Properties

Label 1160.2.bl.d.713.17
Level $1160$
Weight $2$
Character 1160.713
Analytic conductor $9.263$
Analytic rank $0$
Dimension $42$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1160,2,Mod(713,1160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1160, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 3, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1160.713");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1160 = 2^{3} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1160.bl (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.26264663447\)
Analytic rank: \(0\)
Dimension: \(42\)
Relative dimension: \(21\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 713.17
Character \(\chi\) \(=\) 1160.713
Dual form 1160.2.bl.d.737.17

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.10106 q^{3} +(-2.18421 - 0.478777i) q^{5} +(1.94771 - 1.94771i) q^{7} +1.41447 q^{9} +(0.883443 - 0.883443i) q^{11} +(2.69535 - 2.69535i) q^{13} +(-4.58916 - 1.00594i) q^{15} -0.326749i q^{17} +(-5.28573 - 5.28573i) q^{19} +(4.09225 - 4.09225i) q^{21} +(-0.557485 - 0.557485i) q^{23} +(4.54155 + 2.09150i) q^{25} -3.33130 q^{27} +(-1.35994 + 5.21062i) q^{29} +(3.27551 - 3.27551i) q^{31} +(1.85617 - 1.85617i) q^{33} +(-5.18672 + 3.32168i) q^{35} +6.69183 q^{37} +(5.66311 - 5.66311i) q^{39} +(-6.35601 - 6.35601i) q^{41} -2.44518 q^{43} +(-3.08949 - 0.677214i) q^{45} +11.9618 q^{47} -0.587117i q^{49} -0.686521i q^{51} +(1.79572 + 1.79572i) q^{53} +(-2.35260 + 1.50665i) q^{55} +(-11.1057 - 11.1057i) q^{57} -6.73630i q^{59} +(5.50590 - 5.50590i) q^{61} +(2.75497 - 2.75497i) q^{63} +(-7.17769 + 4.59674i) q^{65} +(3.12885 + 3.12885i) q^{67} +(-1.17131 - 1.17131i) q^{69} -3.62645i q^{71} -11.1192i q^{73} +(9.54207 + 4.39437i) q^{75} -3.44137i q^{77} +(5.17391 + 5.17391i) q^{79} -11.2427 q^{81} +(3.60182 + 3.60182i) q^{83} +(-0.156440 + 0.713689i) q^{85} +(-2.85732 + 10.9478i) q^{87} +(10.8840 + 10.8840i) q^{89} -10.4995i q^{91} +(6.88206 - 6.88206i) q^{93} +(9.01446 + 14.0758i) q^{95} -3.89805 q^{97} +(1.24960 - 1.24960i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 42 q - 4 q^{3} - 2 q^{7} + 42 q^{9} - 4 q^{13} - 4 q^{15} - 6 q^{19} - 8 q^{21} + 10 q^{23} + 8 q^{25} + 32 q^{27} - 30 q^{29} - 4 q^{31} - 22 q^{33} + 2 q^{35} - 32 q^{37} - 38 q^{39} + 10 q^{41} + 30 q^{45}+ \cdots - 34 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1160\mathbb{Z}\right)^\times\).

\(n\) \(321\) \(581\) \(697\) \(871\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.10106 1.21305 0.606525 0.795065i \(-0.292563\pi\)
0.606525 + 0.795065i \(0.292563\pi\)
\(4\) 0 0
\(5\) −2.18421 0.478777i −0.976808 0.214116i
\(6\) 0 0
\(7\) 1.94771 1.94771i 0.736164 0.736164i −0.235670 0.971833i \(-0.575728\pi\)
0.971833 + 0.235670i \(0.0757283\pi\)
\(8\) 0 0
\(9\) 1.41447 0.471489
\(10\) 0 0
\(11\) 0.883443 0.883443i 0.266368 0.266368i −0.561267 0.827635i \(-0.689686\pi\)
0.827635 + 0.561267i \(0.189686\pi\)
\(12\) 0 0
\(13\) 2.69535 2.69535i 0.747556 0.747556i −0.226463 0.974020i \(-0.572716\pi\)
0.974020 + 0.226463i \(0.0727164\pi\)
\(14\) 0 0
\(15\) −4.58916 1.00594i −1.18492 0.259733i
\(16\) 0 0
\(17\) 0.326749i 0.0792484i −0.999215 0.0396242i \(-0.987384\pi\)
0.999215 0.0396242i \(-0.0126161\pi\)
\(18\) 0 0
\(19\) −5.28573 5.28573i −1.21263 1.21263i −0.970158 0.242472i \(-0.922042\pi\)
−0.242472 0.970158i \(-0.577958\pi\)
\(20\) 0 0
\(21\) 4.09225 4.09225i 0.893003 0.893003i
\(22\) 0 0
\(23\) −0.557485 0.557485i −0.116244 0.116244i 0.646592 0.762836i \(-0.276194\pi\)
−0.762836 + 0.646592i \(0.776194\pi\)
\(24\) 0 0
\(25\) 4.54155 + 2.09150i 0.908309 + 0.418300i
\(26\) 0 0
\(27\) −3.33130 −0.641110
\(28\) 0 0
\(29\) −1.35994 + 5.21062i −0.252535 + 0.967588i
\(30\) 0 0
\(31\) 3.27551 3.27551i 0.588300 0.588300i −0.348871 0.937171i \(-0.613435\pi\)
0.937171 + 0.348871i \(0.113435\pi\)
\(32\) 0 0
\(33\) 1.85617 1.85617i 0.323118 0.323118i
\(34\) 0 0
\(35\) −5.18672 + 3.32168i −0.876715 + 0.561467i
\(36\) 0 0
\(37\) 6.69183 1.10013 0.550065 0.835122i \(-0.314603\pi\)
0.550065 + 0.835122i \(0.314603\pi\)
\(38\) 0 0
\(39\) 5.66311 5.66311i 0.906823 0.906823i
\(40\) 0 0
\(41\) −6.35601 6.35601i −0.992641 0.992641i 0.00733177 0.999973i \(-0.497666\pi\)
−0.999973 + 0.00733177i \(0.997666\pi\)
\(42\) 0 0
\(43\) −2.44518 −0.372887 −0.186444 0.982466i \(-0.559696\pi\)
−0.186444 + 0.982466i \(0.559696\pi\)
\(44\) 0 0
\(45\) −3.08949 0.677214i −0.460554 0.100953i
\(46\) 0 0
\(47\) 11.9618 1.74480 0.872401 0.488791i \(-0.162562\pi\)
0.872401 + 0.488791i \(0.162562\pi\)
\(48\) 0 0
\(49\) 0.587117i 0.0838738i
\(50\) 0 0
\(51\) 0.686521i 0.0961322i
\(52\) 0 0
\(53\) 1.79572 + 1.79572i 0.246661 + 0.246661i 0.819599 0.572938i \(-0.194196\pi\)
−0.572938 + 0.819599i \(0.694196\pi\)
\(54\) 0 0
\(55\) −2.35260 + 1.50665i −0.317224 + 0.203157i
\(56\) 0 0
\(57\) −11.1057 11.1057i −1.47098 1.47098i
\(58\) 0 0
\(59\) 6.73630i 0.876991i −0.898733 0.438495i \(-0.855512\pi\)
0.898733 0.438495i \(-0.144488\pi\)
\(60\) 0 0
\(61\) 5.50590 5.50590i 0.704958 0.704958i −0.260512 0.965471i \(-0.583891\pi\)
0.965471 + 0.260512i \(0.0838914\pi\)
