Properties

Label 1160.2.bl.c.737.12
Level $1160$
Weight $2$
Character 1160.737
Analytic conductor $9.263$
Analytic rank $0$
Dimension $42$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1160,2,Mod(713,1160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1160, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 3, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1160.713");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1160 = 2^{3} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1160.bl (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.26264663447\)
Analytic rank: \(0\)
Dimension: \(42\)
Relative dimension: \(21\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 737.12
Character \(\chi\) \(=\) 1160.737
Dual form 1160.2.bl.c.713.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.111611 q^{3} +(-0.657451 + 2.13723i) q^{5} +(3.03882 + 3.03882i) q^{7} -2.98754 q^{9} +(0.789225 + 0.789225i) q^{11} +(0.986968 + 0.986968i) q^{13} +(-0.0733790 + 0.238539i) q^{15} -1.36500i q^{17} +(-4.08789 + 4.08789i) q^{19} +(0.339167 + 0.339167i) q^{21} +(2.20484 - 2.20484i) q^{23} +(-4.13552 - 2.81025i) q^{25} -0.668278 q^{27} +(1.16225 + 5.25825i) q^{29} +(-3.93858 - 3.93858i) q^{31} +(0.0880865 + 0.0880865i) q^{33} +(-8.49254 + 4.49679i) q^{35} -0.535366 q^{37} +(0.110157 + 0.110157i) q^{39} +(-0.232411 + 0.232411i) q^{41} -2.82349 q^{43} +(1.96416 - 6.38507i) q^{45} -3.66266 q^{47} +11.4689i q^{49} -0.152350i q^{51} +(2.30615 - 2.30615i) q^{53} +(-2.20563 + 1.16788i) q^{55} +(-0.456255 + 0.456255i) q^{57} -6.73589i q^{59} +(5.50192 + 5.50192i) q^{61} +(-9.07861 - 9.07861i) q^{63} +(-2.75826 + 1.46050i) q^{65} +(-10.1501 + 10.1501i) q^{67} +(0.246085 - 0.246085i) q^{69} +2.23409i q^{71} +12.1214i q^{73} +(-0.461571 - 0.313656i) q^{75} +4.79663i q^{77} +(-2.04222 + 2.04222i) q^{79} +8.88804 q^{81} +(12.0434 - 12.0434i) q^{83} +(2.91733 + 0.897423i) q^{85} +(0.129721 + 0.586880i) q^{87} +(-5.02522 + 5.02522i) q^{89} +5.99844i q^{91} +(-0.439590 - 0.439590i) q^{93} +(-6.04918 - 11.4244i) q^{95} +3.69354 q^{97} +(-2.35784 - 2.35784i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 42 q - 8 q^{3} - 2 q^{5} + 4 q^{7} + 34 q^{9} + 2 q^{11} + 4 q^{13} - 4 q^{15} + 8 q^{19} + 4 q^{21} - 20 q^{23} + 4 q^{25} - 8 q^{27} + 20 q^{29} + 2 q^{31} - 10 q^{33} + 16 q^{35} - 12 q^{37} + 10 q^{39}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1160\mathbb{Z}\right)^\times\).

\(n\) \(321\) \(581\) \(697\) \(871\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.111611 0.0644389 0.0322194 0.999481i \(-0.489742\pi\)
0.0322194 + 0.999481i \(0.489742\pi\)
\(4\) 0 0
\(5\) −0.657451 + 2.13723i −0.294021 + 0.955799i
\(6\) 0 0
\(7\) 3.03882 + 3.03882i 1.14857 + 1.14857i 0.986835 + 0.161732i \(0.0517079\pi\)
0.161732 + 0.986835i \(0.448292\pi\)
\(8\) 0 0
\(9\) −2.98754 −0.995848
\(10\) 0 0
\(11\) 0.789225 + 0.789225i 0.237960 + 0.237960i 0.816005 0.578045i \(-0.196184\pi\)
−0.578045 + 0.816005i \(0.696184\pi\)
\(12\) 0 0
\(13\) 0.986968 + 0.986968i 0.273736 + 0.273736i 0.830602 0.556866i \(-0.187996\pi\)
−0.556866 + 0.830602i \(0.687996\pi\)
\(14\) 0 0
\(15\) −0.0733790 + 0.238539i −0.0189464 + 0.0615906i
\(16\) 0 0
\(17\) 1.36500i 0.331062i −0.986205 0.165531i \(-0.947066\pi\)
0.986205 0.165531i \(-0.0529338\pi\)
\(18\) 0 0
\(19\) −4.08789 + 4.08789i −0.937827 + 0.937827i −0.998177 0.0603505i \(-0.980778\pi\)
0.0603505 + 0.998177i \(0.480778\pi\)
\(20\) 0 0
\(21\) 0.339167 + 0.339167i 0.0740123 + 0.0740123i
\(22\) 0 0
\(23\) 2.20484 2.20484i 0.459741 0.459741i −0.438829 0.898570i \(-0.644607\pi\)
0.898570 + 0.438829i \(0.144607\pi\)
\(24\) 0 0
\(25\) −4.13552 2.81025i −0.827103 0.562050i
\(26\) 0 0
\(27\) −0.668278 −0.128610
\(28\) 0 0
\(29\) 1.16225 + 5.25825i 0.215825 + 0.976432i
\(30\) 0 0
\(31\) −3.93858 3.93858i −0.707390 0.707390i 0.258596 0.965986i \(-0.416740\pi\)
−0.965986 + 0.258596i \(0.916740\pi\)
\(32\) 0 0
\(33\) 0.0880865 + 0.0880865i 0.0153339 + 0.0153339i
\(34\) 0 0
\(35\) −8.49254 + 4.49679i −1.43550 + 0.760096i
\(36\) 0 0
\(37\) −0.535366 −0.0880136 −0.0440068 0.999031i \(-0.514012\pi\)
−0.0440068 + 0.999031i \(0.514012\pi\)
\(38\) 0 0
\(39\) 0.110157 + 0.110157i 0.0176392 + 0.0176392i
\(40\) 0 0
\(41\) −0.232411 + 0.232411i −0.0362965 + 0.0362965i −0.725022 0.688726i \(-0.758170\pi\)
0.688726 + 0.725022i \(0.258170\pi\)
\(42\) 0 0
\(43\) −2.82349 −0.430579 −0.215289 0.976550i \(-0.569069\pi\)
−0.215289 + 0.976550i \(0.569069\pi\)
\(44\) 0 0
\(45\) 1.96416 6.38507i 0.292800 0.951830i
\(46\) 0 0
\(47\) −3.66266 −0.534254 −0.267127 0.963661i \(-0.586074\pi\)
−0.267127 + 0.963661i \(0.586074\pi\)
\(48\) 0 0
\(49\) 11.4689i 1.63841i
\(50\) 0 0
\(51\) 0.152350i 0.0213333i
\(52\) 0 0
\(53\) 2.30615 2.30615i 0.316774 0.316774i −0.530753 0.847527i \(-0.678091\pi\)
0.847527 + 0.530753i \(0.178091\pi\)
\(54\) 0 0
\(55\) −2.20563 + 1.16788i −0.297408 + 0.157477i
\(56\) 0 0
\(57\) −0.456255 + 0.456255i −0.0604325 + 0.0604325i
\(58\) 0 0
\(59\) 6.73589i 0.876938i −0.898746 0.438469i \(-0.855521\pi\)
0.898746 0.438469i \(-0.144479\pi\)
\(60\) 0 0
\(61\) 5.50192 + 5.50192i 0.704449 + 0.704449i 0.965362 0.260913i \(-0.0840237\pi\)
