Properties

Label 1160.4.a.d.1.7
Level $1160$
Weight $4$
Character 1160.1
Self dual yes
Analytic conductor $68.442$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1160,4,Mod(1,1160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1160.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1160 = 2^{3} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1160.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(68.4422156067\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 2x^{8} - 153x^{7} + 229x^{6} + 7393x^{5} - 8331x^{4} - 115371x^{3} + 125775x^{2} + 306882x + 29241 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{7}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(4.19773\) of defining polynomial
Character \(\chi\) \(=\) 1160.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.19773 q^{3} +5.00000 q^{5} +17.9152 q^{7} -16.7745 q^{9} -52.6158 q^{11} +6.67297 q^{13} +15.9886 q^{15} +62.1701 q^{17} -94.9258 q^{19} +57.2878 q^{21} -61.4391 q^{23} +25.0000 q^{25} -139.979 q^{27} +29.0000 q^{29} +6.81367 q^{31} -168.251 q^{33} +89.5759 q^{35} -296.251 q^{37} +21.3383 q^{39} -184.550 q^{41} +215.352 q^{43} -83.8727 q^{45} -428.438 q^{47} -22.0463 q^{49} +198.803 q^{51} -472.395 q^{53} -263.079 q^{55} -303.547 q^{57} +335.523 q^{59} -507.339 q^{61} -300.519 q^{63} +33.3649 q^{65} -424.873 q^{67} -196.465 q^{69} +1013.16 q^{71} +666.292 q^{73} +79.9431 q^{75} -942.621 q^{77} -82.7376 q^{79} +5.29834 q^{81} -1021.81 q^{83} +310.850 q^{85} +92.7340 q^{87} +1610.87 q^{89} +119.547 q^{91} +21.7883 q^{93} -474.629 q^{95} +503.200 q^{97} +882.606 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 7 q^{3} + 45 q^{5} - 39 q^{7} + 72 q^{9} - 108 q^{11} - 19 q^{13} - 35 q^{15} + 91 q^{17} - 36 q^{19} - 200 q^{21} - 209 q^{23} + 225 q^{25} - 316 q^{27} + 261 q^{29} - 599 q^{31} - 192 q^{33} - 195 q^{35}+ \cdots - 2946 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.19773 0.615403 0.307701 0.951483i \(-0.400440\pi\)
0.307701 + 0.951483i \(0.400440\pi\)
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) 17.9152 0.967329 0.483664 0.875254i \(-0.339306\pi\)
0.483664 + 0.875254i \(0.339306\pi\)
\(8\) 0 0
\(9\) −16.7745 −0.621280
\(10\) 0 0
\(11\) −52.6158 −1.44221 −0.721103 0.692828i \(-0.756364\pi\)
−0.721103 + 0.692828i \(0.756364\pi\)
\(12\) 0 0
\(13\) 6.67297 0.142365 0.0711827 0.997463i \(-0.477323\pi\)
0.0711827 + 0.997463i \(0.477323\pi\)
\(14\) 0 0
\(15\) 15.9886 0.275216
\(16\) 0 0
\(17\) 62.1701 0.886968 0.443484 0.896282i \(-0.353742\pi\)
0.443484 + 0.896282i \(0.353742\pi\)
\(18\) 0 0