\(62\) 0 0
\(63\) 2.75497 2.75497i 0.347093 0.347093i
\(64\) 0 0
\(65\) −7.17769 + 4.59674i −0.890283 + 0.570156i
\(66\) 0 0
\(67\) 3.12885 + 3.12885i 0.382250 + 0.382250i 0.871912 0.489663i \(-0.162880\pi\)
−0.489663 + 0.871912i \(0.662880\pi\)
\(68\) 0 0
\(69\) −1.17131 1.17131i −0.141009 0.141009i
\(70\) 0 0
\(71\) 3.62645i 0.430380i −0.976572 0.215190i \(-0.930963\pi\)
0.976572 0.215190i \(-0.0690371\pi\)
\(72\) 0 0
\(73\) 11.1192i 1.30141i −0.759332 0.650704i \(-0.774474\pi\)
0.759332 0.650704i \(-0.225526\pi\)
\(74\) 0 0
\(75\) 9.54207 + 4.39437i 1.10182 + 0.507418i
\(76\) 0 0
\(77\) 3.44137i 0.392181i
\(78\) 0 0
\(79\) 5.17391 + 5.17391i 0.582110 + 0.582110i 0.935483 0.353372i \(-0.114965\pi\)
−0.353372 + 0.935483i \(0.614965\pi\)
\(80\) 0 0
\(81\) −11.2427 −1.24919
\(82\) 0 0
\(83\) 3.60182 + 3.60182i 0.395351 + 0.395351i 0.876590 0.481238i \(-0.159813\pi\)
−0.481238 + 0.876590i \(0.659813\pi\)
\(84\) 0 0
\(85\) −0.156440 + 0.713689i −0.0169683 + 0.0774105i
\(86\) 0 0
\(87\) −2.85732 + 10.9478i −0.306337 + 1.17373i
\(88\) 0 0
\(89\) 10.8840 + 10.8840i 1.15370 + 1.15370i 0.985804 + 0.167898i \(0.0536979\pi\)
0.167898 + 0.985804i \(0.446302\pi\)
\(90\) 0 0
\(91\) 10.4995i 1.10065i
\(92\) 0 0
\(93\) 6.88206 6.88206i 0.713636 0.713636i
\(94\) 0 0
\(95\) 9.01446 + 14.0758i 0.924865 + 1.44415i
\(96\) 0 0
\(97\) −3.89805 −0.395787 −0.197894 0.980224i \(-0.563410\pi\)
−0.197894 + 0.980224i \(0.563410\pi\)
\(98\) 0 0
\(99\) 1.24960 1.24960i 0.125590 0.125590i
\(100\) 0 0
\(101\) −7.74849 + 7.74849i −0.771003 + 0.771003i −0.978282 0.207279i \(-0.933539\pi\)
0.207279 + 0.978282i \(0.433539\pi\)
\(102\) 0 0
\(103\) 4.79779 + 4.79779i 0.472740 + 0.472740i 0.902800 0.430060i \(-0.141508\pi\)
−0.430060 + 0.902800i \(0.641508\pi\)
\(104\) 0 0
\(105\) −10.8976 + 6.97906i −1.06350 + 0.681087i
\(106\) 0 0
\(107\) −10.7751 + 10.7751i −1.04167 + 1.04167i −0.0425795 + 0.999093i \(0.513558\pi\)
−0.999093 + 0.0425795i \(0.986442\pi\)
\(108\) 0 0
\(109\) −14.3723 −1.37662 −0.688311 0.725416i \(-0.741647\pi\)
−0.688311 + 0.725416i \(0.741647\pi\)
\(110\) 0 0
\(111\) 14.0600 1.33451
\(112\) 0 0
\(113\) 0.237524i 0.0223444i −0.999938 0.0111722i \(-0.996444\pi\)
0.999938 0.0111722i \(-0.00355629\pi\)
\(114\) 0 0
\(115\) 0.950753 + 1.48457i 0.0886582 + 0.138437i
\(116\) 0 0
\(117\) 3.81249 3.81249i 0.352465 0.352465i
\(118\) 0 0
\(119\) −0.636412 0.636412i −0.0583398 0.0583398i
\(120\) 0 0
\(121\) 9.43906i 0.858096i
\(122\) 0 0
\(123\) −13.3544 13.3544i −1.20412 1.20412i
\(124\) 0 0
\(125\) −8.91833 6.74266i −0.797679 0.603082i
\(126\) 0 0
\(127\) 5.00723i 0.444320i 0.975010 + 0.222160i \(0.0713107\pi\)
−0.975010 + 0.222160i \(0.928689\pi\)
\(128\) 0 0
\(129\) −5.13749 −0.452330
\(130\) 0 0
\(131\) 12.8392 + 12.8392i 1.12177 + 1.12177i 0.991476 + 0.130292i \(0.0415913\pi\)
0.130292 + 0.991476i \(0.458409\pi\)
\(132\) 0 0
\(133\) −20.5901 −1.78539
\(134\) 0 0
\(135\) 7.27627 + 1.59495i 0.626242 + 0.137272i
\(136\) 0 0
\(137\) 13.4656i 1.15045i 0.817996 + 0.575224i \(0.195085\pi\)
−0.817996 + 0.575224i \(0.804915\pi\)
\(138\) 0 0
\(139\) 10.2882i 0.872637i −0.899792 0.436319i \(-0.856282\pi\)
0.899792 0.436319i \(-0.143718\pi\)
\(140\) 0 0
\(141\) 25.1324 2.11653
\(142\) 0 0
\(143\) 4.76238i 0.398250i
\(144\) 0 0
\(145\) 5.46512 10.7300i 0.453854 0.891076i
\(146\) 0 0
\(147\) 1.23357i 0.101743i
\(148\) 0 0
\(149\) −15.6963 −1.28589 −0.642944 0.765913i \(-0.722287\pi\)
−0.642944 + 0.765913i \(0.722287\pi\)
\(150\) 0 0
\(151\) 8.21302i 0.668366i 0.942508 + 0.334183i \(0.108460\pi\)
−0.942508 + 0.334183i \(0.891540\pi\)
\(152\) 0 0
\(153\) 0.462176i 0.0373647i
\(154\) 0 0
\(155\) −8.72265 + 5.58617i −0.700620 + 0.448692i
\(156\) 0 0
\(157\) 11.3146 0.903006 0.451503 0.892270i \(-0.350888\pi\)
0.451503 + 0.892270i \(0.350888\pi\)
\(158\) 0 0
\(159\) 3.77292 + 3.77292i 0.299212 + 0.299212i
\(160\) 0 0
\(161\) −2.17163 −0.171149
\(162\) 0 0
\(163\) 18.0379i 1.41284i −0.707793 0.706420i \(-0.750309\pi\)
0.707793 0.706420i \(-0.249691\pi\)
\(164\) 0 0
\(165\) −4.94296 + 3.16557i −0.384809 + 0.246440i
\(166\) 0 0
\(167\) 8.11754 + 8.11754i 0.628154 + 0.628154i 0.947603 0.319449i \(-0.103498\pi\)
−0.319449 + 0.947603i \(0.603498\pi\)
\(168\) 0 0
\(169\) 1.52985i 0.117681i
\(170\) 0 0
\(171\) −7.47650 7.47650i −0.571742 0.571742i
\(172\) 0 0
\(173\) −0.288382 + 0.288382i −0.0219253 + 0.0219253i −0.717984 0.696059i \(-0.754935\pi\)
0.696059 + 0.717984i \(0.254935\pi\)
\(174\) 0 0
\(175\) 12.9192 4.77197i 0.976601 0.360727i
\(176\) 0 0
\(177\) 14.1534i 1.06383i
\(178\) 0 0
\(179\) 4.24083 0.316974 0.158487 0.987361i \(-0.449338\pi\)
0.158487 + 0.987361i \(0.449338\pi\)
\(180\) 0 0
\(181\) 7.99022 0.593908 0.296954 0.954892i \(-0.404029\pi\)
0.296954 + 0.954892i \(0.404029\pi\)
\(182\) 0 0
\(183\) 11.5682 11.5682i 0.855150 0.855150i
\(184\) 0 0
\(185\) −14.6164 3.20389i −1.07462 0.235555i
\(186\) 0 0
\(187\) −0.288664 0.288664i −0.0211092 0.0211092i
\(188\) 0 0
\(189\) −6.48840 + 6.48840i −0.471962 + 0.471962i
\(190\) 0 0
\(191\) −9.91272 + 9.91272i −0.717260 + 0.717260i −0.968043 0.250784i \(-0.919312\pi\)
0.250784 + 0.968043i \(0.419312\pi\)