−0.260913 + 0.965362i \(0.584024\pi\)
\(62\) 0 0
\(63\) −9.07861 9.07861i −1.14380 1.14380i
\(64\) 0 0
\(65\) −2.75826 + 1.46050i −0.342120 + 0.181152i
\(66\) 0 0
\(67\) −10.1501 + 10.1501i −1.24004 + 1.24004i −0.280052 + 0.959985i \(0.590352\pi\)
−0.959985 + 0.280052i \(0.909648\pi\)
\(68\) 0 0
\(69\) 0.246085 0.246085i 0.0296252 0.0296252i
\(70\) 0 0
\(71\) 2.23409i 0.265138i 0.991174 + 0.132569i \(0.0423226\pi\)
−0.991174 + 0.132569i \(0.957677\pi\)
\(72\) 0 0
\(73\) 12.1214i 1.41870i 0.704858 + 0.709349i \(0.251011\pi\)
−0.704858 + 0.709349i \(0.748989\pi\)
\(74\) 0 0
\(75\) −0.461571 0.313656i −0.0532976 0.0362179i
\(76\) 0 0
\(77\) 4.79663i 0.546627i
\(78\) 0 0
\(79\) −2.04222 + 2.04222i −0.229767 + 0.229767i −0.812595 0.582828i \(-0.801946\pi\)
0.582828 + 0.812595i \(0.301946\pi\)
\(80\) 0 0
\(81\) 8.88804 0.987560
\(82\) 0 0
\(83\) 12.0434 12.0434i 1.32193 1.32193i 0.409726 0.912208i \(-0.365624\pi\)
0.912208 0.409726i \(-0.134376\pi\)
\(84\) 0 0
\(85\) 2.91733 + 0.897423i 0.316429 + 0.0973392i
\(86\) 0 0
\(87\) 0.129721 + 0.586880i 0.0139075 + 0.0629202i
\(88\) 0 0
\(89\) −5.02522 + 5.02522i −0.532672 + 0.532672i −0.921367 0.388695i \(-0.872926\pi\)
0.388695 + 0.921367i \(0.372926\pi\)
\(90\) 0 0
\(91\) 5.99844i 0.628807i
\(92\) 0 0
\(93\) −0.439590 0.439590i −0.0455834 0.0455834i
\(94\) 0 0
\(95\) −6.04918 11.4244i −0.620633 1.17211i
\(96\) 0 0
\(97\) 3.69354 0.375022 0.187511 0.982262i \(-0.439958\pi\)
0.187511 + 0.982262i \(0.439958\pi\)
\(98\) 0 0
\(99\) −2.35784 2.35784i −0.236972 0.236972i
\(100\) 0 0
\(101\) 7.90096 + 7.90096i 0.786175 + 0.786175i 0.980865 0.194690i \(-0.0623700\pi\)
−0.194690 + 0.980865i \(0.562370\pi\)
\(102\) 0 0
\(103\) −9.73930 + 9.73930i −0.959642 + 0.959642i −0.999217 0.0395748i \(-0.987400\pi\)
0.0395748 + 0.999217i \(0.487400\pi\)
\(104\) 0 0
\(105\) −0.947864 + 0.501893i −0.0925021 + 0.0489797i
\(106\) 0 0
\(107\) 3.78439 + 3.78439i 0.365851 + 0.365851i 0.865962 0.500110i \(-0.166707\pi\)
−0.500110 + 0.865962i \(0.666707\pi\)
\(108\) 0 0
\(109\) 10.4421 1.00017 0.500086 0.865976i \(-0.333302\pi\)
0.500086 + 0.865976i \(0.333302\pi\)
\(110\) 0 0
\(111\) −0.0597529 −0.00567150
\(112\) 0 0
\(113\) 17.2444i 1.62221i 0.584899 + 0.811106i \(0.301134\pi\)
−0.584899 + 0.811106i \(0.698866\pi\)
\(114\) 0 0
\(115\) 3.26268 + 6.16183i 0.304247 + 0.574594i
\(116\) 0 0
\(117\) −2.94861 2.94861i −0.272599 0.272599i
\(118\) 0 0
\(119\) 4.14800 4.14800i 0.380247 0.380247i
\(120\) 0 0
\(121\) 9.75425i 0.886750i
\(122\) 0 0
\(123\) −0.0259397 + 0.0259397i −0.00233890 + 0.00233890i
\(124\) 0 0
\(125\) 8.72506 6.99095i 0.780393 0.625290i
\(126\) 0 0
\(127\) 1.60556i 0.142470i 0.997460 + 0.0712352i \(0.0226941\pi\)
−0.997460 + 0.0712352i \(0.977306\pi\)
\(128\) 0 0
\(129\) −0.315134 −0.0277460
\(130\) 0 0
\(131\) 3.54857 3.54857i 0.310040 0.310040i −0.534885 0.844925i \(-0.679645\pi\)
0.844925 + 0.534885i \(0.179645\pi\)
\(132\) 0 0
\(133\) −24.8447 −2.15431
\(134\) 0 0
\(135\) 0.439360 1.42826i 0.0378141 0.122925i
\(136\) 0 0
\(137\) 11.8965i 1.01638i −0.861244 0.508192i \(-0.830314\pi\)
0.861244 0.508192i \(-0.169686\pi\)
\(138\) 0 0
\(139\) 9.23244i 0.783085i 0.920160 + 0.391543i \(0.128058\pi\)
−0.920160 + 0.391543i \(0.871942\pi\)
\(140\) 0 0
\(141\) −0.408794 −0.0344267
\(142\) 0 0
\(143\) 1.55788i 0.130276i
\(144\) 0 0
\(145\) −12.0022 0.973035i −0.996730 0.0808062i
\(146\) 0 0
\(147\) 1.28006i 0.105577i
\(148\) 0 0
\(149\) 8.31396 0.681106 0.340553 0.940225i \(-0.389386\pi\)
0.340553 + 0.940225i \(0.389386\pi\)
\(150\) 0 0
\(151\) 18.3229i 1.49110i −0.666451 0.745549i \(-0.732187\pi\)
0.666451 0.745549i \(-0.267813\pi\)
\(152\) 0 0
\(153\) 4.07801i 0.329687i
\(154\) 0 0
\(155\) 11.0071 5.82823i 0.884110 0.468135i
\(156\) 0 0
\(157\) −14.6007 −1.16527 −0.582633 0.812735i \(-0.697978\pi\)
−0.582633 + 0.812735i \(0.697978\pi\)
\(158\) 0 0
\(159\) 0.257393 0.257393i 0.0204126 0.0204126i
\(160\) 0 0
\(161\) 13.4002 1.05609
\(162\) 0 0
\(163\) 11.6798i 0.914836i 0.889252 + 0.457418i \(0.151226\pi\)
−0.889252 + 0.457418i \(0.848774\pi\)
\(164\) 0 0
\(165\) −0.246174 + 0.130349i −0.0191646 + 0.0101476i
\(166\) 0 0
\(167\) 10.3572 10.3572i 0.801465 0.801465i −0.181860 0.983324i \(-0.558212\pi\)
0.983324 + 0.181860i \(0.0582117\pi\)
\(168\) 0 0
\(169\) 11.0518i 0.850138i
\(170\) 0 0
\(171\) 12.2128 12.2128i 0.933933 0.933933i
\(172\) 0 0
\(173\) 9.63530 + 9.63530i 0.732559 + 0.732559i 0.971126 0.238567i \(-0.0766778\pi\)
−0.238567 + 0.971126i \(0.576678\pi\)
\(174\) 0 0
\(175\) −4.02724 21.1069i −0.304431 1.59553i
\(176\) 0 0
\(177\) 0.751802i 0.0565089i
\(178\) 0 0
\(179\) 1.61089 0.120404 0.0602018 0.998186i \(-0.480826\pi\)
0.0602018 + 0.998186i \(0.480826\pi\)
\(180\) 0 0
\(181\) 7.71318 0.573316 0.286658 0.958033i \(-0.407456\pi\)
0.286658 + 0.958033i \(0.407456\pi\)
\(182\) 0 0
\(183\) 0.614077 + 0.614077i 0.0453939 + 0.0453939i
\(184\) 0 0
\(185\) 0.351977 1.14420i 0.0258779 0.0841233i
\(186\) 0 0
\(187\) 1.07730 1.07730i 0.0787796 0.0787796i
\(188\) 0 0
\(189\) −2.03078 2.03078i −0.147717 0.147717i
\(190\) 0 0
\(191\) −3.65341 3.65341i −0.264351 0.264351i 0.562468 0.826819i \(-0.309852\pi\)
