(670\) 0 0
\(671\) −26.9495 −1.04038
\(672\) 0 0
\(673\) 16.3865 0.631654 0.315827 0.948817i \(-0.397718\pi\)
0.315827 + 0.948817i \(0.397718\pi\)
\(674\) 0 0
\(675\) 5.08025 0.195539
\(676\) 0 0
\(677\) −3.22315 −0.123876 −0.0619379 0.998080i \(-0.519728\pi\)
−0.0619379 + 0.998080i \(0.519728\pi\)
\(678\) 0 0
\(679\) 2.17733 0.0835583
\(680\) 0 0
\(681\) 28.3612 1.08681
\(682\) 0 0
\(683\) 3.97736 0.152189 0.0760947 0.997101i \(-0.475755\pi\)
0.0760947 + 0.997101i \(0.475755\pi\)
\(684\) 0 0
\(685\) −7.19411 −0.274873
\(686\) 0 0
\(687\) 0.0260016 0.000992022 0
\(688\) 0 0
\(689\) −42.8021 −1.63063
\(690\) 0 0
\(691\) 31.5280 1.19938 0.599690 0.800232i \(-0.295290\pi\)
0.599690 + 0.800232i \(0.295290\pi\)
\(692\) 0 0
\(693\) −2.00380 −0.0761180
\(694\) 0 0
\(695\) −17.7618 −0.673743
\(696\) 0 0
\(697\) 9.89470 0.374788
\(698\) 0 0
\(699\) 25.2789 0.956137
\(700\) 0 0
\(701\) 6.94989 0.262494 0.131247 0.991350i \(-0.458102\pi\)
0.131247 + 0.991350i \(0.458102\pi\)
\(702\) 0 0
\(703\) −28.9584 −1.09219
\(704\) 0 0
\(705\) −2.36747 −0.0891640
\(706\) 0 0
\(707\) 5.81920 0.218853
\(708\) 0 0
\(709\) −1.18946 −0.0446711 −0.0223356 0.999751i \(-0.507110\pi\)
−0.0223356 + 0.999751i \(0.507110\pi\)
\(710\) 0 0
\(711\) −11.7521 −0.440739
\(712\) 0 0
\(713\) −38.3737 −1.43710
\(714\) 0 0
\(715\) −16.4697 −0.615933
\(716\) 0 0
\(717\) −18.8863 −0.705322
\(718\) 0 0
\(719\) −6.44307 −0.240286 −0.120143 0.992757i \(-0.538335\pi\)
−0.120143 + 0.992757i \(0.538335\pi\)
\(720\) 0 0
\(721\) 1.70109 0.0633521
\(722\) 0 0
\(723\) 12.1992 0.453692
\(724\) 0 0
\(725\) 1.00000 0.0371391
\(726\) 0 0
\(727\) 16.8319 0.624260 0.312130 0.950039i \(-0.398958\pi\)
0.312130 + 0.950039i \(0.398958\pi\)
\(728\) 0 0
\(729\) 14.4690 0.535888
\(730\) 0 0
\(731\) 78.9445 2.91987
\(732\) 0 0
\(733\) 4.68161 0.172919 0.0864596 0.996255i \(-0.472445\pi\)
0.0864596 + 0.996255i \(0.472445\pi\)
\(734\) 0 0
\(735\) 7.04655 0.259916
\(736\) 0 0
\(737\) 5.52281 0.203435
\(738\) 0 0
\(739\) 46.1607 1.69805 0.849025 0.528353i \(-0.177190\pi\)
0.849025 + 0.528353i \(0.177190\pi\)
\(740\) 0 0
\(741\) 40.6525 1.49341
\(742\) 0 0
\(743\) 26.7173 0.980162 0.490081 0.871677i \(-0.336967\pi\)
0.490081 + 0.871677i \(0.336967\pi\)
\(744\) 0 0
\(745\) −16.5409 −0.606013
\(746\) 0 0
\(747\) −9.91472 −0.362761
\(748\) 0 0
\(749\) −3.47204 −0.126865
\(750\) 0 0
\(751\) 19.0472 0.695042 0.347521 0.937672i \(-0.387024\pi\)
0.347521 + 0.937672i \(0.387024\pi\)
\(752\) 0 0
\(753\) −14.1139 −0.514337
\(754\) 0 0
\(755\) 8.04893 0.292931
\(756\) 0 0