\(192\) 0 0
\(193\) −23.3002 −1.67719 −0.838593 0.544758i \(-0.816621\pi\)
−0.838593 + 0.544758i \(0.816621\pi\)
\(194\) 0 0
\(195\) −15.0808 + 9.65805i −1.07996 + 0.691627i
\(196\) 0 0
\(197\) −0.108668 + 0.108668i −0.00774225 + 0.00774225i −0.710967 0.703225i \(-0.751743\pi\)
0.703225 + 0.710967i \(0.251743\pi\)
\(198\) 0 0
\(199\) 6.43805i 0.456382i −0.973616 0.228191i \(-0.926719\pi\)
0.973616 0.228191i \(-0.0732810\pi\)
\(200\) 0 0
\(201\) 6.57391 + 6.57391i 0.463688 + 0.463688i
\(202\) 0 0
\(203\) 7.49999 + 12.7975i 0.526396 + 0.898210i
\(204\) 0 0
\(205\) 10.8397 + 16.9260i 0.757080 + 1.18216i
\(206\) 0 0
\(207\) −0.788544 0.788544i −0.0548076 0.0548076i
\(208\) 0 0
\(209\) −9.33929 −0.646012
\(210\) 0 0
\(211\) 15.3334 + 15.3334i 1.05559 + 1.05559i 0.998361 + 0.0572336i \(0.0182280\pi\)
0.0572336 + 0.998361i \(0.481772\pi\)
\(212\) 0 0
\(213\) 7.61940i 0.522072i
\(214\) 0 0
\(215\) 5.34080 + 1.17070i 0.364239 + 0.0798409i
\(216\) 0 0
\(217\) 12.7595i 0.866169i
\(218\) 0 0
\(219\) 23.3622i 1.57867i
\(220\) 0 0
\(221\) −0.880705 0.880705i −0.0592426 0.0592426i
\(222\) 0 0
\(223\) −0.698377 0.698377i −0.0467668 0.0467668i 0.683337 0.730103i \(-0.260528\pi\)
−0.730103 + 0.683337i \(0.760528\pi\)
\(224\) 0 0
\(225\) 6.42387 + 2.95836i 0.428258 + 0.197224i
\(226\) 0 0
\(227\) −4.90838 + 4.90838i −0.325780 + 0.325780i −0.850979 0.525199i \(-0.823991\pi\)
0.525199 + 0.850979i \(0.323991\pi\)
\(228\) 0 0
\(229\) 10.6218 10.6218i 0.701906 0.701906i −0.262913 0.964819i \(-0.584683\pi\)
0.964819 + 0.262913i \(0.0846834\pi\)
\(230\) 0 0
\(231\) 7.23055i 0.475735i
\(232\) 0 0
\(233\) −2.89799 2.89799i −0.189854 0.189854i 0.605779 0.795633i \(-0.292862\pi\)
−0.795633 + 0.605779i \(0.792862\pi\)
\(234\) 0 0
\(235\) −26.1270 5.72701i −1.70434 0.373589i
\(236\) 0 0
\(237\) 10.8707 + 10.8707i 0.706129 + 0.706129i
\(238\) 0 0
\(239\) 7.30996i 0.472842i −0.971651 0.236421i \(-0.924026\pi\)
0.971651 0.236421i \(-0.0759745\pi\)
\(240\) 0 0
\(241\) 3.62739i 0.233661i −0.993152 0.116830i \(-0.962727\pi\)
0.993152 0.116830i \(-0.0372734\pi\)
\(242\) 0 0
\(243\) −13.6277 −0.874216
\(244\) 0 0
\(245\) −0.281098 + 1.28239i −0.0179587 + 0.0819287i
\(246\) 0 0
\(247\) −28.4938 −1.81302
\(248\) 0 0
\(249\) 7.56765 + 7.56765i 0.479581 + 0.479581i
\(250\) 0 0
\(251\) 4.11985 4.11985i 0.260043 0.260043i −0.565028 0.825071i \(-0.691135\pi\)
0.825071 + 0.565028i \(0.191135\pi\)
\(252\) 0 0
\(253\) −0.985012 −0.0619272
\(254\) 0 0
\(255\) −0.328690 + 1.49951i −0.0205834 + 0.0939027i
\(256\) 0 0
\(257\) 7.92255 7.92255i 0.494195 0.494195i −0.415430 0.909625i \(-0.636369\pi\)
0.909625 + 0.415430i \(0.136369\pi\)
\(258\) 0 0
\(259\) 13.0337 13.0337i 0.809876 0.809876i
\(260\) 0 0
\(261\) −1.92359 + 7.37025i −0.119067 + 0.456207i
\(262\) 0 0
\(263\) 23.6548 1.45862 0.729308 0.684185i \(-0.239842\pi\)
0.729308 + 0.684185i \(0.239842\pi\)
\(264\) 0 0
\(265\) −3.06248 4.78198i −0.188127 0.293755i
\(266\) 0 0
\(267\) 22.8680 + 22.8680i 1.39950 + 1.39950i
\(268\) 0 0
\(269\) −9.81352 + 9.81352i −0.598341 + 0.598341i −0.939871 0.341530i \(-0.889055\pi\)
0.341530 + 0.939871i \(0.389055\pi\)
\(270\) 0 0
\(271\) 13.5466 + 13.5466i 0.822899 + 0.822899i 0.986523 0.163624i \(-0.0523184\pi\)
−0.163624 + 0.986523i \(0.552318\pi\)
\(272\) 0 0
\(273\) 22.0601i 1.33514i
\(274\) 0 0
\(275\) 5.85992 2.16448i 0.353366 0.130523i
\(276\) 0 0
\(277\) −3.77310 + 3.77310i −0.226703 + 0.226703i −0.811314 0.584611i \(-0.801247\pi\)
0.584611 + 0.811314i \(0.301247\pi\)
\(278\) 0 0
\(279\) 4.63311 4.63311i 0.277377 0.277377i
\(280\) 0 0
\(281\) 33.1089 1.97511 0.987554 0.157278i \(-0.0502718\pi\)
0.987554 + 0.157278i \(0.0502718\pi\)
\(282\) 0 0
\(283\) −18.9994 + 18.9994i −1.12940 + 1.12940i −0.139121 + 0.990275i \(0.544428\pi\)
−0.990275 + 0.139121i \(0.955572\pi\)
\(284\) 0 0
\(285\) 18.9400 + 29.5742i 1.12191 + 1.75183i
\(286\) 0 0
\(287\) −24.7593 −1.46149
\(288\) 0 0
\(289\) 16.8932 0.993720
\(290\) 0 0
\(291\) −8.19005 −0.480109
\(292\) 0 0
\(293\) −12.7648 −0.745728 −0.372864 0.927886i \(-0.621624\pi\)
−0.372864 + 0.927886i \(0.621624\pi\)
\(294\) 0 0
\(295\) −3.22518 + 14.7135i −0.187777 + 0.856652i
\(296\) 0 0
\(297\) −2.94302 + 2.94302i −0.170771 + 0.170771i
\(298\) 0 0
\(299\) −3.00524 −0.173797
\(300\) 0 0
\(301\) −4.76250 + 4.76250i −0.274506 + 0.274506i
\(302\) 0 0
\(303\) −16.2801 + 16.2801i −0.935265 + 0.935265i
\(304\) 0 0
\(305\) −14.6621 + 9.38995i −0.839552 + 0.537667i
\(306\) 0 0
\(307\) 31.0310i 1.77103i 0.464607 + 0.885517i \(0.346196\pi\)
−0.464607 + 0.885517i \(0.653804\pi\)
\(308\) 0 0
\(309\) 10.0805 + 10.0805i 0.573458 + 0.573458i
\(310\) 0 0
\(311\) 9.20844 9.20844i 0.522162 0.522162i −0.396062 0.918224i \(-0.629623\pi\)
0.918224 + 0.396062i \(0.129623\pi\)
\(312\) 0 0
\(313\) −15.1195 15.1195i −0.854604 0.854604i 0.136092 0.990696i \(-0.456546\pi\)
−0.990696 + 0.136092i \(0.956546\pi\)
\(314\) 0 0
\(315\) −7.33644 + 4.69841i −0.413361 + 0.264725i
\(316\) 0 0
\(317\) −9.15875 −0.514406 −0.257203 0.966357i \(-0.582801\pi\)
−0.257203 + 0.966357i \(0.582801\pi\)
\(318\) 0 0
\(319\) 3.40185 + 5.80472i 0.190467 + 0.325002i