−0.826819 + 0.562468i \(0.809852\pi\)
\(192\) 0 0
\(193\) 12.8621 0.925833 0.462917 0.886402i \(-0.346803\pi\)
0.462917 + 0.886402i \(0.346803\pi\)
\(194\) 0 0
\(195\) −0.307853 + 0.163008i −0.0220458 + 0.0116732i
\(196\) 0 0
\(197\) −11.2813 11.2813i −0.803759 0.803759i 0.179922 0.983681i \(-0.442415\pi\)
−0.983681 + 0.179922i \(0.942415\pi\)
\(198\) 0 0
\(199\) 25.6822i 1.82056i −0.413989 0.910282i \(-0.635865\pi\)
0.413989 0.910282i \(-0.364135\pi\)
\(200\) 0 0
\(201\) −1.13287 + 1.13287i −0.0799066 + 0.0799066i
\(202\) 0 0
\(203\) −12.4470 + 19.5108i −0.873608 + 1.36939i
\(204\) 0 0
\(205\) −0.343917 0.649515i −0.0240202 0.0453641i
\(206\) 0 0
\(207\) −6.58706 + 6.58706i −0.457832 + 0.457832i
\(208\) 0 0
\(209\) −6.45253 −0.446331
\(210\) 0 0
\(211\) 5.37571 5.37571i 0.370079 0.370079i −0.497427 0.867506i \(-0.665722\pi\)
0.867506 + 0.497427i \(0.165722\pi\)
\(212\) 0 0
\(213\) 0.249350i 0.0170852i
\(214\) 0 0
\(215\) 1.85631 6.03446i 0.126599 0.411547i
\(216\) 0 0
\(217\) 23.9373i 1.62497i
\(218\) 0 0
\(219\) 1.35288i 0.0914193i
\(220\) 0 0
\(221\) 1.34721 1.34721i 0.0906235 0.0906235i
\(222\) 0 0
\(223\) −13.3770 + 13.3770i −0.895790 + 0.895790i −0.995060 0.0992705i \(-0.968349\pi\)
0.0992705 + 0.995060i \(0.468349\pi\)
\(224\) 0 0
\(225\) 12.3550 + 8.39574i 0.823669 + 0.559716i
\(226\) 0 0
\(227\) −6.98475 6.98475i −0.463594 0.463594i 0.436237 0.899832i \(-0.356311\pi\)
−0.899832 + 0.436237i \(0.856311\pi\)
\(228\) 0 0
\(229\) 20.9513 + 20.9513i 1.38450 + 1.38450i 0.836437 + 0.548062i \(0.184634\pi\)
0.548062 + 0.836437i \(0.315366\pi\)
\(230\) 0 0
\(231\) 0.535358i 0.0352240i
\(232\) 0 0
\(233\) 14.3795 14.3795i 0.942032 0.942032i −0.0563779 0.998409i \(-0.517955\pi\)
0.998409 + 0.0563779i \(0.0179552\pi\)
\(234\) 0 0
\(235\) 2.40802 7.82795i 0.157082 0.510639i
\(236\) 0 0
\(237\) −0.227935 + 0.227935i −0.0148059 + 0.0148059i
\(238\) 0 0
\(239\) 8.90857i 0.576248i 0.957593 + 0.288124i \(0.0930315\pi\)
−0.957593 + 0.288124i \(0.906969\pi\)
\(240\) 0 0
\(241\) 6.25420i 0.402869i 0.979502 + 0.201434i \(0.0645603\pi\)
−0.979502 + 0.201434i \(0.935440\pi\)
\(242\) 0 0
\(243\) 2.99684 0.192247
\(244\) 0 0
\(245\) −24.5116 7.54022i −1.56599 0.481727i
\(246\) 0 0
\(247\) −8.06924 −0.513433
\(248\) 0 0
\(249\) 1.34418 1.34418i 0.0851840 0.0851840i
\(250\) 0 0
\(251\) 14.4661 + 14.4661i 0.913094 + 0.913094i 0.996514 0.0834205i \(-0.0265845\pi\)
−0.0834205 + 0.996514i \(0.526584\pi\)
\(252\) 0 0
\(253\) 3.48023 0.218800
\(254\) 0 0
\(255\) 0.325607 + 0.100163i 0.0203903 + 0.00627243i
\(256\) 0 0
\(257\) −5.38550 5.38550i −0.335938 0.335938i 0.518898 0.854836i \(-0.326342\pi\)
−0.854836 + 0.518898i \(0.826342\pi\)
\(258\) 0 0
\(259\) −1.62688 1.62688i −0.101090 0.101090i
\(260\) 0 0
\(261\) −3.47228 15.7092i −0.214929 0.972378i
\(262\) 0 0
\(263\) −18.9364 −1.16767 −0.583835 0.811873i \(-0.698448\pi\)
−0.583835 + 0.811873i \(0.698448\pi\)
\(264\) 0 0
\(265\) 3.41260 + 6.44496i 0.209634 + 0.395911i
\(266\) 0 0
\(267\) −0.560872 + 0.560872i −0.0343248 + 0.0343248i
\(268\) 0 0
\(269\) 8.94862 + 8.94862i 0.545607 + 0.545607i 0.925167 0.379560i \(-0.123925\pi\)
−0.379560 + 0.925167i \(0.623925\pi\)
\(270\) 0 0
\(271\) −9.68347 + 9.68347i −0.588229 + 0.588229i −0.937152 0.348922i \(-0.886548\pi\)
0.348922 + 0.937152i \(0.386548\pi\)
\(272\) 0 0
\(273\) 0.669494i 0.0405196i
\(274\) 0 0
\(275\) −1.04593 5.48177i −0.0630721 0.330563i
\(276\) 0 0
\(277\) −11.5961 11.5961i −0.696743 0.696743i 0.266964 0.963707i \(-0.413980\pi\)
−0.963707 + 0.266964i \(0.913980\pi\)
\(278\) 0 0
\(279\) 11.7667 + 11.7667i 0.704453 + 0.704453i
\(280\) 0 0
\(281\) 20.4708 1.22119 0.610593 0.791945i \(-0.290931\pi\)
0.610593 + 0.791945i \(0.290931\pi\)
\(282\) 0 0
\(283\) 13.4703 + 13.4703i 0.800729 + 0.800729i 0.983209 0.182481i \(-0.0584127\pi\)
−0.182481 + 0.983209i \(0.558413\pi\)
\(284\) 0 0
\(285\) −0.675157 1.27509i −0.0399929 0.0755297i
\(286\) 0 0
\(287\) −1.41251 −0.0833778
\(288\) 0 0
\(289\) 15.1368 0.890398
\(290\) 0 0
\(291\) 0.412241 0.0241660
\(292\) 0 0
\(293\) 1.19347 0.0697233 0.0348617 0.999392i \(-0.488901\pi\)
0.0348617 + 0.999392i \(0.488901\pi\)
\(294\) 0 0
\(295\) 14.3962 + 4.42852i 0.838176 + 0.257838i
\(296\) 0 0
\(297\) −0.527422 0.527422i −0.0306041 0.0306041i
\(298\) 0 0
\(299\) 4.35222 0.251695
\(300\) 0 0
\(301\) −8.58009 8.58009i −0.494548 0.494548i
\(302\) 0 0
\(303\) 0.881837 + 0.881837i 0.0506602 + 0.0506602i
\(304\) 0 0
\(305\) −15.3761 + 8.14164i −0.880434 + 0.466189i
\(306\) 0 0
\(307\) 17.0802i 0.974817i 0.873174 + 0.487408i \(0.162058\pi\)
−0.873174 + 0.487408i \(0.837942\pi\)
\(308\) 0 0
\(309\) −1.08702 + 1.08702i −0.0618382 + 0.0618382i
\(310\) 0 0
\(311\) −13.2601 13.2601i −0.751910 0.751910i 0.222925 0.974836i \(-0.428439\pi\)
−0.974836 + 0.222925i \(0.928439\pi\)
\(312\) 0 0
\(313\) 4.86551 4.86551i 0.275015 0.275015i −0.556100 0.831115i \(-0.687703\pi\)
0.831115 + 0.556100i \(0.187703\pi\)
\(314\) 0 0
\(315\) 25.3718 13.4343i 1.42954 0.756940i
\(316\) 0 0
\(317\) 27.3719 1.53736 0.768680 0.639633i \(-0.220914\pi\)
0.768680 + 0.639633i \(0.220914\pi\)
\(318\) 0 0
\(319\) −3.23266 + 5.06722i −0.180994 + 0.283710i