\(19\) −94.9258 −1.14618 −0.573091 0.819492i \(-0.694256\pi\)
−0.573091 + 0.819492i \(0.694256\pi\)
\(20\) 0 0
\(21\) 57.2878 0.595297
\(22\) 0 0
\(23\) −61.4391 −0.556997 −0.278499 0.960437i \(-0.589837\pi\)
−0.278499 + 0.960437i \(0.589837\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) −139.979 −0.997740
\(28\) 0 0
\(29\) 29.0000 0.185695
\(30\) 0 0
\(31\) 6.81367 0.0394765 0.0197383 0.999805i \(-0.493717\pi\)
0.0197383 + 0.999805i \(0.493717\pi\)
\(32\) 0 0
\(33\) −168.251 −0.887537
\(34\) 0 0
\(35\) 89.5759 0.432603
\(36\) 0 0
\(37\) −296.251 −1.31631 −0.658153 0.752884i \(-0.728662\pi\)
−0.658153 + 0.752884i \(0.728662\pi\)
\(38\) 0 0
\(39\) 21.3383 0.0876120
\(40\) 0 0
\(41\) −184.550 −0.702974 −0.351487 0.936193i \(-0.614324\pi\)
−0.351487 + 0.936193i \(0.614324\pi\)
\(42\) 0 0
\(43\) 215.352 0.763742 0.381871 0.924216i \(-0.375280\pi\)
0.381871 + 0.924216i \(0.375280\pi\)
\(44\) 0 0
\(45\) −83.8727 −0.277845
\(46\) 0 0
\(47\) −428.438 −1.32966 −0.664831 0.746994i \(-0.731496\pi\)
−0.664831 + 0.746994i \(0.731496\pi\)
\(48\) 0 0
\(49\) −22.0463 −0.0642751
\(50\) 0 0
\(51\) 198.803 0.545842
\(52\) 0 0
\(53\) −472.395 −1.22431 −0.612155 0.790738i \(-0.709697\pi\)
−0.612155 + 0.790738i \(0.709697\pi\)
\(54\) 0 0
\(55\) −263.079 −0.644974
\(56\) 0 0
\(57\) −303.547 −0.705364
\(58\) 0 0
\(59\) 335.523 0.740361 0.370181 0.928960i \(-0.379296\pi\)
0.370181 + 0.928960i \(0.379296\pi\)
\(60\) 0 0
\(61\) −507.339 −1.06489 −0.532444 0.846465i \(-0.678726\pi\)
−0.532444 + 0.846465i \(0.678726\pi\)
\(62\) 0 0
\(63\) −300.519 −0.600982
\(64\) 0 0
\(65\) 33.3649 0.0636677
\(66\) 0 0
\(67\) −424.873 −0.774724 −0.387362 0.921928i \(-0.626614\pi\)
−0.387362 + 0.921928i \(0.626614\pi\)
\(68\) 0 0
\(69\) −196.465 −0.342778
\(70\) 0 0
\(71\) 1013.16 1.69353 0.846763 0.531971i \(-0.178548\pi\)
0.846763 + 0.531971i \(0.178548\pi\)
\(72\) 0 0
\(73\) 666.292 1.06827 0.534134 0.845400i \(-0.320638\pi\)
0.534134 + 0.845400i \(0.320638\pi\)
\(74\) 0 0
\(75\) 79.9431 0.123081
\(76\) 0 0
\(77\) −942.621 −1.39509
\(78\) 0 0
\(79\) −82.7376 −0.117832 −0.0589159 0.998263i \(-0.518764\pi\)
−0.0589159 + 0.998263i \(0.518764\pi\)
\(80\) 0 0
\(81\) 5.29834 0.00726796
\(82\) 0 0
\(83\) −1021.81 −1.35131 −0.675653 0.737220i \(-0.736138\pi\)
−0.675653 + 0.737220i \(0.736138\pi\)
\(84\) 0 0
\(85\) 310.850 0.396664
\(86\) 0 0
\(87\) 92.7340 0.114277
\(88\) 0 0
\(89\) 1610.87 1.91856 0.959281 0.282452i \(-0.0911478\pi\)
0.959281 + 0.282452i \(0.0911478\pi\)
\(90\) 0 0
\(91\) 119.547 0.137714
\(92\) 0 0
\(93\) 21.7883 0.0242939
\(94\) 0 0
\(95\) −474.629 −0.512588
\(96\) 0 0