\(320\) 0 0
\(321\) −22.6393 + 22.6393i −1.26360 + 1.26360i
\(322\) 0 0
\(323\) −1.72711 + 1.72711i −0.0960990 + 0.0960990i
\(324\) 0 0
\(325\) 17.8784 6.60374i 0.991715 0.366310i
\(326\) 0 0
\(327\) −30.1972 −1.66991
\(328\) 0 0
\(329\) 23.2980 23.2980i 1.28446 1.28446i
\(330\) 0 0
\(331\) −5.48552 5.48552i −0.301511 0.301511i 0.540094 0.841605i \(-0.318389\pi\)
−0.841605 + 0.540094i \(0.818389\pi\)
\(332\) 0 0
\(333\) 9.46537 0.518699
\(334\) 0 0
\(335\) −5.33604 8.33208i −0.291539 0.455230i
\(336\) 0 0
\(337\) −21.9596 −1.19622 −0.598108 0.801416i \(-0.704081\pi\)
−0.598108 + 0.801416i \(0.704081\pi\)
\(338\) 0 0
\(339\) 0.499053i 0.0271048i
\(340\) 0 0
\(341\) 5.78746i 0.313408i
\(342\) 0 0
\(343\) 12.4904 + 12.4904i 0.674419 + 0.674419i
\(344\) 0 0
\(345\) 1.99759 + 3.11918i 0.107547 + 0.167931i
\(346\) 0 0
\(347\) −14.1927 14.1927i −0.761904 0.761904i 0.214763 0.976666i \(-0.431102\pi\)
−0.976666 + 0.214763i \(0.931102\pi\)
\(348\) 0 0
\(349\) 11.5541i 0.618476i 0.950985 + 0.309238i \(0.100074\pi\)
−0.950985 + 0.309238i \(0.899926\pi\)
\(350\) 0 0
\(351\) −8.97904 + 8.97904i −0.479266 + 0.479266i
\(352\) 0 0
\(353\) −22.9709 + 22.9709i −1.22262 + 1.22262i −0.255917 + 0.966699i \(0.582377\pi\)
−0.966699 + 0.255917i \(0.917623\pi\)
\(354\) 0 0
\(355\) −1.73626 + 7.92092i −0.0921511 + 0.420399i
\(356\) 0 0
\(357\) −1.33714 1.33714i −0.0707690 0.0707690i
\(358\) 0 0
\(359\) 14.3952 + 14.3952i 0.759748 + 0.759748i 0.976276 0.216528i \(-0.0694734\pi\)
−0.216528 + 0.976276i \(0.569473\pi\)
\(360\) 0 0
\(361\) 36.8780i 1.94095i
\(362\) 0 0
\(363\) 19.8321i 1.04091i
\(364\) 0 0
\(365\) −5.32363 + 24.2867i −0.278651 + 1.27123i
\(366\) 0 0
\(367\) 9.65343i 0.503905i −0.967740 0.251953i \(-0.918927\pi\)
0.967740 0.251953i \(-0.0810727\pi\)
\(368\) 0 0
\(369\) −8.99036 8.99036i −0.468020 0.468020i
\(370\) 0 0
\(371\) 6.99507 0.363166
\(372\) 0 0
\(373\) −5.81049 5.81049i −0.300856 0.300856i 0.540493 0.841349i \(-0.318238\pi\)
−0.841349 + 0.540493i \(0.818238\pi\)
\(374\) 0 0
\(375\) −18.7380 14.1668i −0.967625 0.731568i
\(376\) 0 0
\(377\) 10.3789 + 17.7100i 0.534542 + 0.912110i
\(378\) 0 0
\(379\) −21.5192 21.5192i −1.10537 1.10537i −0.993751 0.111618i \(-0.964397\pi\)
−0.111618 0.993751i \(-0.535603\pi\)
\(380\) 0 0
\(381\) 10.5205i 0.538982i
\(382\) 0 0
\(383\) −7.15942 + 7.15942i −0.365829 + 0.365829i −0.865954 0.500124i \(-0.833288\pi\)
0.500124 + 0.865954i \(0.333288\pi\)
\(384\) 0 0
\(385\) −1.64765 + 7.51668i −0.0839720 + 0.383086i
\(386\) 0 0
\(387\) −3.45863 −0.175812
\(388\) 0 0
\(389\) 12.3444 12.3444i 0.625887 0.625887i −0.321144 0.947030i \(-0.604067\pi\)
0.947030 + 0.321144i \(0.104067\pi\)
\(390\) 0 0
\(391\) −0.182158 + 0.182158i −0.00921211 + 0.00921211i
\(392\) 0 0
\(393\) 26.9760 + 26.9760i 1.36076 + 1.36076i
\(394\) 0 0
\(395\) −8.82376 13.7781i −0.443971 0.693249i
\(396\) 0 0
\(397\) 9.88573 9.88573i 0.496151 0.496151i −0.414087 0.910237i \(-0.635899\pi\)
0.910237 + 0.414087i \(0.135899\pi\)
\(398\) 0 0
\(399\) −43.2611 −2.16577
\(400\) 0 0
\(401\) −4.42061 −0.220755 −0.110377 0.993890i \(-0.535206\pi\)
−0.110377 + 0.993890i \(0.535206\pi\)
\(402\) 0 0
\(403\) 17.6573i 0.879574i
\(404\) 0 0
\(405\) 24.5564 + 5.38274i 1.22022 + 0.267470i
\(406\) 0 0
\(407\) 5.91185 5.91185i 0.293040 0.293040i
\(408\) 0 0
\(409\) 18.3976 + 18.3976i 0.909702 + 0.909702i 0.996248 0.0865462i \(-0.0275830\pi\)
−0.0865462 + 0.996248i \(0.527583\pi\)
\(410\) 0 0
\(411\) 28.2922i 1.39555i
\(412\) 0 0
\(413\) −13.1203 13.1203i −0.645609 0.645609i
\(414\) 0 0
\(415\) −6.14266 9.59160i −0.301532 0.470833i
\(416\) 0 0
\(417\) 21.6162i 1.05855i
\(418\) 0 0
\(419\) 11.9789 0.585208 0.292604 0.956234i \(-0.405478\pi\)
0.292604 + 0.956234i \(0.405478\pi\)
\(420\) 0 0
\(421\) 13.1646 + 13.1646i 0.641605 + 0.641605i 0.950950 0.309345i \(-0.100110\pi\)
−0.309345 + 0.950950i \(0.600110\pi\)
\(422\) 0 0
\(423\) 16.9195 0.822655
\(424\) 0 0
\(425\) 0.683396 1.48395i 0.0331496 0.0719820i
\(426\) 0 0
\(427\) 21.4478i 1.03793i
\(428\) 0 0
\(429\) 10.0061i 0.483097i
\(430\) 0 0
\(431\) 33.9147 1.63361 0.816807 0.576911i \(-0.195742\pi\)
0.816807 + 0.576911i \(0.195742\pi\)
\(432\) 0 0
\(433\) 24.8729i 1.19531i −0.801752 0.597657i \(-0.796098\pi\)
0.801752 0.597657i \(-0.203902\pi\)
\(434\) 0 0
\(435\) 11.4826 22.5444i 0.550547 1.08092i
\(436\) 0 0
\(437\) 5.89343i 0.281921i
\(438\) 0 0
\(439\) 21.5991 1.03087 0.515433 0.856930i \(-0.327631\pi\)
0.515433 + 0.856930i \(0.327631\pi\)
\(440\) 0 0
\(441\) 0.830457i 0.0395456i
\(442\) 0 0
\(443\) 5.25883i 0.249855i 0.992166 + 0.124927i \(0.0398698\pi\)
−0.992166 + 0.124927i \(0.960130\pi\)
\(444\) 0 0
\(445\) −18.5619 28.9840i −0.879920 1.37397i
\(446\) 0 0
\(447\) −32.9788 −1.55985
\(448\) 0 0
\(449\) 20.2305 + 20.2305i 0.954738 + 0.954738i 0.999019 0.0442813i \(-0.0140998\pi\)
−0.0442813 + 0.999019i \(0.514100\pi\)
\(450\) 0 0
\(451\) −11.2303 −0.528816
\(452\) 0 0
\(453\) 17.2561i 0.810762i
\(454\) 0 0
\(455\) −5.02692 + 22.9331i −0.235666 + 1.07512i
\(456\) 0 0
\(457\) 2.36773 + 2.36773i 0.110758 + 0.110758i 0.760314 0.649556i \(-0.225045\pi\)
−0.649556 + 0.760314i \(0.725045\pi\)