\(320\) 0 0
\(321\) 0.422381 + 0.422381i 0.0235750 + 0.0235750i
\(322\) 0 0
\(323\) 5.57999 + 5.57999i 0.310479 + 0.310479i
\(324\) 0 0
\(325\) −1.30799 6.85525i −0.0725545 0.380261i
\(326\) 0 0
\(327\) 1.16546 0.0644499
\(328\) 0 0
\(329\) −11.1302 11.1302i −0.613626 0.613626i
\(330\) 0 0
\(331\) 18.5465 18.5465i 1.01941 1.01941i 0.0195998 0.999808i \(-0.493761\pi\)
0.999808 0.0195998i \(-0.00623921\pi\)
\(332\) 0 0
\(333\) 1.59943 0.0876482
\(334\) 0 0
\(335\) −15.0200 28.3664i −0.820629 1.54982i
\(336\) 0 0
\(337\) 33.7679 1.83945 0.919726 0.392561i \(-0.128411\pi\)
0.919726 + 0.392561i \(0.128411\pi\)
\(338\) 0 0
\(339\) 1.92467i 0.104534i
\(340\) 0 0
\(341\) 6.21685i 0.336662i
\(342\) 0 0
\(343\) −13.5801 + 13.5801i −0.733257 + 0.733257i
\(344\) 0 0
\(345\) 0.364152 + 0.687731i 0.0196053 + 0.0370262i
\(346\) 0 0
\(347\) 17.6588 17.6588i 0.947974 0.947974i −0.0507381 0.998712i \(-0.516157\pi\)
0.998712 + 0.0507381i \(0.0161574\pi\)
\(348\) 0 0
\(349\) 8.48972i 0.454444i 0.973843 + 0.227222i \(0.0729643\pi\)
−0.973843 + 0.227222i \(0.927036\pi\)
\(350\) 0 0
\(351\) −0.659569 0.659569i −0.0352052 0.0352052i
\(352\) 0 0
\(353\) −15.0796 15.0796i −0.802606 0.802606i 0.180896 0.983502i \(-0.442100\pi\)
−0.983502 + 0.180896i \(0.942100\pi\)
\(354\) 0 0
\(355\) −4.77477 1.46881i −0.253418 0.0779561i
\(356\) 0 0
\(357\) 0.462964 0.462964i 0.0245027 0.0245027i
\(358\) 0 0
\(359\) 1.29845 1.29845i 0.0685296 0.0685296i −0.672011 0.740541i \(-0.734569\pi\)
0.740541 + 0.672011i \(0.234569\pi\)
\(360\) 0 0
\(361\) 14.4217i 0.759038i
\(362\) 0 0
\(363\) 1.08868i 0.0571411i
\(364\) 0 0
\(365\) −25.9061 7.96920i −1.35599 0.417127i
\(366\) 0 0
\(367\) 18.1775i 0.948858i −0.880294 0.474429i \(-0.842654\pi\)
0.880294 0.474429i \(-0.157346\pi\)
\(368\) 0 0
\(369\) 0.694337 0.694337i 0.0361458 0.0361458i
\(370\) 0 0
\(371\) 14.0160 0.727672
\(372\) 0 0
\(373\) 4.72419 4.72419i 0.244609 0.244609i −0.574145 0.818754i \(-0.694665\pi\)
0.818754 + 0.574145i \(0.194665\pi\)
\(374\) 0 0
\(375\) 0.973815 0.780270i 0.0502876 0.0402930i
\(376\) 0 0
\(377\) −4.04261 + 6.33683i −0.208205 + 0.326363i
\(378\) 0 0
\(379\) −12.4809 + 12.4809i −0.641102 + 0.641102i −0.950826 0.309725i \(-0.899763\pi\)
0.309725 + 0.950826i \(0.399763\pi\)
\(380\) 0 0
\(381\) 0.179199i 0.00918063i
\(382\) 0 0
\(383\) −3.91433 3.91433i −0.200013 0.200013i 0.599993 0.800005i \(-0.295170\pi\)
−0.800005 + 0.599993i \(0.795170\pi\)
\(384\) 0 0
\(385\) −10.2515 3.15355i −0.522465 0.160720i
\(386\) 0 0
\(387\) 8.43531 0.428791
\(388\) 0 0
\(389\) 12.2041 + 12.2041i 0.618773 + 0.618773i 0.945217 0.326444i \(-0.105850\pi\)
−0.326444 + 0.945217i \(0.605850\pi\)
\(390\) 0 0
\(391\) −3.00962 3.00962i −0.152203 0.152203i
\(392\) 0 0
\(393\) 0.396060 0.396060i 0.0199786 0.0199786i
\(394\) 0 0
\(395\) −3.02203 5.70735i −0.152055 0.287168i
\(396\) 0 0
\(397\) −25.7991 25.7991i −1.29482 1.29482i −0.931771 0.363047i \(-0.881736\pi\)
−0.363047 0.931771i \(-0.618264\pi\)
\(398\) 0 0
\(399\) −2.77296 −0.138821
\(400\) 0 0
\(401\) 16.1462 0.806303 0.403151 0.915133i \(-0.367915\pi\)
0.403151 + 0.915133i \(0.367915\pi\)
\(402\) 0 0
\(403\) 7.77451i 0.387276i
\(404\) 0 0
\(405\) −5.84345 + 18.9958i −0.290364 + 0.943909i
\(406\) 0 0
\(407\) −0.422524 0.422524i −0.0209438 0.0209438i
\(408\) 0 0
\(409\) −7.21711 + 7.21711i −0.356863 + 0.356863i −0.862655 0.505792i \(-0.831200\pi\)
0.505792 + 0.862655i \(0.331200\pi\)
\(410\) 0 0
\(411\) 1.32778i 0.0654946i
\(412\) 0 0
\(413\) 20.4692 20.4692i 1.00722 1.00722i
\(414\) 0 0
\(415\) 17.8216 + 33.6575i 0.874827 + 1.65218i
\(416\) 0 0
\(417\) 1.03045i 0.0504611i
\(418\) 0 0
\(419\) 15.3722 0.750980 0.375490 0.926826i \(-0.377474\pi\)
0.375490 + 0.926826i \(0.377474\pi\)
\(420\) 0 0
\(421\) −28.8223 + 28.8223i −1.40471 + 1.40471i −0.620526 + 0.784186i \(0.713081\pi\)
−0.784186 + 0.620526i \(0.786919\pi\)
\(422\) 0 0
\(423\) 10.9423 0.532035
\(424\) 0 0
\(425\) −3.83600 + 5.64499i −0.186073 + 0.273822i
\(426\) 0 0
\(427\) 33.4387i 1.61821i
\(428\) 0 0
\(429\) 0.173877i 0.00839487i
\(430\) 0 0
\(431\) 17.3717 0.836767 0.418383 0.908271i \(-0.362597\pi\)
0.418383 + 0.908271i \(0.362597\pi\)
\(432\) 0 0
\(433\) 4.72720i 0.227175i 0.993528 + 0.113587i \(0.0362342\pi\)
−0.993528 + 0.113587i \(0.963766\pi\)
\(434\) 0 0
\(435\) −1.33958 0.108602i −0.0642281 0.00520706i
\(436\) 0 0
\(437\) 18.0263i 0.862315i
\(438\) 0 0
\(439\) 39.0732 1.86486 0.932431 0.361348i \(-0.117683\pi\)
0.932431 + 0.361348i \(0.117683\pi\)
\(440\) 0 0
\(441\) 34.2637i 1.63161i
\(442\) 0 0
\(443\) 6.63361i 0.315173i 0.987505 + 0.157586i \(0.0503712\pi\)
−0.987505 + 0.157586i \(0.949629\pi\)
\(444\) 0 0
\(445\) −7.43622 14.0439i −0.352511 0.665744i
\(446\) 0 0
\(447\) 0.927933 0.0438897
\(448\) 0 0
\(449\) −18.3025 + 18.3025i −0.863746 + 0.863746i −0.991771 0.128025i \(-0.959136\pi\)
0.128025 + 0.991771i \(0.459136\pi\)
\(450\) 0 0
\(451\) −0.366849 −0.0172742
\(452\) 0 0
\(453\) 2.04505i 0.0960847i
\(454\) 0 0
\(455\) −12.8201 3.94368i −0.601013 0.184883i
\(456\) 0 0
\(457\) −16.5907 + 16.5907i −0.776082 + 0.776082i −0.979162 0.203080i \(-0.934905\pi\)
0.203080 + 0.979162i \(0.434905\pi\)