\(757\) −50.6932 −1.84248 −0.921238 0.388999i \(-0.872821\pi\)
−0.921238 + 0.388999i \(0.872821\pi\)
\(758\) 0 0
\(759\) 18.9842 0.689082
\(760\) 0 0
\(761\) 7.48118 0.271193 0.135596 0.990764i \(-0.456705\pi\)
0.135596 + 0.990764i \(0.456705\pi\)
\(762\) 0 0
\(763\) 6.35545 0.230083
\(764\) 0 0
\(765\) −15.4393 −0.558211
\(766\) 0 0
\(767\) −81.2826 −2.93494
\(768\) 0 0
\(769\) 21.1168 0.761490 0.380745 0.924680i \(-0.375668\pi\)
0.380745 + 0.924680i \(0.375668\pi\)
\(770\) 0 0
\(771\) 6.93982 0.249932
\(772\) 0 0
\(773\) 19.7478 0.710277 0.355139 0.934814i \(-0.384434\pi\)
0.355139 + 0.934814i \(0.384434\pi\)
\(774\) 0 0
\(775\) 5.67803 0.203961
\(776\) 0 0
\(777\) 1.70814 0.0612790
\(778\) 0 0
\(779\) 8.18275 0.293178
\(780\) 0 0
\(781\) 11.2361 0.402059
\(782\) 0 0
\(783\) 5.08025 0.181553
\(784\) 0 0
\(785\) −2.22830 −0.0795316
\(786\) 0 0
\(787\) 37.0417 1.32039 0.660197 0.751092i \(-0.270473\pi\)
0.660197 + 0.751092i \(0.270473\pi\)
\(788\) 0 0
\(789\) 33.0704 1.17734
\(790\) 0 0
\(791\) −7.53824 −0.268029
\(792\) 0 0
\(793\) 59.3884 2.10894
\(794\) 0 0
\(795\) −7.30019 −0.258911
\(796\) 0 0
\(797\) −23.8221 −0.843823 −0.421912 0.906637i \(-0.638641\pi\)
−0.421912 + 0.906637i \(0.638641\pi\)
\(798\) 0 0
\(799\) 18.2971 0.647303
\(800\) 0 0
\(801\) −22.7898 −0.805238
\(802\) 0 0
\(803\) 3.55050 0.125294
\(804\) 0 0
\(805\) −2.54787 −0.0898006
\(806\) 0 0
\(807\) −3.01896 −0.106272
\(808\) 0 0
\(809\) −2.16659 −0.0761734 −0.0380867 0.999274i \(-0.512126\pi\)
−0.0380867 + 0.999274i \(0.512126\pi\)
\(810\) 0 0
\(811\) −55.8612 −1.96155 −0.980775 0.195140i \(-0.937484\pi\)
−0.980775 + 0.195140i \(0.937484\pi\)
\(812\) 0 0
\(813\) 5.21859 0.183024
\(814\) 0 0
\(815\) 13.1574 0.460885
\(816\) 0 0
\(817\) 65.2858 2.28406
\(818\) 0 0
\(819\) 4.41575 0.154299
\(820\) 0 0
\(821\) 26.4922 0.924583 0.462292 0.886728i \(-0.347027\pi\)
0.462292 + 0.886728i \(0.347027\pi\)
\(822\) 0 0
\(823\) 24.3545 0.848945 0.424473 0.905441i \(-0.360460\pi\)
0.424473 + 0.905441i \(0.360460\pi\)
\(824\) 0 0
\(825\) −2.80903 −0.0977977
\(826\) 0 0
\(827\) 12.3963 0.431060 0.215530 0.976497i \(-0.430852\pi\)
0.215530 + 0.976497i \(0.430852\pi\)
\(828\) 0 0
\(829\) −9.68037 −0.336213 −0.168107 0.985769i \(-0.553765\pi\)
−0.168107 + 0.985769i \(0.553765\pi\)
\(830\) 0 0
\(831\) −21.5966 −0.749177
\(832\) 0 0
\(833\) −54.4595 −1.88691
\(834\) 0 0
\(835\) −19.2350 −0.665653
\(836\) 0 0
\(837\) 28.8458 0.997056
\(838\) 0 0
\(839\) −14.3130 −0.494140 −0.247070 0.968998i \(-0.579468\pi\)