\(458\) 0 0
\(459\) 1.08850i 0.0508069i
\(460\) 0 0
\(461\) −18.0665 18.0665i −0.841441 0.841441i 0.147605 0.989046i \(-0.452843\pi\)
−0.989046 + 0.147605i \(0.952843\pi\)
\(462\) 0 0
\(463\) 23.6401 23.6401i 1.09865 1.09865i 0.104080 0.994569i \(-0.466810\pi\)
0.994569 0.104080i \(-0.0331899\pi\)
\(464\) 0 0
\(465\) −18.3268 + 11.7369i −0.849887 + 0.544285i
\(466\) 0 0
\(467\) 0.686553i 0.0317699i −0.999874 0.0158849i \(-0.994943\pi\)
0.999874 0.0158849i \(-0.00505655\pi\)
\(468\) 0 0
\(469\) 12.1881 0.562796
\(470\) 0 0
\(471\) 23.7727 1.09539
\(472\) 0 0
\(473\) −2.16018 + 2.16018i −0.0993252 + 0.0993252i
\(474\) 0 0
\(475\) −12.9503 35.0605i −0.594200 1.60869i
\(476\) 0 0
\(477\) 2.53999 + 2.53999i 0.116298 + 0.116298i
\(478\) 0 0
\(479\) −27.6104 + 27.6104i −1.26155 + 1.26155i −0.311212 + 0.950340i \(0.600735\pi\)
−0.950340 + 0.311212i \(0.899265\pi\)
\(480\) 0 0
\(481\) 18.0368 18.0368i 0.822409 0.822409i
\(482\) 0 0
\(483\) −4.56274 −0.207612
\(484\) 0 0
\(485\) 8.51416 + 1.86630i 0.386608 + 0.0847442i
\(486\) 0 0
\(487\) 24.4884 24.4884i 1.10968 1.10968i 0.116483 0.993193i \(-0.462838\pi\)
0.993193 0.116483i \(-0.0371620\pi\)
\(488\) 0 0
\(489\) 37.8988i 1.71384i
\(490\) 0 0
\(491\) −3.63405 3.63405i −0.164002 0.164002i 0.620335 0.784337i \(-0.286997\pi\)
−0.784337 + 0.620335i \(0.786997\pi\)
\(492\) 0 0
\(493\) 1.70257 + 0.444360i 0.0766797 + 0.0200130i
\(494\) 0 0
\(495\) −3.32767 + 2.13111i −0.149568 + 0.0957863i
\(496\) 0 0
\(497\) −7.06325 7.06325i −0.316830 0.316830i
\(498\) 0 0
\(499\) 12.7461 0.570592 0.285296 0.958439i \(-0.407908\pi\)
0.285296 + 0.958439i \(0.407908\pi\)
\(500\) 0 0
\(501\) 17.0555 + 17.0555i 0.761982 + 0.761982i
\(502\) 0 0
\(503\) 12.2048i 0.544185i −0.962271 0.272092i \(-0.912284\pi\)
0.962271 0.272092i \(-0.0877156\pi\)
\(504\) 0 0
\(505\) 20.6341 13.2145i 0.918206 0.588039i
\(506\) 0 0
\(507\) 3.21431i 0.142753i
\(508\) 0 0
\(509\) 28.3545i 1.25679i −0.777894 0.628396i \(-0.783712\pi\)
0.777894 0.628396i \(-0.216288\pi\)
\(510\) 0 0
\(511\) −21.6570 21.6570i −0.958049 0.958049i
\(512\) 0 0
\(513\) 17.6084 + 17.6084i 0.777429 + 0.777429i
\(514\) 0 0
\(515\) −8.18231 12.7765i −0.360556 0.562998i
\(516\) 0 0
\(517\) 10.5675 10.5675i 0.464759 0.464759i
\(518\) 0 0
\(519\) −0.605909 + 0.605909i −0.0265964 + 0.0265964i
\(520\) 0 0
\(521\) 21.8728i 0.958267i −0.877742 0.479133i \(-0.840951\pi\)
0.877742 0.479133i \(-0.159049\pi\)
\(522\) 0 0
\(523\) −4.55629 4.55629i −0.199232 0.199232i 0.600438 0.799671i \(-0.294993\pi\)
−0.799671 + 0.600438i \(0.794993\pi\)
\(524\) 0 0
\(525\) 27.1441 10.0262i 1.18467 0.437580i
\(526\) 0 0
\(527\) −1.07027 1.07027i −0.0466218 0.0466218i
\(528\) 0 0
\(529\) 22.3784i 0.972975i
\(530\) 0 0
\(531\) 9.52827i 0.413492i
\(532\) 0 0
\(533\) −34.2634 −1.48411
\(534\) 0 0
\(535\) 28.6941 18.3763i 1.24055 0.794476i
\(536\) 0 0
\(537\) 8.91024 0.384505
\(538\) 0 0
\(539\) −0.518684 0.518684i −0.0223413 0.0223413i
\(540\) 0 0
\(541\) 1.47906 1.47906i 0.0635899 0.0635899i −0.674597 0.738187i \(-0.735682\pi\)
0.738187 + 0.674597i \(0.235682\pi\)
\(542\) 0 0
\(543\) 16.7880 0.720440
\(544\) 0 0
\(545\) 31.3922 + 6.88115i 1.34470 + 0.294756i
\(546\) 0 0
\(547\) −3.08962 + 3.08962i −0.132103 + 0.132103i −0.770066 0.637964i \(-0.779777\pi\)
0.637964 + 0.770066i \(0.279777\pi\)
\(548\) 0 0
\(549\) 7.78792 7.78792i 0.332380 0.332380i
\(550\) 0 0
\(551\) 34.7302 20.3537i 1.47956 0.867095i
\(552\) 0 0
\(553\) 20.1545 0.857057
\(554\) 0 0
\(555\) −30.7099 6.73158i −1.30356 0.285740i
\(556\) 0 0
\(557\) −21.6536 21.6536i −0.917492 0.917492i 0.0793546 0.996846i \(-0.474714\pi\)
−0.996846 + 0.0793546i \(0.974714\pi\)
\(558\) 0 0
\(559\) −6.59063 + 6.59063i −0.278754 + 0.278754i
\(560\) 0 0
\(561\) −0.606502 0.606502i −0.0256065 0.0256065i
\(562\) 0 0
\(563\) 21.2513i 0.895635i −0.894125 0.447818i \(-0.852201\pi\)
0.894125 0.447818i \(-0.147799\pi\)
\(564\) 0 0
\(565\) −0.113721 + 0.518802i −0.00478428 + 0.0218262i
\(566\) 0 0
\(567\) −21.8974 + 21.8974i −0.919606 + 0.919606i
\(568\) 0 0
\(569\) 6.11396 6.11396i 0.256311 0.256311i −0.567241 0.823552i \(-0.691989\pi\)
0.823552 + 0.567241i \(0.191989\pi\)
\(570\) 0 0
\(571\) −34.2533 −1.43345 −0.716727 0.697354i \(-0.754361\pi\)
−0.716727 + 0.697354i \(0.754361\pi\)
\(572\) 0 0
\(573\) −20.8273 + 20.8273i −0.870071 + 0.870071i
\(574\) 0 0
\(575\) −1.36586 3.69782i −0.0569605 0.154210i
\(576\) 0 0
\(577\) 33.2376 1.38370 0.691850 0.722041i \(-0.256796\pi\)
0.691850 + 0.722041i \(0.256796\pi\)
\(578\) 0 0
\(579\) −48.9552 −2.03451
\(580\) 0 0
\(581\) 14.0306 0.582086
\(582\) 0 0
\(583\) 3.17283 0.131405
\(584\) 0 0
\(585\) −10.1526 + 6.50194i −0.419758 + 0.268822i
\(586\) 0 0
\(587\) −1.03039 + 1.03039i −0.0425287 + 0.0425287i −0.728051 0.685523i \(-0.759574\pi\)
0.685523 + 0.728051i \(0.259574\pi\)
\(588\) 0 0
\(589\) −34.6270 −1.42678
\(590\) 0 0
\(591\) −0.228318 + 0.228318i −0.00939173 + 0.00939173i
\(592\) 0 0
\(593\) 0.937969 0.937969i 0.0385178 0.0385178i −0.687586 0.726103i \(-0.741329\pi\)
0.726103 + 0.687586i \(0.241329\pi\)
\(594\) 0 0
\(595\) 1.08536 + 1.69476i 0.0444953 + 0.0694782i