\(458\) 0 0
\(459\) 0.912202i 0.0425779i
\(460\) 0 0
\(461\) 0.452012 0.452012i 0.0210523 0.0210523i −0.696502 0.717555i \(-0.745261\pi\)
0.717555 + 0.696502i \(0.245261\pi\)
\(462\) 0 0
\(463\) −5.03929 5.03929i −0.234196 0.234196i 0.580246 0.814442i \(-0.302957\pi\)
−0.814442 + 0.580246i \(0.802957\pi\)
\(464\) 0 0
\(465\) 1.22852 0.650497i 0.0569711 0.0301661i
\(466\) 0 0
\(467\) 12.5928i 0.582726i 0.956613 + 0.291363i \(0.0941087\pi\)
−0.956613 + 0.291363i \(0.905891\pi\)
\(468\) 0 0
\(469\) −61.6889 −2.84853
\(470\) 0 0
\(471\) −1.62961 −0.0750884
\(472\) 0 0
\(473\) −2.22837 2.22837i −0.102461 0.102461i
\(474\) 0 0
\(475\) 28.3935 5.41754i 1.30279 0.248574i
\(476\) 0 0
\(477\) −6.88972 + 6.88972i −0.315459 + 0.315459i
\(478\) 0 0
\(479\) 21.8299 + 21.8299i 0.997435 + 0.997435i 0.999997 0.00256128i \(-0.000815281\pi\)
−0.00256128 + 0.999997i \(0.500815\pi\)
\(480\) 0 0
\(481\) −0.528389 0.528389i −0.0240925 0.0240925i
\(482\) 0 0
\(483\) 1.49562 0.0680530
\(484\) 0 0
\(485\) −2.42832 + 7.89395i −0.110264 + 0.358446i
\(486\) 0 0
\(487\) −11.3194 11.3194i −0.512931 0.512931i 0.402492 0.915423i \(-0.368144\pi\)
−0.915423 + 0.402492i \(0.868144\pi\)
\(488\) 0 0
\(489\) 1.30360i 0.0589510i
\(490\) 0 0
\(491\) −7.37068 + 7.37068i −0.332634 + 0.332634i −0.853586 0.520952i \(-0.825577\pi\)
0.520952 + 0.853586i \(0.325577\pi\)
\(492\) 0 0
\(493\) 7.17753 1.58648i 0.323260 0.0714515i
\(494\) 0 0
\(495\) 6.58943 3.48909i 0.296173 0.156823i
\(496\) 0 0
\(497\) −6.78900 + 6.78900i −0.304528 + 0.304528i
\(498\) 0 0
\(499\) −18.4883 −0.827650 −0.413825 0.910356i \(-0.635808\pi\)
−0.413825 + 0.910356i \(0.635808\pi\)
\(500\) 0 0
\(501\) 1.15598 1.15598i 0.0516455 0.0516455i
\(502\) 0 0
\(503\) 5.45289i 0.243132i 0.992583 + 0.121566i \(0.0387917\pi\)
−0.992583 + 0.121566i \(0.961208\pi\)
\(504\) 0 0
\(505\) −22.0807 + 11.6917i −0.982577 + 0.520273i
\(506\) 0 0
\(507\) 1.23351i 0.0547819i
\(508\) 0 0
\(509\) 17.5561i 0.778163i −0.921203 0.389081i \(-0.872793\pi\)
0.921203 0.389081i \(-0.127207\pi\)
\(510\) 0 0
\(511\) −36.8346 + 36.8346i −1.62947 + 1.62947i
\(512\) 0 0
\(513\) 2.73185 2.73185i 0.120614 0.120614i
\(514\) 0 0
\(515\) −14.4120 27.2183i −0.635070 1.19938i
\(516\) 0 0
\(517\) −2.89066 2.89066i −0.127131 0.127131i
\(518\) 0 0
\(519\) 1.07541 + 1.07541i 0.0472052 + 0.0472052i
\(520\) 0 0
\(521\) 36.6983i 1.60778i 0.594775 + 0.803892i \(0.297241\pi\)
−0.594775 + 0.803892i \(0.702759\pi\)
\(522\) 0 0
\(523\) −23.6594 + 23.6594i −1.03456 + 1.03456i −0.0351742 + 0.999381i \(0.511199\pi\)
−0.999381 + 0.0351742i \(0.988801\pi\)
\(524\) 0 0
\(525\) −0.449486 2.35577i −0.0196172 0.102814i
\(526\) 0 0
\(527\) −5.37618 + 5.37618i −0.234190 + 0.234190i
\(528\) 0 0
\(529\) 13.2773i 0.577276i
\(530\) 0 0
\(531\) 20.1238i 0.873297i
\(532\) 0 0
\(533\) −0.458764 −0.0198713
\(534\) 0 0
\(535\) −10.5762 + 5.60007i −0.457248 + 0.242112i
\(536\) 0 0
\(537\) 0.179794 0.00775868
\(538\) 0 0
\(539\) −9.05152 + 9.05152i −0.389877 + 0.389877i
\(540\) 0 0
\(541\) 19.6123 + 19.6123i 0.843198 + 0.843198i 0.989273 0.146076i \(-0.0466643\pi\)
−0.146076 + 0.989273i \(0.546664\pi\)
\(542\) 0 0
\(543\) 0.860878 0.0369438
\(544\) 0 0
\(545\) −6.86517 + 22.3172i −0.294072 + 0.955963i
\(546\) 0 0
\(547\) 18.7111 + 18.7111i 0.800031 + 0.800031i 0.983100 0.183069i \(-0.0586032\pi\)
−0.183069 + 0.983100i \(0.558603\pi\)
\(548\) 0 0
\(549\) −16.4372 16.4372i −0.701524 0.701524i
\(550\) 0 0
\(551\) −26.2463 16.7440i −1.11813 0.713317i
\(552\) 0 0
\(553\) −12.4119 −0.527806
\(554\) 0 0
\(555\) 0.0392846 0.127706i 0.00166754 0.00542081i
\(556\) 0 0
\(557\) −8.06718 + 8.06718i −0.341817 + 0.341817i −0.857050 0.515233i \(-0.827705\pi\)
0.515233 + 0.857050i \(0.327705\pi\)
\(558\) 0 0
\(559\) −2.78670 2.78670i −0.117865 0.117865i
\(560\) 0 0
\(561\) 0.120238 0.120238i 0.00507647 0.00507647i
\(562\) 0 0
\(563\) 12.9679i 0.546533i −0.961938 0.273267i \(-0.911896\pi\)
0.961938 0.273267i \(-0.0881041\pi\)
\(564\) 0 0
\(565\) −36.8552 11.3373i −1.55051 0.476965i
\(566\) 0 0
\(567\) 27.0092 + 27.0092i 1.13428 + 1.13428i
\(568\) 0 0
\(569\) −29.1001 29.1001i −1.21994 1.21994i −0.967653 0.252285i \(-0.918818\pi\)
−0.252285 0.967653i \(-0.581182\pi\)
\(570\) 0 0
\(571\) 22.0919 0.924516 0.462258 0.886745i \(-0.347039\pi\)
0.462258 + 0.886745i \(0.347039\pi\)
\(572\) 0 0
\(573\) −0.407762 0.407762i −0.0170345 0.0170345i
\(574\) 0 0
\(575\) −15.3143 + 2.92200i −0.638651 + 0.121856i
\(576\) 0 0
\(577\) −22.1361 −0.921536 −0.460768 0.887521i \(-0.652426\pi\)
−0.460768 + 0.887521i \(0.652426\pi\)
\(578\) 0 0
\(579\) 1.43555 0.0596596
\(580\) 0 0
\(581\) 73.1955 3.03666
\(582\) 0 0
\(583\) 3.64014 0.150759
\(584\) 0 0
\(585\) 8.24043 4.36329i 0.340700 0.180400i
\(586\) 0 0
\(587\) −13.6093 13.6093i −0.561717 0.561717i 0.368078 0.929795i \(-0.380016\pi\)
−0.929795 + 0.368078i \(0.880016\pi\)
\(588\) 0 0
\(589\) 32.2010 1.32682
\(590\) 0 0
\(591\) −1.25912 1.25912i −0.0517933 0.0517933i
\(592\) 0 0
\(593\) 6.75484 + 6.75484i 0.277388 + 0.277388i 0.832065 0.554677i \(-0.187158\pi\)
−0.554677 + 0.832065i \(0.687158\pi\)
\(594\) 0 0
\(595\) 6.13813 + 11.5923i 0.251639 + 0.475240i
\(596\) 0 0