\(97\) 503.200 0.526724 0.263362 0.964697i \(-0.415169\pi\)
0.263362 + 0.964697i \(0.415169\pi\)
\(98\) 0 0
\(99\) 882.606 0.896013
\(100\) 0 0
\(101\) −135.869 −0.133856 −0.0669282 0.997758i \(-0.521320\pi\)
−0.0669282 + 0.997758i \(0.521320\pi\)
\(102\) 0 0
\(103\) −759.802 −0.726850 −0.363425 0.931624i \(-0.618393\pi\)
−0.363425 + 0.931624i \(0.618393\pi\)
\(104\) 0 0
\(105\) 286.439 0.266225
\(106\) 0 0
\(107\) −278.066 −0.251230 −0.125615 0.992079i \(-0.540090\pi\)
−0.125615 + 0.992079i \(0.540090\pi\)
\(108\) 0 0
\(109\) −1314.25 −1.15488 −0.577440 0.816433i \(-0.695948\pi\)
−0.577440 + 0.816433i \(0.695948\pi\)
\(110\) 0 0
\(111\) −947.329 −0.810058
\(112\) 0 0
\(113\) 345.367 0.287517 0.143758 0.989613i \(-0.454081\pi\)
0.143758 + 0.989613i \(0.454081\pi\)
\(114\) 0 0
\(115\) −307.196 −0.249097
\(116\) 0 0
\(117\) −111.936 −0.0884487
\(118\) 0 0
\(119\) 1113.79 0.857989
\(120\) 0 0
\(121\) 1437.42 1.07996
\(122\) 0 0
\(123\) −590.142 −0.432612
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 586.061 0.409484 0.204742 0.978816i \(-0.434364\pi\)
0.204742 + 0.978816i \(0.434364\pi\)
\(128\) 0 0
\(129\) 688.637 0.470009
\(130\) 0 0
\(131\) 403.077 0.268832 0.134416 0.990925i \(-0.457084\pi\)
0.134416 + 0.990925i \(0.457084\pi\)
\(132\) 0 0
\(133\) −1700.61 −1.10874
\(134\) 0 0
\(135\) −699.895 −0.446203
\(136\) 0 0
\(137\) −2772.78 −1.72916 −0.864580 0.502496i \(-0.832415\pi\)
−0.864580 + 0.502496i \(0.832415\pi\)
\(138\) 0 0
\(139\) −872.749 −0.532558 −0.266279 0.963896i \(-0.585794\pi\)
−0.266279 + 0.963896i \(0.585794\pi\)
\(140\) 0 0
\(141\) −1370.03 −0.818278
\(142\) 0 0
\(143\) −351.104 −0.205320
\(144\) 0 0
\(145\) 145.000 0.0830455
\(146\) 0 0
\(147\) −70.4982 −0.0395550
\(148\) 0 0
\(149\) −634.182 −0.348686 −0.174343 0.984685i \(-0.555780\pi\)
−0.174343 + 0.984685i \(0.555780\pi\)
\(150\) 0 0
\(151\) −3537.42 −1.90643 −0.953215 0.302292i \(-0.902248\pi\)
−0.953215 + 0.302292i \(0.902248\pi\)
\(152\) 0 0
\(153\) −1042.87 −0.551055
\(154\) 0 0
\(155\) 34.0684 0.0176544
\(156\) 0 0
\(157\) 1718.64 0.873646 0.436823 0.899548i \(-0.356104\pi\)
0.436823 + 0.899548i \(0.356104\pi\)
\(158\) 0 0
\(159\) −1510.59 −0.753444
\(160\) 0 0
\(161\) −1100.69 −0.538800
\(162\) 0 0
\(163\) −2706.14 −1.30037 −0.650187 0.759774i \(-0.725309\pi\)
−0.650187 + 0.759774i \(0.725309\pi\)
\(164\) 0 0
\(165\) −841.254 −0.396919
\(166\) 0 0
\(167\) 725.949 0.336381 0.168190 0.985755i \(-0.446208\pi\)
0.168190 + 0.985755i \(0.446208\pi\)
\(168\) 0 0
\(169\) −2152.47 −0.979732
\(170\) 0 0
\(171\) 1592.34 0.712100
\(172\) 0 0