\(596\) 0 0
\(597\) 13.5268i 0.553613i
\(598\) 0 0
\(599\) −27.8033 27.8033i −1.13601 1.13601i −0.989158 0.146855i \(-0.953085\pi\)
−0.146855 0.989158i \(-0.546915\pi\)
\(600\) 0 0
\(601\) 1.33565 1.33565i 0.0544824 0.0544824i −0.679341 0.733823i \(-0.737734\pi\)
0.733823 + 0.679341i \(0.237734\pi\)
\(602\) 0 0
\(603\) 4.42565 + 4.42565i 0.180226 + 0.180226i
\(604\) 0 0
\(605\) 4.51920 20.6169i 0.183732 0.838195i
\(606\) 0 0
\(607\) 4.08518 0.165812 0.0829061 0.996557i \(-0.473580\pi\)
0.0829061 + 0.996557i \(0.473580\pi\)
\(608\) 0 0
\(609\) 15.7580 + 26.8884i 0.638544 + 1.08957i
\(610\) 0 0
\(611\) 32.2412 32.2412i 1.30434 1.30434i
\(612\) 0 0
\(613\) −4.25352 + 4.25352i −0.171798 + 0.171798i −0.787769 0.615971i \(-0.788764\pi\)
0.615971 + 0.787769i \(0.288764\pi\)
\(614\) 0 0
\(615\) 22.7750 + 35.5625i 0.918376 + 1.43402i
\(616\) 0 0
\(617\) −27.4779 −1.10622 −0.553110 0.833108i \(-0.686559\pi\)
−0.553110 + 0.833108i \(0.686559\pi\)
\(618\) 0 0
\(619\) 29.7608 29.7608i 1.19619 1.19619i 0.220886 0.975300i \(-0.429105\pi\)
0.975300 0.220886i \(-0.0708949\pi\)
\(620\) 0 0
\(621\) 1.85715 + 1.85715i 0.0745249 + 0.0745249i
\(622\) 0 0
\(623\) 42.3977 1.69863
\(624\) 0 0
\(625\) 16.2513 + 18.9973i 0.650051 + 0.759891i
\(626\) 0 0
\(627\) −19.6224 −0.783645
\(628\) 0 0
\(629\) 2.18655i 0.0871835i
\(630\) 0 0
\(631\) 6.63723i 0.264224i −0.991235 0.132112i \(-0.957824\pi\)
0.991235 0.132112i \(-0.0421758\pi\)
\(632\) 0 0
\(633\) 32.2164 + 32.2164i 1.28049 + 1.28049i
\(634\) 0 0
\(635\) 2.39735 10.9368i 0.0951358 0.434015i
\(636\) 0 0
\(637\) −1.58249 1.58249i −0.0627004 0.0627004i
\(638\) 0 0
\(639\) 5.12949i 0.202920i
\(640\) 0 0
\(641\) −23.3527 + 23.3527i −0.922376 + 0.922376i −0.997197 0.0748212i \(-0.976161\pi\)
0.0748212 + 0.997197i \(0.476161\pi\)
\(642\) 0 0
\(643\) −28.2503 + 28.2503i −1.11408 + 1.11408i −0.121491 + 0.992592i \(0.538768\pi\)
−0.992592 + 0.121491i \(0.961232\pi\)
\(644\) 0 0
\(645\) 11.2213 + 2.45971i 0.441840 + 0.0968510i
\(646\) 0 0
\(647\) 12.0944 + 12.0944i 0.475480 + 0.475480i 0.903683 0.428203i \(-0.140853\pi\)
−0.428203 + 0.903683i \(0.640853\pi\)
\(648\) 0 0
\(649\) −5.95113 5.95113i −0.233602 0.233602i
\(650\) 0 0
\(651\) 26.8085i 1.05071i
\(652\) 0 0
\(653\) 32.2827i 1.26332i −0.775246 0.631659i \(-0.782374\pi\)
0.775246 0.631659i \(-0.217626\pi\)
\(654\) 0 0
\(655\) −21.8964 34.1907i −0.855564 1.33594i
\(656\) 0 0
\(657\) 15.7278i 0.613599i
\(658\) 0 0
\(659\) 32.9138 + 32.9138i 1.28214 + 1.28214i 0.939448 + 0.342692i \(0.111339\pi\)
0.342692 + 0.939448i \(0.388661\pi\)
\(660\) 0 0
\(661\) −12.4860 −0.485649 −0.242825 0.970070i \(-0.578074\pi\)
−0.242825 + 0.970070i \(0.578074\pi\)
\(662\) 0 0
\(663\) −1.85042 1.85042i −0.0718642 0.0718642i
\(664\) 0 0
\(665\) 44.9731 + 9.85807i 1.74398 + 0.382279i
\(666\) 0 0
\(667\) 3.66299 2.14669i 0.141831 0.0831203i
\(668\) 0 0
\(669\) −1.46734 1.46734i −0.0567305 0.0567305i
\(670\) 0 0
\(671\) 9.72830i 0.375557i
\(672\) 0 0
\(673\) 30.5512 30.5512i 1.17766 1.17766i 0.197324 0.980338i \(-0.436775\pi\)
0.980338 0.197324i \(-0.0632250\pi\)
\(674\) 0 0
\(675\) −15.1293 6.96742i −0.582326 0.268176i
\(676\) 0 0
\(677\) −35.2511 −1.35481 −0.677405 0.735610i \(-0.736895\pi\)
−0.677405 + 0.735610i \(0.736895\pi\)
\(678\) 0 0
\(679\) −7.59226 + 7.59226i −0.291364 + 0.291364i
\(680\) 0 0
\(681\) −10.3128 + 10.3128i −0.395188 + 0.395188i
\(682\) 0 0
\(683\) 7.41154 + 7.41154i 0.283595 + 0.283595i 0.834541 0.550946i \(-0.185733\pi\)
−0.550946 + 0.834541i \(0.685733\pi\)
\(684\) 0 0
\(685\) 6.44704 29.4118i 0.246329 1.12377i
\(686\) 0 0
\(687\) 22.3170 22.3170i 0.851447 0.851447i
\(688\) 0 0
\(689\) 9.68020 0.368786
\(690\) 0 0
\(691\) 3.46515 0.131820 0.0659102 0.997826i \(-0.479005\pi\)
0.0659102 + 0.997826i \(0.479005\pi\)
\(692\) 0 0
\(693\) 4.86771i 0.184909i
\(694\) 0 0
\(695\) −4.92577 + 22.4717i −0.186845 + 0.852399i
\(696\) 0 0
\(697\) −2.07682 + 2.07682i −0.0786652 + 0.0786652i
\(698\) 0 0
\(699\) −6.08887 6.08887i −0.230302 0.230302i
\(700\) 0 0
\(701\) 48.3739i 1.82706i −0.406773 0.913529i \(-0.633346\pi\)
0.406773 0.913529i \(-0.366654\pi\)
\(702\) 0 0
\(703\) −35.3712 35.3712i −1.33405 1.33405i
\(704\) 0 0
\(705\) −54.8945 12.0328i −2.06744 0.453182i
\(706\) 0 0
\(707\) 30.1835i 1.13517i
\(708\) 0 0
\(709\) −17.5666 −0.659728 −0.329864 0.944028i \(-0.607003\pi\)
−0.329864 + 0.944028i \(0.607003\pi\)
\(710\) 0 0
\(711\) 7.31832 + 7.31832i 0.274459 + 0.274459i
\(712\) 0 0
\(713\) −3.65210 −0.136772
\(714\) 0 0
\(715\) −2.28012 + 10.4020i −0.0852716 + 0.389014i
\(716\) 0 0
\(717\) 15.3587i 0.573581i
\(718\) 0 0
\(719\) 42.7327i 1.59366i 0.604202 + 0.796831i \(0.293492\pi\)
−0.604202 + 0.796831i \(0.706508\pi\)
\(720\) 0 0
\(721\) 18.6894 0.696029
\(722\) 0 0
\(723\) 7.62137i 0.283442i
\(724\) 0 0
\(725\) −17.0742 + 20.8200i −0.634121 + 0.773234i
\(726\) 0 0
\(727\) 12.8458i 0.476423i 0.971213 + 0.238211i \(0.0765611\pi\)
−0.971213 + 0.238211i \(0.923439\pi\)
\(728\) 0 0
\(729\) 5.09544 0.188720
\(730\) 0 0
\(731\) 0.798962i 0.0295507i
\(732\) 0 0
\(733\) 16.6173i 0.613773i 0.951746 + 0.306887i \(0.0992873\pi\)