\(597\) 2.86643i 0.117315i
\(598\) 0 0
\(599\) −5.64758 + 5.64758i −0.230754 + 0.230754i −0.813007 0.582254i \(-0.802171\pi\)
0.582254 + 0.813007i \(0.302171\pi\)
\(600\) 0 0
\(601\) −1.68284 1.68284i −0.0686447 0.0686447i 0.671951 0.740596i \(-0.265457\pi\)
−0.740596 + 0.671951i \(0.765457\pi\)
\(602\) 0 0
\(603\) 30.3240 30.3240i 1.23489 1.23489i
\(604\) 0 0
\(605\) 20.8471 + 6.41294i 0.847554 + 0.260723i
\(606\) 0 0
\(607\) 15.3508 0.623070 0.311535 0.950235i \(-0.399157\pi\)
0.311535 + 0.950235i \(0.399157\pi\)
\(608\) 0 0
\(609\) −1.38923 + 2.17762i −0.0562943 + 0.0882417i
\(610\) 0 0
\(611\) −3.61493 3.61493i −0.146244 0.146244i
\(612\) 0 0
\(613\) −24.2570 24.2570i −0.979732 0.979732i 0.0200669 0.999799i \(-0.493612\pi\)
−0.999799 + 0.0200669i \(0.993612\pi\)
\(614\) 0 0
\(615\) −0.0383850 0.0724932i −0.00154783 0.00292321i
\(616\) 0 0
\(617\) −14.8311 −0.597079 −0.298540 0.954397i \(-0.596499\pi\)
−0.298540 + 0.954397i \(0.596499\pi\)
\(618\) 0 0
\(619\) 5.28755 + 5.28755i 0.212525 + 0.212525i 0.805339 0.592814i \(-0.201983\pi\)
−0.592814 + 0.805339i \(0.701983\pi\)
\(620\) 0 0
\(621\) −1.47345 + 1.47345i −0.0591274 + 0.0591274i
\(622\) 0 0
\(623\) −30.5415 −1.22362
\(624\) 0 0
\(625\) 9.20498 + 23.2437i 0.368199 + 0.929747i
\(626\) 0 0
\(627\) −0.720176 −0.0287611
\(628\) 0 0
\(629\) 0.730777i 0.0291380i
\(630\) 0 0
\(631\) 7.66638i 0.305194i −0.988289 0.152597i \(-0.951236\pi\)
0.988289 0.152597i \(-0.0487636\pi\)
\(632\) 0 0
\(633\) 0.599991 0.599991i 0.0238475 0.0238475i
\(634\) 0 0
\(635\) −3.43145 1.05558i −0.136173 0.0418893i
\(636\) 0 0
\(637\) −11.3194 + 11.3194i −0.448491 + 0.448491i
\(638\) 0 0
\(639\) 6.67444i 0.264037i
\(640\) 0 0
\(641\) −12.2711 12.2711i −0.484680 0.484680i 0.421943 0.906622i \(-0.361348\pi\)
−0.906622 + 0.421943i \(0.861348\pi\)
\(642\) 0 0
\(643\) −5.79768 5.79768i −0.228638 0.228638i 0.583486 0.812124i \(-0.301688\pi\)
−0.812124 + 0.583486i \(0.801688\pi\)
\(644\) 0 0
\(645\) 0.207185 0.673514i 0.00815791 0.0265196i
\(646\) 0 0
\(647\) −10.5241 + 10.5241i −0.413745 + 0.413745i −0.883041 0.469296i \(-0.844508\pi\)
0.469296 + 0.883041i \(0.344508\pi\)
\(648\) 0 0
\(649\) 5.31613 5.31613i 0.208676 0.208676i
\(650\) 0 0
\(651\) 2.67167i 0.104711i
\(652\) 0 0
\(653\) 23.2875i 0.911309i 0.890157 + 0.455655i \(0.150595\pi\)
−0.890157 + 0.455655i \(0.849405\pi\)
\(654\) 0 0
\(655\) 5.25110 + 9.91712i 0.205177 + 0.387494i
\(656\) 0 0
\(657\) 36.2131i 1.41281i
\(658\) 0 0
\(659\) 24.8937 24.8937i 0.969721 0.969721i −0.0298340 0.999555i \(-0.509498\pi\)
0.999555 + 0.0298340i \(0.00949785\pi\)
\(660\) 0 0
\(661\) 17.2394 0.670535 0.335268 0.942123i \(-0.391173\pi\)
0.335268 + 0.942123i \(0.391173\pi\)
\(662\) 0 0
\(663\) 0.150365 0.150365i 0.00583967 0.00583967i
\(664\) 0 0
\(665\) 16.3342 53.0990i 0.633414 2.05909i
\(666\) 0 0
\(667\) 14.1562 + 9.03102i 0.548130 + 0.349682i
\(668\) 0 0
\(669\) −1.49303 + 1.49303i −0.0577237 + 0.0577237i
\(670\) 0 0
\(671\) 8.68451i 0.335262i
\(672\) 0 0
\(673\) −6.49859 6.49859i −0.250502 0.250502i 0.570674 0.821177i \(-0.306682\pi\)
−0.821177 + 0.570674i \(0.806682\pi\)
\(674\) 0 0
\(675\) 2.76367 + 1.87803i 0.106374 + 0.0722853i
\(676\) 0 0
\(677\) 10.9356 0.420289 0.210144 0.977670i \(-0.432607\pi\)
0.210144 + 0.977670i \(0.432607\pi\)
\(678\) 0 0
\(679\) 11.2240 + 11.2240i 0.430738 + 0.430738i
\(680\) 0 0
\(681\) −0.779578 0.779578i −0.0298735 0.0298735i
\(682\) 0 0
\(683\) −27.1259 + 27.1259i −1.03794 + 1.03794i −0.0386909 + 0.999251i \(0.512319\pi\)
−0.999251 + 0.0386909i \(0.987681\pi\)
\(684\) 0 0
\(685\) 25.4255 + 7.82134i 0.971458 + 0.298838i
\(686\) 0 0
\(687\) 2.33840 + 2.33840i 0.0892156 + 0.0892156i
\(688\) 0 0
\(689\) 4.55219 0.173425
\(690\) 0 0
\(691\) −12.9533 −0.492767 −0.246383 0.969172i \(-0.579242\pi\)
−0.246383 + 0.969172i \(0.579242\pi\)
\(692\) 0 0
\(693\) 14.3301i 0.544357i
\(694\) 0 0
\(695\) −19.7319 6.06988i −0.748472 0.230244i
\(696\) 0 0
\(697\) 0.317242 + 0.317242i 0.0120164 + 0.0120164i
\(698\) 0 0
\(699\) 1.60491 1.60491i 0.0607034 0.0607034i
\(700\) 0 0
\(701\) 19.4640i 0.735144i 0.929995 + 0.367572i \(0.119811\pi\)
−0.929995 + 0.367572i \(0.880189\pi\)
\(702\) 0 0
\(703\) 2.18852 2.18852i 0.0825416 0.0825416i
\(704\) 0 0
\(705\) 0.268762 0.873688i 0.0101222 0.0329050i
\(706\) 0 0
\(707\) 48.0192i 1.80595i
\(708\) 0 0
\(709\) −1.36436 −0.0512397 −0.0256199 0.999672i \(-0.508156\pi\)
−0.0256199 + 0.999672i \(0.508156\pi\)
\(710\) 0 0
\(711\) 6.10121 6.10121i 0.228813 0.228813i
\(712\) 0 0
\(713\) −17.3679 −0.650433
\(714\) 0 0
\(715\) −3.32955 1.02423i −0.124518 0.0383040i
\(716\) 0 0
\(717\) 0.994298i 0.0371327i
\(718\) 0 0
\(719\) 11.2828i 0.420777i −0.977618 0.210389i \(-0.932527\pi\)
0.977618 0.210389i \(-0.0674729\pi\)
\(720\) 0 0
\(721\) −59.1920 −2.20442
\(722\) 0 0
\(723\) 0.698040i 0.0259604i
\(724\) 0 0
\(725\) 9.97047 25.0118i 0.370294 0.928915i
\(726\) 0 0
\(727\) 4.76329i 0.176661i −0.996091 0.0883304i \(-0.971847\pi\)
0.996091 0.0883304i \(-0.0281531\pi\)
\(728\) 0 0
\(729\) −26.3296 −0.975172
\(730\) 0 0
\(731\) 3.85408i 0.142548i
\(732\) 0 0
\(733\) 41.7313i 1.54138i 0.637209 + 0.770691i \(0.280089\pi\)