\(173\) 4296.47 1.88817 0.944087 0.329696i \(-0.106946\pi\)
0.944087 + 0.329696i \(0.106946\pi\)
\(174\) 0 0
\(175\) 447.879 0.193466
\(176\) 0 0
\(177\) 1072.91 0.455620
\(178\) 0 0
\(179\) −2209.49 −0.922600 −0.461300 0.887244i \(-0.652617\pi\)
−0.461300 + 0.887244i \(0.652617\pi\)
\(180\) 0 0
\(181\) 1819.49 0.747191 0.373595 0.927592i \(-0.378125\pi\)
0.373595 + 0.927592i \(0.378125\pi\)
\(182\) 0 0
\(183\) −1622.33 −0.655335
\(184\) 0 0
\(185\) −1481.25 −0.588670
\(186\) 0 0
\(187\) −3271.13 −1.27919
\(188\) 0 0
\(189\) −2507.75 −0.965142
\(190\) 0 0
\(191\) 716.891 0.271583 0.135792 0.990737i \(-0.456642\pi\)
0.135792 + 0.990737i \(0.456642\pi\)
\(192\) 0 0
\(193\) 1460.72 0.544793 0.272396 0.962185i \(-0.412184\pi\)
0.272396 + 0.962185i \(0.412184\pi\)
\(194\) 0 0
\(195\) 106.692 0.0391813
\(196\) 0 0
\(197\) −1340.32 −0.484740 −0.242370 0.970184i \(-0.577925\pi\)
−0.242370 + 0.970184i \(0.577925\pi\)
\(198\) 0 0
\(199\) −4141.10 −1.47515 −0.737574 0.675266i \(-0.764029\pi\)
−0.737574 + 0.675266i \(0.764029\pi\)
\(200\) 0 0
\(201\) −1358.63 −0.476767
\(202\) 0 0
\(203\) 519.540 0.179628
\(204\) 0 0
\(205\) −922.752 −0.314380
\(206\) 0 0
\(207\) 1030.61 0.346051
\(208\) 0 0
\(209\) 4994.59 1.65303
\(210\) 0 0
\(211\) 3672.55 1.19824 0.599121 0.800659i \(-0.295517\pi\)
0.599121 + 0.800659i \(0.295517\pi\)
\(212\) 0 0
\(213\) 3239.82 1.04220
\(214\) 0 0
\(215\) 1076.76 0.341556
\(216\) 0 0
\(217\) 122.068 0.0381868
\(218\) 0 0
\(219\) 2130.62 0.657415
\(220\) 0 0
\(221\) 414.859 0.126273
\(222\) 0 0
\(223\) −2683.80 −0.805922 −0.402961 0.915217i \(-0.632019\pi\)
−0.402961 + 0.915217i \(0.632019\pi\)
\(224\) 0 0
\(225\) −419.364 −0.124256
\(226\) 0 0
\(227\) 284.860 0.0832901 0.0416451 0.999132i \(-0.486740\pi\)
0.0416451 + 0.999132i \(0.486740\pi\)
\(228\) 0 0
\(229\) 801.992 0.231428 0.115714 0.993283i \(-0.463084\pi\)
0.115714 + 0.993283i \(0.463084\pi\)
\(230\) 0 0
\(231\) −3014.24 −0.858540
\(232\) 0 0
\(233\) 1519.67 0.427283 0.213642 0.976912i \(-0.431468\pi\)
0.213642 + 0.976912i \(0.431468\pi\)
\(234\) 0 0
\(235\) −2142.19 −0.594643
\(236\) 0 0
\(237\) −264.572 −0.0725140
\(238\) 0 0
\(239\) 623.331 0.168703 0.0843513 0.996436i \(-0.473118\pi\)
0.0843513 + 0.996436i \(0.473118\pi\)
\(240\) 0 0
\(241\) −1902.72 −0.508569 −0.254284 0.967129i \(-0.581840\pi\)
−0.254284 + 0.967129i \(0.581840\pi\)
\(242\) 0 0
\(243\) 3796.38 1.00221
\(244\) 0 0
\(245\) −110.232 −0.0287447
\(246\) 0 0
\(247\) −633.437 −0.163177
\(248\) 0 0
\(249\) −3267.47 −0.831597
\(250\) 0 0
\(251\) 1063.32 0.267394 0.133697 0.991022i \(-0.457315\pi\)
0.133697 + 0.991022i \(0.457315\pi\)