−0.951746 + 0.306887i \(0.900713\pi\)
\(734\) 0 0
\(735\) −0.590605 + 2.69438i −0.0217848 + 0.0993835i
\(736\) 0 0
\(737\) 5.52832 0.203638
\(738\) 0 0
\(739\) 4.90421 + 4.90421i 0.180404 + 0.180404i 0.791532 0.611128i \(-0.209284\pi\)
−0.611128 + 0.791532i \(0.709284\pi\)
\(740\) 0 0
\(741\) −59.8673 −2.19928
\(742\) 0 0
\(743\) 5.82549i 0.213716i 0.994274 + 0.106858i \(0.0340791\pi\)
−0.994274 + 0.106858i \(0.965921\pi\)
\(744\) 0 0
\(745\) 34.2839 + 7.51500i 1.25607 + 0.275328i
\(746\) 0 0
\(747\) 5.09466 + 5.09466i 0.186404 + 0.186404i
\(748\) 0 0
\(749\) 41.9736i 1.53368i
\(750\) 0 0
\(751\) 24.8635 + 24.8635i 0.907281 + 0.907281i 0.996052 0.0887708i \(-0.0282939\pi\)
−0.0887708 + 0.996052i \(0.528294\pi\)
\(752\) 0 0
\(753\) 8.65607 8.65607i 0.315445 0.315445i
\(754\) 0 0
\(755\) 3.93221 17.9390i 0.143108 0.652866i
\(756\) 0 0
\(757\) 13.0727i 0.475134i 0.971371 + 0.237567i \(0.0763500\pi\)
−0.971371 + 0.237567i \(0.923650\pi\)
\(758\) 0 0
\(759\) −2.06957 −0.0751207
\(760\) 0 0
\(761\) 0.295680 0.0107184 0.00535920 0.999986i \(-0.498294\pi\)
0.00535920 + 0.999986i \(0.498294\pi\)
\(762\) 0 0
\(763\) −27.9931 + 27.9931i −1.01342 + 1.01342i
\(764\) 0 0
\(765\) −0.221279 + 1.00949i −0.00800037 + 0.0364982i
\(766\) 0 0
\(767\) −18.1567 18.1567i −0.655600 0.655600i
\(768\) 0 0
\(769\) −20.4410 + 20.4410i −0.737120 + 0.737120i −0.972020 0.234899i \(-0.924524\pi\)
0.234899 + 0.972020i \(0.424524\pi\)
\(770\) 0 0
\(771\) 16.6458 16.6458i 0.599483 0.599483i
\(772\) 0 0
\(773\) −11.2143 −0.403351 −0.201676 0.979452i \(-0.564639\pi\)
−0.201676 + 0.979452i \(0.564639\pi\)
\(774\) 0 0
\(775\) 21.7266 8.02516i 0.780443 0.288272i
\(776\) 0 0
\(777\) 27.3847 27.3847i 0.982419 0.982419i
\(778\) 0 0
\(779\) 67.1923i 2.40741i
\(780\) 0 0
\(781\) −3.20376 3.20376i −0.114640 0.114640i
\(782\) 0 0
\(783\) 4.53038 17.3582i 0.161903 0.620330i
\(784\) 0 0
\(785\) −24.7135 5.41718i −0.882063 0.193347i
\(786\) 0 0
\(787\) 22.9932 + 22.9932i 0.819620 + 0.819620i 0.986053 0.166432i \(-0.0532248\pi\)
−0.166432 + 0.986053i \(0.553225\pi\)
\(788\) 0 0
\(789\) 49.7002 1.76937
\(790\) 0 0
\(791\) −0.462627 0.462627i −0.0164491 0.0164491i
\(792\) 0 0
\(793\) 29.6807i 1.05399i
\(794\) 0 0
\(795\) −6.43447 10.0472i −0.228207 0.356339i
\(796\) 0 0
\(797\) 17.6986i 0.626916i 0.949602 + 0.313458i \(0.101487\pi\)
−0.949602 + 0.313458i \(0.898513\pi\)
\(798\) 0 0
\(799\) 3.90850i 0.138273i
\(800\) 0 0
\(801\) 15.3951 + 15.3951i 0.543958 + 0.543958i
\(802\) 0 0
\(803\) −9.82320 9.82320i −0.346653 0.346653i
\(804\) 0 0
\(805\) 4.74330 + 1.03973i 0.167179 + 0.0366456i
\(806\) 0 0
\(807\) −20.6188 + 20.6188i −0.725817 + 0.725817i
\(808\) 0 0
\(809\) −19.4828 + 19.4828i −0.684979 + 0.684979i −0.961118 0.276139i \(-0.910945\pi\)
0.276139 + 0.961118i \(0.410945\pi\)
\(810\) 0 0
\(811\) 11.9464i 0.419494i 0.977756 + 0.209747i \(0.0672640\pi\)
−0.977756 + 0.209747i \(0.932736\pi\)
\(812\) 0 0
\(813\) 28.4623 + 28.4623i 0.998217 + 0.998217i
\(814\) 0 0
\(815\) −8.63614 + 39.3986i −0.302511 + 1.38007i
\(816\) 0 0
\(817\) 12.9246 + 12.9246i 0.452174 + 0.452174i
\(818\) 0 0
\(819\) 14.8512i 0.518943i
\(820\) 0 0
\(821\) 44.5244i 1.55391i −0.629555 0.776956i \(-0.716763\pi\)
0.629555 0.776956i \(-0.283237\pi\)
\(822\) 0 0
\(823\) 14.9390 0.520741 0.260370 0.965509i \(-0.416155\pi\)
0.260370 + 0.965509i \(0.416155\pi\)
\(824\) 0 0
\(825\) 12.3121 4.54770i 0.428651 0.158331i
\(826\) 0 0
\(827\) −19.2376 −0.668957 −0.334478 0.942403i \(-0.608560\pi\)
−0.334478 + 0.942403i \(0.608560\pi\)
\(828\) 0 0
\(829\) −29.2184 29.2184i −1.01480 1.01480i −0.999889 0.0149076i \(-0.995255\pi\)
−0.0149076 0.999889i \(-0.504745\pi\)
\(830\) 0 0
\(831\) −7.92751 + 7.92751i −0.275002 + 0.275002i
\(832\) 0 0
\(833\) −0.191840 −0.00664686
\(834\) 0 0
\(835\) −13.8439 21.6169i −0.479089 0.748084i
\(836\) 0 0
\(837\) −10.9117 + 10.9117i −0.377165 + 0.377165i
\(838\) 0 0
\(839\) 29.2430 29.2430i 1.00958 1.00958i 0.00962721 0.999954i \(-0.496936\pi\)
0.999954 0.00962721i \(-0.00306448\pi\)
\(840\) 0 0
\(841\) −25.3011 14.1723i −0.872452 0.488699i
\(842\) 0 0
\(843\) 69.5638 2.39590
\(844\) 0 0
\(845\) −0.732457 + 3.34151i −0.0251973 + 0.114952i
\(846\) 0 0
\(847\) 18.3845 + 18.3845i 0.631699 + 0.631699i
\(848\) 0 0
\(849\) −39.9189 + 39.9189i −1.37001 + 1.37001i
\(850\) 0 0
\(851\) −3.73059 3.73059i −0.127883 0.127883i
\(852\) 0 0
\(853\) 0.451413i 0.0154561i 0.999970 + 0.00772804i \(0.00245994\pi\)
−0.999970 + 0.00772804i \(0.997540\pi\)
\(854\) 0 0
\(855\) 12.7507 + 19.9098i 0.436064 + 0.680901i
\(856\) 0 0
\(857\) 15.4044 15.4044i 0.526203 0.526203i −0.393235 0.919438i \(-0.628644\pi\)
0.919438 + 0.393235i \(0.128644\pi\)
\(858\) 0 0
\(859\) 25.5734 25.5734i 0.872555 0.872555i −0.120196 0.992750i \(-0.538352\pi\)
0.992750 + 0.120196i \(0.0383522\pi\)
\(860\) 0 0
\(861\) −52.0208 −1.77286
\(862\) 0 0
\(863\) 16.9266 16.9266i 0.576188 0.576188i −0.357663 0.933851i \(-0.616426\pi\)
0.933851 + 0.357663i \(0.116426\pi\)
\(864\) 0 0
\(865\) 0.767957 0.491816i 0.0261113 0.0167222i
\(866\) 0 0
\(867\) 35.4938 1.20543
\(868\) 0 0
\(869\) 9.14171 0.310111
\(870\) 0 0
\(871\) 16.8667 0.571506