−0.247070 + 0.968998i \(0.579468\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) 4.46007 0.153613
\(844\) 0 0
\(845\) 23.2942 0.801344
\(846\) 0 0
\(847\) −1.32941 −0.0456790
\(848\) 0 0
\(849\) −19.8450 −0.681078
\(850\) 0 0
\(851\) 29.8009 1.02156
\(852\) 0 0
\(853\) −34.0794 −1.16686 −0.583429 0.812164i \(-0.698289\pi\)
−0.583429 + 0.812164i \(0.698289\pi\)
\(854\) 0 0
\(855\) −12.7681 −0.436660
\(856\) 0 0
\(857\) 44.0576 1.50498 0.752490 0.658603i \(-0.228852\pi\)
0.752490 + 0.658603i \(0.228852\pi\)
\(858\) 0 0
\(859\) −37.0066 −1.26265 −0.631325 0.775518i \(-0.717489\pi\)
−0.631325 + 0.775518i \(0.717489\pi\)
\(860\) 0 0
\(861\) −0.482666 −0.0164492
\(862\) 0 0
\(863\) 16.5009 0.561696 0.280848 0.959752i \(-0.409384\pi\)
0.280848 + 0.959752i \(0.409384\pi\)
\(864\) 0 0
\(865\) −24.4553 −0.831507
\(866\) 0 0
\(867\) −47.3295 −1.60739
\(868\) 0 0
\(869\) 16.5249 0.560570
\(870\) 0 0
\(871\) −12.1706 −0.412384
\(872\) 0 0
\(873\) −11.2287 −0.380033
\(874\) 0 0
\(875\) 0.377000 0.0127449
\(876\) 0 0
\(877\) 40.5683 1.36989 0.684947 0.728593i \(-0.259825\pi\)
0.684947 + 0.728593i \(0.259825\pi\)
\(878\) 0 0
\(879\) −11.8553 −0.399870
\(880\) 0 0
\(881\) −23.4052 −0.788540 −0.394270 0.918995i \(-0.629002\pi\)
−0.394270 + 0.918995i \(0.629002\pi\)
\(882\) 0 0
\(883\) −49.4633 −1.66457 −0.832285 0.554347i \(-0.812968\pi\)
−0.832285 + 0.554347i \(0.812968\pi\)
\(884\) 0 0
\(885\) −13.8633 −0.466010
\(886\) 0 0
\(887\) 19.5071 0.654983 0.327492 0.944854i \(-0.393797\pi\)
0.327492 + 0.944854i \(0.393797\pi\)
\(888\) 0 0
\(889\) −1.06704 −0.0357875
\(890\) 0 0
\(891\) 1.67481 0.0561082
\(892\) 0 0
\(893\) 15.1314 0.506352
\(894\) 0 0
\(895\) 2.50792 0.0838304
\(896\) 0 0
\(897\) −41.8352 −1.39684
\(898\) 0 0
\(899\) 5.67803 0.189373
\(900\) 0 0
\(901\) 56.4197 1.87961
\(902\) 0 0
\(903\) −3.85093 −0.128151
\(904\) 0 0
\(905\) 15.6831 0.521325
\(906\) 0 0
\(907\) −42.1613 −1.39994 −0.699971 0.714171i \(-0.746804\pi\)
−0.699971 + 0.714171i \(0.746804\pi\)
\(908\) 0 0
\(909\) −30.0100 −0.995370
\(910\) 0 0
\(911\) −1.35574 −0.0449178 −0.0224589 0.999748i \(-0.507149\pi\)
−0.0224589 + 0.999748i \(0.507149\pi\)
\(912\) 0 0
\(913\) 13.9413 0.461391
\(914\) 0 0
\(915\) 10.1291 0.334857
\(916\) 0 0
\(917\) 2.51560 0.0830725
\(918\) 0 0
\(919\) −57.4928 −1.89651 −0.948256 0.317507i \(-0.897154\pi\)
−0.948256 + 0.317507i \(0.897154\pi\)
\(920\) 0 0
\(921\) −24.4132 −0.804442
\(922\) 0 0
\(923\) −24.7609 −0.815014
\(924\) 0 0
\(925\) −4.40955 −0.144985
\(926\) 0 0
\(927\) −8.77268 −0.288132
\(928\) 0 0