−0.637209 + 0.770691i \(0.719911\pi\)
\(734\) 0 0
\(735\) −2.73578 0.841575i −0.100911 0.0310419i
\(736\) 0 0
\(737\) −16.0215 −0.590159
\(738\) 0 0
\(739\) −22.2962 + 22.2962i −0.820178 + 0.820178i −0.986133 0.165955i \(-0.946929\pi\)
0.165955 + 0.986133i \(0.446929\pi\)
\(740\) 0 0
\(741\) −0.900619 −0.0330851
\(742\) 0 0
\(743\) 21.2063i 0.777984i −0.921241 0.388992i \(-0.872823\pi\)
0.921241 0.388992i \(-0.127177\pi\)
\(744\) 0 0
\(745\) −5.46602 + 17.7689i −0.200260 + 0.651001i
\(746\) 0 0
\(747\) −35.9802 + 35.9802i −1.31645 + 1.31645i
\(748\) 0 0
\(749\) 23.0002i 0.840409i
\(750\) 0 0
\(751\) 23.1872 23.1872i 0.846114 0.846114i −0.143532 0.989646i \(-0.545846\pi\)
0.989646 + 0.143532i \(0.0458460\pi\)
\(752\) 0 0
\(753\) 1.61458 + 1.61458i 0.0588387 + 0.0588387i
\(754\) 0 0
\(755\) 39.1603 + 12.0464i 1.42519 + 0.438414i
\(756\) 0 0
\(757\) 8.45983i 0.307478i −0.988112 0.153739i \(-0.950869\pi\)
0.988112 0.153739i \(-0.0491315\pi\)
\(758\) 0 0
\(759\) 0.388434 0.0140992
\(760\) 0 0
\(761\) 43.1756 1.56511 0.782557 0.622580i \(-0.213915\pi\)
0.782557 + 0.622580i \(0.213915\pi\)
\(762\) 0 0
\(763\) 31.7317 + 31.7317i 1.14876 + 1.14876i
\(764\) 0 0
\(765\) −8.71564 2.68109i −0.315115 0.0969350i
\(766\) 0 0
\(767\) 6.64811 6.64811i 0.240049 0.240049i
\(768\) 0 0
\(769\) 36.0717 + 36.0717i 1.30078 + 1.30078i 0.927867 + 0.372911i \(0.121640\pi\)
0.372911 + 0.927867i \(0.378360\pi\)
\(770\) 0 0
\(771\) −0.601083 0.601083i −0.0216475 0.0216475i
\(772\) 0 0
\(773\) 39.7356 1.42919 0.714595 0.699538i \(-0.246611\pi\)
0.714595 + 0.699538i \(0.246611\pi\)
\(774\) 0 0
\(775\) 5.21966 + 27.3565i 0.187496 + 0.982673i
\(776\) 0 0
\(777\) −0.181579 0.181579i −0.00651409 0.00651409i
\(778\) 0 0
\(779\) 1.90014i 0.0680796i
\(780\) 0 0
\(781\) −1.76320 + 1.76320i −0.0630923 + 0.0630923i
\(782\) 0 0
\(783\) −0.776709 3.51397i −0.0277573 0.125579i
\(784\) 0 0
\(785\) 9.59928 31.2052i 0.342613 1.11376i
\(786\) 0 0
\(787\) −5.90443 + 5.90443i −0.210470 + 0.210470i −0.804467 0.593997i \(-0.797549\pi\)
0.593997 + 0.804467i \(0.297549\pi\)
\(788\) 0 0
\(789\) −2.11352 −0.0752433
\(790\) 0 0
\(791\) −52.4025 + 52.4025i −1.86322 + 1.86322i
\(792\) 0 0
\(793\) 10.8604i 0.385666i
\(794\) 0 0
\(795\) 0.380884 + 0.719331i 0.0135086 + 0.0255120i
\(796\) 0 0
\(797\) 40.6134i 1.43860i −0.694699 0.719300i \(-0.744462\pi\)
0.694699 0.719300i \(-0.255538\pi\)
\(798\) 0 0
\(799\) 4.99954i 0.176871i
\(800\) 0 0
\(801\) 15.0131 15.0131i 0.530460 0.530460i
\(802\) 0 0
\(803\) −9.56648 + 9.56648i −0.337594 + 0.337594i
\(804\) 0 0
\(805\) −8.81000 + 28.6394i −0.310512 + 1.00941i
\(806\) 0 0
\(807\) 0.998768 + 0.998768i 0.0351583 + 0.0351583i
\(808\) 0 0
\(809\) −35.4359 35.4359i −1.24586 1.24586i −0.957532 0.288327i \(-0.906901\pi\)
−0.288327 0.957532i \(-0.593099\pi\)
\(810\) 0 0
\(811\) 0.622276i 0.0218511i 0.999940 + 0.0109255i \(0.00347778\pi\)
−0.999940 + 0.0109255i \(0.996522\pi\)
\(812\) 0 0
\(813\) −1.08079 + 1.08079i −0.0379048 + 0.0379048i
\(814\) 0 0
\(815\) −24.9625 7.67893i −0.874399 0.268981i
\(816\) 0 0
\(817\) 11.5421 11.5421i 0.403808 0.403808i
\(818\) 0 0
\(819\) 17.9206i 0.626196i
\(820\) 0 0
\(821\) 7.77929i 0.271499i −0.990743 0.135750i \(-0.956656\pi\)
0.990743 0.135750i \(-0.0433443\pi\)
\(822\) 0 0
\(823\) 0.222068 0.00774079 0.00387040 0.999993i \(-0.498768\pi\)
0.00387040 + 0.999993i \(0.498768\pi\)
\(824\) 0 0
\(825\) −0.116738 0.611828i −0.00406429 0.0213011i
\(826\) 0 0
\(827\) −32.1988 −1.11966 −0.559831 0.828607i \(-0.689134\pi\)
−0.559831 + 0.828607i \(0.689134\pi\)
\(828\) 0 0
\(829\) 13.8953 13.8953i 0.482604 0.482604i −0.423359 0.905962i \(-0.639149\pi\)
0.905962 + 0.423359i \(0.139149\pi\)
\(830\) 0 0
\(831\) −1.29426 1.29426i −0.0448973 0.0448973i
\(832\) 0 0
\(833\) 15.6550 0.542415
\(834\) 0 0
\(835\) 15.3264 + 28.9451i 0.530392 + 1.00169i
\(836\) 0 0
\(837\) 2.63207 + 2.63207i 0.0909775 + 0.0909775i
\(838\) 0 0
\(839\) −35.8380 35.8380i −1.23726 1.23726i −0.961115 0.276150i \(-0.910941\pi\)
−0.276150 0.961115i \(-0.589059\pi\)
\(840\) 0 0
\(841\) −26.2983 + 12.2228i −0.906839 + 0.421477i
\(842\) 0 0
\(843\) 2.28477 0.0786918
\(844\) 0 0
\(845\) 23.6202 + 7.26601i 0.812561 + 0.249958i
\(846\) 0 0
\(847\) 29.6414 29.6414i 1.01849 1.01849i
\(848\) 0 0
\(849\) 1.50344 + 1.50344i 0.0515980 + 0.0515980i
\(850\) 0 0
\(851\) −1.18040 + 1.18040i −0.0404635 + 0.0404635i
\(852\) 0 0
\(853\) 5.84769i 0.200221i 0.994976 + 0.100111i \(0.0319196\pi\)
−0.994976 + 0.100111i \(0.968080\pi\)
\(854\) 0 0
\(855\) 18.0722 + 34.1308i 0.618056 + 1.16725i
\(856\) 0 0
\(857\) 22.7796 + 22.7796i 0.778135 + 0.778135i 0.979513 0.201379i \(-0.0645421\pi\)
−0.201379 + 0.979513i \(0.564542\pi\)
\(858\) 0 0
\(859\) −34.6757 34.6757i −1.18312 1.18312i −0.978931 0.204189i \(-0.934544\pi\)
−0.204189 0.978931i \(-0.565456\pi\)
\(860\) 0 0
\(861\) −0.157652 −0.00537277
\(862\) 0 0
\(863\) −26.8224 26.8224i −0.913045 0.913045i 0.0834656 0.996511i \(-0.473401\pi\)
−0.996511 + 0.0834656i \(0.973401\pi\)
\(864\) 0 0
\(865\) −26.9276 + 14.2581i −0.915567 + 0.484791i
\(866\) 0 0
\(867\) 1.68944 0.0573762
\(868\) 0 0
\(869\) −3.22354 −0.109351
\(870\) 0 0
\(871\) −20.0357 −0.678885