\(872\) 0 0
\(873\) −5.51366 −0.186609
\(874\) 0 0
\(875\) −30.5030 + 4.23757i −1.03119 + 0.143256i
\(876\) 0 0
\(877\) 5.79759 5.79759i 0.195771 0.195771i −0.602413 0.798184i \(-0.705794\pi\)
0.798184 + 0.602413i \(0.205794\pi\)
\(878\) 0 0
\(879\) −26.8197 −0.904604
\(880\) 0 0
\(881\) −33.4393 + 33.4393i −1.12660 + 1.12660i −0.135874 + 0.990726i \(0.543384\pi\)
−0.990726 + 0.135874i \(0.956616\pi\)
\(882\) 0 0
\(883\) 8.69563 8.69563i 0.292631 0.292631i −0.545488 0.838119i \(-0.683656\pi\)
0.838119 + 0.545488i \(0.183656\pi\)
\(884\) 0 0
\(885\) −6.77631 + 30.9140i −0.227783 + 1.03916i
\(886\) 0 0
\(887\) 55.5610i 1.86555i 0.360453 + 0.932777i \(0.382622\pi\)
−0.360453 + 0.932777i \(0.617378\pi\)
\(888\) 0 0
\(889\) 9.75261 + 9.75261i 0.327092 + 0.327092i
\(890\) 0 0
\(891\) −9.93227 + 9.93227i −0.332744 + 0.332744i
\(892\) 0 0
\(893\) −63.2267 63.2267i −2.11580 2.11580i
\(894\) 0 0
\(895\) −9.26285 2.03041i −0.309623 0.0678691i
\(896\) 0 0
\(897\) −6.31419 −0.210825
\(898\) 0 0
\(899\) 12.6129 + 21.5220i 0.420665 + 0.717798i
\(900\) 0 0
\(901\) 0.586750 0.586750i 0.0195475 0.0195475i
\(902\) 0 0
\(903\) −10.0063 + 10.0063i −0.332989 + 0.332989i
\(904\) 0 0
\(905\) −17.4523 3.82553i −0.580134 0.127165i
\(906\) 0 0
\(907\) −33.1251 −1.09990 −0.549951 0.835197i \(-0.685353\pi\)
−0.549951 + 0.835197i \(0.685353\pi\)
\(908\) 0 0
\(909\) −10.9600 + 10.9600i −0.363520 + 0.363520i
\(910\) 0 0
\(911\) 10.3153 + 10.3153i 0.341762 + 0.341762i 0.857029 0.515267i \(-0.172307\pi\)
−0.515267 + 0.857029i \(0.672307\pi\)
\(912\) 0 0
\(913\) 6.36401 0.210618
\(914\) 0 0
\(915\) −30.8061 + 19.7289i −1.01842 + 0.652216i
\(916\) 0 0
\(917\) 50.0140 1.65161
\(918\) 0 0
\(919\) 1.08806i 0.0358917i 0.999839 + 0.0179458i \(0.00571265\pi\)
−0.999839 + 0.0179458i \(0.994287\pi\)
\(920\) 0 0
\(921\) 65.1982i 2.14835i
\(922\) 0 0
\(923\) −9.77455 9.77455i −0.321733 0.321733i
\(924\) 0 0
\(925\) 30.3912 + 13.9959i 0.999258 + 0.460184i
\(926\) 0 0
\(927\) 6.78632 + 6.78632i 0.222892 + 0.222892i
\(928\) 0 0
\(929\) 35.2436i 1.15630i −0.815929 0.578152i \(-0.803774\pi\)
0.815929 0.578152i \(-0.196226\pi\)
\(930\) 0 0
\(931\) −3.10334 + 3.10334i −0.101708 + 0.101708i
\(932\) 0 0
\(933\) 19.3475 19.3475i 0.633409 0.633409i
\(934\) 0 0
\(935\) 0.492298 + 0.768710i 0.0160999 + 0.0251395i
\(936\) 0 0
\(937\) −19.4962 19.4962i −0.636913 0.636913i 0.312880 0.949793i \(-0.398706\pi\)
−0.949793 + 0.312880i \(0.898706\pi\)
\(938\) 0 0
\(939\) −31.7670 31.7670i −1.03668 1.03668i
\(940\) 0 0
\(941\) 12.3219i 0.401681i 0.979624 + 0.200841i \(0.0643674\pi\)
−0.979624 + 0.200841i \(0.935633\pi\)
\(942\) 0 0
\(943\) 7.08675i 0.230776i
\(944\) 0 0
\(945\) 17.2785 11.0655i 0.562071 0.359962i
\(946\) 0 0
\(947\) 43.7634i 1.42212i −0.703131 0.711060i \(-0.748215\pi\)
0.703131 0.711060i \(-0.251785\pi\)
\(948\) 0 0
\(949\) −29.9702 29.9702i −0.972875 0.972875i
\(950\) 0 0
\(951\) −19.2431 −0.624000
\(952\) 0 0
\(953\) −8.66865 8.66865i −0.280805 0.280805i 0.552625 0.833430i \(-0.313626\pi\)
−0.833430 + 0.552625i \(0.813626\pi\)
\(954\) 0 0
\(955\) 26.3975 16.9055i 0.854202 0.547049i
\(956\) 0 0
\(957\) 7.14751 + 12.1961i 0.231046 + 0.394243i
\(958\) 0 0
\(959\) 26.2271 + 26.2271i 0.846917 + 0.846917i
\(960\) 0 0
\(961\) 9.54203i 0.307807i
\(962\) 0 0
\(963\) −15.2411 + 15.2411i −0.491137 + 0.491137i
\(964\) 0 0
\(965\) 50.8926 + 11.1556i 1.63829 + 0.359112i
\(966\) 0 0
\(967\) 48.4687 1.55865 0.779324 0.626621i \(-0.215563\pi\)
0.779324 + 0.626621i \(0.215563\pi\)
\(968\) 0 0
\(969\) −3.62877 + 3.62877i −0.116573 + 0.116573i
\(970\) 0 0
\(971\) −21.4570 + 21.4570i −0.688587 + 0.688587i −0.961920 0.273333i \(-0.911874\pi\)
0.273333 + 0.961920i \(0.411874\pi\)
\(972\) 0 0
\(973\) −20.0385 20.0385i −0.642404 0.642404i
\(974\) 0 0
\(975\) 37.5636 13.8749i 1.20300 0.444352i
\(976\) 0 0
\(977\) −8.07528 + 8.07528i −0.258351 + 0.258351i −0.824383 0.566032i \(-0.808478\pi\)
0.566032 + 0.824383i \(0.308478\pi\)
\(978\) 0 0
\(979\) 19.2308 0.614619
\(980\) 0 0
\(981\) −20.3292 −0.649062
\(982\) 0 0
\(983\) 18.0478i 0.575635i 0.957685 + 0.287817i \(0.0929296\pi\)
−0.957685 + 0.287817i \(0.907070\pi\)
\(984\) 0 0
\(985\) 0.289381 0.185325i 0.00922043 0.00590496i
\(986\) 0 0
\(987\) 48.9505 48.9505i 1.55811 1.55811i
\(988\) 0 0
\(989\) 1.36315 + 1.36315i 0.0433457 + 0.0433457i
\(990\) 0 0
\(991\) 55.6527i 1.76787i −0.467613 0.883933i \(-0.654886\pi\)
0.467613 0.883933i \(-0.345114\pi\)
\(992\) 0 0
\(993\) −11.5254 11.5254i −0.365748 0.365748i
\(994\) 0 0
\(995\) −3.08239 + 14.0621i −0.0977184 + 0.445797i
\(996\) 0 0
\(997\) 32.6196i 1.03307i 0.856265 + 0.516537i \(0.172779\pi\)
−0.856265 + 0.516537i \(0.827221\pi\)
\(998\) 0 0
\(999\) −22.2925 −0.705304
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1160.2.bl.d.713.17 yes 42
5.2 odd 4 1160.2.s.c.17.5 42
29.12 odd 4 1160.2.s.c.273.17 yes 42
145.12 even 4 inner 1160.2.bl.d.737.17 yes 42
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1160.2.s.c.17.5 42 5.2 odd 4
1160.2.s.c.273.17 yes 42 29.12 odd 4
1160.2.bl.d.713.17 yes 42 1.1 even 1 trivial
1160.2.bl.d.737.17 yes 42 145.12 even 4 inner