\(929\) −45.7321 −1.50042 −0.750211 0.661199i \(-0.770048\pi\)
−0.750211 + 0.661199i \(0.770048\pi\)
\(930\) 0 0
\(931\) −45.0371 −1.47603
\(932\) 0 0
\(933\) 32.8786 1.07640
\(934\) 0 0
\(935\) 21.7096 0.709981
\(936\) 0 0
\(937\) −34.4638 −1.12588 −0.562942 0.826497i \(-0.690331\pi\)
−0.562942 + 0.826497i \(0.690331\pi\)
\(938\) 0 0
\(939\) 15.8807 0.518246
\(940\) 0 0
\(941\) −19.6164 −0.639475 −0.319738 0.947506i \(-0.603595\pi\)
−0.319738 + 0.947506i \(0.603595\pi\)
\(942\) 0 0
\(943\) −8.42081 −0.274219
\(944\) 0 0
\(945\) 1.91525 0.0623032
\(946\) 0 0
\(947\) 7.25310 0.235694 0.117847 0.993032i \(-0.462401\pi\)
0.117847 + 0.993032i \(0.462401\pi\)
\(948\) 0 0
\(949\) −7.82418 −0.253984
\(950\) 0 0
\(951\) −30.7127 −0.995927
\(952\) 0 0
\(953\) −1.48853 −0.0482183 −0.0241092 0.999709i \(-0.507675\pi\)
−0.0241092 + 0.999709i \(0.507675\pi\)
\(954\) 0 0
\(955\) −13.6780 −0.442611
\(956\) 0 0
\(957\) −2.80903 −0.0908029
\(958\) 0 0
\(959\) −2.71218 −0.0875808
\(960\) 0 0
\(961\) 1.23999 0.0399996
\(962\) 0 0
\(963\) 17.9056 0.576998
\(964\) 0 0
\(965\) 1.68611 0.0542777
\(966\) 0 0
\(967\) 14.0886 0.453057 0.226529 0.974004i \(-0.427262\pi\)
0.226529 + 0.974004i \(0.427262\pi\)
\(968\) 0 0
\(969\) −53.5862 −1.72144
\(970\) 0 0
\(971\) 32.4110 1.04012 0.520060 0.854130i \(-0.325910\pi\)
0.520060 + 0.854130i \(0.325910\pi\)
\(972\) 0 0
\(973\) −6.69619 −0.214670
\(974\) 0 0
\(975\) 6.19022 0.198246
\(976\) 0 0
\(977\) −6.42216 −0.205463 −0.102732 0.994709i \(-0.532758\pi\)
−0.102732 + 0.994709i \(0.532758\pi\)
\(978\) 0 0
\(979\) 32.0453 1.02417
\(980\) 0 0
\(981\) −32.7755 −1.04644
\(982\) 0 0
\(983\) 0.340039 0.0108456 0.00542278 0.999985i \(-0.498274\pi\)
0.00542278 + 0.999985i \(0.498274\pi\)
\(984\) 0 0
\(985\) 6.08033 0.193735
\(986\) 0 0
\(987\) −0.892535 −0.0284097
\(988\) 0 0
\(989\) −67.1851 −2.13636
\(990\) 0 0
\(991\) −7.94972 −0.252531 −0.126266 0.991996i \(-0.540299\pi\)
−0.126266 + 0.991996i \(0.540299\pi\)
\(992\) 0 0
\(993\) 17.5120 0.555725
\(994\) 0 0
\(995\) −9.99849 −0.316973
\(996\) 0 0
\(997\) −1.56820 −0.0496653 −0.0248326 0.999692i \(-0.507905\pi\)
−0.0248326 + 0.999692i \(0.507905\pi\)
\(998\) 0 0
\(999\) −22.4016 −0.708755
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1160.2.a.j.1.2 5
4.3 odd 2 2320.2.a.u.1.4 5
5.4 even 2 5800.2.a.t.1.4 5
8.3 odd 2 9280.2.a.cl.1.2 5
8.5 even 2 9280.2.a.cg.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1160.2.a.j.1.2 5 1.1 even 1 trivial
2320.2.a.u.1.4 5 4.3 odd 2
5800.2.a.t.1.4 5 5.4 even 2
9280.2.a.cg.1.4 5 8.5 even 2
9280.2.a.cl.1.2 5 8.3 odd 2