\(872\) 0 0
\(873\) −11.0346 −0.373465
\(874\) 0 0
\(875\) 47.7581 + 5.26963i 1.61452 + 0.178146i
\(876\) 0 0
\(877\) −10.8215 10.8215i −0.365417 0.365417i 0.500386 0.865803i \(-0.333192\pi\)
−0.865803 + 0.500386i \(0.833192\pi\)
\(878\) 0 0
\(879\) 0.133205 0.00449289
\(880\) 0 0
\(881\) 32.9479 + 32.9479i 1.11004 + 1.11004i 0.993144 + 0.116898i \(0.0372950\pi\)
0.116898 + 0.993144i \(0.462705\pi\)
\(882\) 0 0
\(883\) 24.9085 + 24.9085i 0.838236 + 0.838236i 0.988627 0.150390i \(-0.0480530\pi\)
−0.150390 + 0.988627i \(0.548053\pi\)
\(884\) 0 0
\(885\) 1.60677 + 0.494273i 0.0540111 + 0.0166148i
\(886\) 0 0
\(887\) 16.3631i 0.549420i −0.961527 0.274710i \(-0.911418\pi\)
0.961527 0.274710i \(-0.0885819\pi\)
\(888\) 0 0
\(889\) −4.87901 + 4.87901i −0.163637 + 0.163637i
\(890\) 0 0
\(891\) 7.01467 + 7.01467i 0.235000 + 0.235000i
\(892\) 0 0
\(893\) 14.9726 14.9726i 0.501037 0.501037i
\(894\) 0 0
\(895\) −1.05908 + 3.44285i −0.0354012 + 0.115082i
\(896\) 0 0
\(897\) 0.485757 0.0162189
\(898\) 0 0
\(899\) 16.1324 25.2877i 0.538046 0.843391i
\(900\) 0 0
\(901\) −3.14790 3.14790i −0.104872 0.104872i
\(902\) 0 0
\(903\) −0.957636 0.957636i −0.0318681 0.0318681i
\(904\) 0 0
\(905\) −5.07104 + 16.4848i −0.168567 + 0.547975i
\(906\) 0 0
\(907\) 14.9938 0.497863 0.248931 0.968521i \(-0.419921\pi\)
0.248931 + 0.968521i \(0.419921\pi\)
\(908\) 0 0
\(909\) −23.6045 23.6045i −0.782910 0.782910i
\(910\) 0 0
\(911\) 15.6146 15.6146i 0.517333 0.517333i −0.399430 0.916764i \(-0.630792\pi\)
0.916764 + 0.399430i \(0.130792\pi\)
\(912\) 0 0
\(913\) 19.0099 0.629136
\(914\) 0 0
\(915\) −1.71615 + 0.908699i −0.0567342 + 0.0300407i
\(916\) 0 0
\(917\) 21.5669 0.712202
\(918\) 0 0
\(919\) 39.8562i 1.31473i −0.753571 0.657367i \(-0.771670\pi\)
0.753571 0.657367i \(-0.228330\pi\)
\(920\) 0 0
\(921\) 1.90634i 0.0628161i
\(922\) 0 0
\(923\) −2.20498 + 2.20498i −0.0725777 + 0.0725777i
\(924\) 0 0
\(925\) 2.21402 + 1.50451i 0.0727964 + 0.0494681i
\(926\) 0 0
\(927\) 29.0966 29.0966i 0.955657 0.955657i
\(928\) 0 0
\(929\) 18.6598i 0.612208i 0.951998 + 0.306104i \(0.0990256\pi\)
−0.951998 + 0.306104i \(0.900974\pi\)
\(930\) 0 0
\(931\) −46.8835 46.8835i −1.53654 1.53654i
\(932\) 0 0
\(933\) −1.47998 1.47998i −0.0484522 0.0484522i
\(934\) 0 0
\(935\) 1.59416 + 3.01070i 0.0521346 + 0.0984603i
\(936\) 0 0
\(937\) −32.7695 + 32.7695i −1.07053 + 1.07053i −0.0732176 + 0.997316i \(0.523327\pi\)
−0.997316 + 0.0732176i \(0.976673\pi\)
\(938\) 0 0
\(939\) 0.543046 0.543046i 0.0177216 0.0177216i
\(940\) 0 0
\(941\) 8.46235i 0.275865i −0.990442 0.137932i \(-0.955954\pi\)
0.990442 0.137932i \(-0.0440457\pi\)
\(942\) 0 0
\(943\) 1.02486i 0.0333740i
\(944\) 0 0
\(945\) 5.67538 3.00510i 0.184620 0.0977560i
\(946\) 0 0
\(947\) 35.3099i 1.14742i −0.819059 0.573709i \(-0.805504\pi\)
0.819059 0.573709i \(-0.194496\pi\)
\(948\) 0 0
\(949\) −11.9634 + 11.9634i −0.388348 + 0.388348i
\(950\) 0 0
\(951\) 3.05502 0.0990658
\(952\) 0 0
\(953\) −7.65407 + 7.65407i −0.247940 + 0.247940i −0.820125 0.572185i \(-0.806096\pi\)
0.572185 + 0.820125i \(0.306096\pi\)
\(954\) 0 0
\(955\) 10.2101 5.40624i 0.330392 0.174942i
\(956\) 0 0
\(957\) −0.360802 + 0.565559i −0.0116631 + 0.0182819i
\(958\) 0 0
\(959\) 36.1512 36.1512i 1.16738 1.16738i
\(960\) 0 0
\(961\) 0.0248400i 0.000801291i
\(962\) 0 0
\(963\) −11.3060 11.3060i −0.364332 0.364332i
\(964\) 0 0
\(965\) −8.45619 + 27.4892i −0.272214 + 0.884910i
\(966\) 0 0
\(967\) 14.4266 0.463929 0.231965 0.972724i \(-0.425485\pi\)
0.231965 + 0.972724i \(0.425485\pi\)
\(968\) 0 0
\(969\) 0.622790 + 0.622790i 0.0200069 + 0.0200069i
\(970\) 0 0
\(971\) −41.2960 41.2960i −1.32525 1.32525i −0.909460 0.415791i \(-0.863505\pi\)
−0.415791 0.909460i \(-0.636495\pi\)
\(972\) 0 0
\(973\) −28.0557 + 28.0557i −0.899425 + 0.899425i
\(974\) 0 0
\(975\) −0.145987 0.765124i −0.00467533 0.0245036i
\(976\) 0 0
\(977\) −6.07552 6.07552i −0.194373 0.194373i 0.603210 0.797583i \(-0.293888\pi\)
−0.797583 + 0.603210i \(0.793888\pi\)
\(978\) 0 0
\(979\) −7.93206 −0.253510
\(980\) 0 0
\(981\) −31.1962 −0.996018
\(982\) 0 0
\(983\) 42.2826i 1.34861i −0.738455 0.674303i \(-0.764444\pi\)
0.738455 0.674303i \(-0.235556\pi\)
\(984\) 0 0
\(985\) 31.5276 16.6938i 1.00455 0.531910i
\(986\) 0 0
\(987\) −1.24225 1.24225i −0.0395413 0.0395413i
\(988\) 0 0
\(989\) −6.22536 + 6.22536i −0.197955 + 0.197955i
\(990\) 0 0
\(991\) 51.6864i 1.64187i −0.571020 0.820936i \(-0.693452\pi\)
0.571020 0.820936i \(-0.306548\pi\)
\(992\) 0 0
\(993\) 2.07000 2.07000i 0.0656895 0.0656895i
\(994\) 0 0
\(995\) 54.8888 + 16.8848i 1.74009 + 0.535284i
\(996\) 0 0
\(997\) 0.835424i 0.0264581i −0.999912 0.0132291i \(-0.995789\pi\)
0.999912 0.0132291i \(-0.00421107\pi\)
\(998\) 0 0
\(999\) 0.357773 0.0113194
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1160.2.bl.c.737.12 yes 42
5.3 odd 4 1160.2.s.d.273.12 yes 42
29.17 odd 4 1160.2.s.d.17.10 42
145.133 even 4 inner 1160.2.bl.c.713.12 yes 42
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1160.2.s.d.17.10 42 29.17 odd 4
1160.2.s.d.273.12 yes 42 5.3 odd 4
1160.2.bl.c.713.12 yes 42 145.133 even 4 inner
1160.2.bl.c.737.12 yes 42 1.1 even 1 trivial