\(252\) 0 0
\(253\) 3232.67 0.803304
\(254\) 0 0
\(255\) 994.014 0.244108
\(256\) 0 0
\(257\) 2456.41 0.596214 0.298107 0.954533i \(-0.403645\pi\)
0.298107 + 0.954533i \(0.403645\pi\)
\(258\) 0 0
\(259\) −5307.39 −1.27330
\(260\) 0 0
\(261\) −486.462 −0.115369
\(262\) 0 0
\(263\) −928.726 −0.217748 −0.108874 0.994056i \(-0.534725\pi\)
−0.108874 + 0.994056i \(0.534725\pi\)
\(264\) 0 0
\(265\) −2361.97 −0.547528
\(266\) 0 0
\(267\) 5151.13 1.18069
\(268\) 0 0
\(269\) −6970.48 −1.57992 −0.789959 0.613160i \(-0.789898\pi\)
−0.789959 + 0.613160i \(0.789898\pi\)
\(270\) 0 0
\(271\) 6555.07 1.46934 0.734671 0.678423i \(-0.237336\pi\)
0.734671 + 0.678423i \(0.237336\pi\)
\(272\) 0 0
\(273\) 382.280 0.0847496
\(274\) 0 0
\(275\) −1315.39 −0.288441
\(276\) 0 0
\(277\) −4361.45 −0.946043 −0.473022 0.881051i \(-0.656837\pi\)
−0.473022 + 0.881051i \(0.656837\pi\)
\(278\) 0 0
\(279\) −114.296 −0.0245260
\(280\) 0 0
\(281\) 8137.78 1.72761 0.863806 0.503824i \(-0.168074\pi\)
0.863806 + 0.503824i \(0.168074\pi\)
\(282\) 0 0
\(283\) −7638.55 −1.60447 −0.802234 0.597009i \(-0.796356\pi\)
−0.802234 + 0.597009i \(0.796356\pi\)
\(284\) 0 0
\(285\) −1517.73 −0.315448
\(286\) 0 0
\(287\) −3306.25 −0.680007
\(288\) 0 0
\(289\) −1047.88 −0.213288
\(290\) 0 0
\(291\) 1609.09 0.324147
\(292\) 0 0
\(293\) 4.38130 0.000873578 0 0.000436789 1.00000i \(-0.499861\pi\)
0.000436789 1.00000i \(0.499861\pi\)
\(294\) 0 0
\(295\) 1677.61 0.331100
\(296\) 0 0
\(297\) 7365.11 1.43895
\(298\) 0 0
\(299\) −409.981 −0.0792971
\(300\) 0 0
\(301\) 3858.07 0.738790
\(302\) 0 0
\(303\) −434.473 −0.0823756
\(304\) 0 0
\(305\) −2536.70 −0.476232
\(306\) 0 0
\(307\) −7951.94 −1.47831 −0.739155 0.673535i \(-0.764775\pi\)
−0.739155 + 0.673535i \(0.764775\pi\)
\(308\) 0 0
\(309\) −2429.64 −0.447305
\(310\) 0 0
\(311\) −9691.14 −1.76699 −0.883495 0.468440i \(-0.844816\pi\)
−0.883495 + 0.468440i \(0.844816\pi\)
\(312\) 0 0
\(313\) −1947.15 −0.351627 −0.175814 0.984423i \(-0.556256\pi\)
−0.175814 + 0.984423i \(0.556256\pi\)
\(314\) 0 0
\(315\) −1502.60 −0.268767
\(316\) 0 0
\(317\) 3617.14 0.640880 0.320440 0.947269i \(-0.396169\pi\)
0.320440 + 0.947269i \(0.396169\pi\)
\(318\) 0 0
\(319\) −1525.86 −0.267811
\(320\) 0 0
\(321\) −889.177 −0.154608
\(322\) 0 0
\(323\) −5901.54 −1.01663
\(324\) 0 0
\(325\) 166.824 0.0284731
\(326\) 0 0
\(327\) −4202.60 −0.710717
\(328\) 0 0
\(329\) −7675.55 −1.28622
\(330\) 0 0
\(331\) 5949.33 0.987931 0.493965 0.869482i \(-0.335547\pi\)
0.493965 + 0.869482i \(0.335547\pi\)
\(332\) 0 0
\(333\) 4969.47 0.817794
\(334\) 0 0
\(335\) −2124.36 −0.346467
\(336\) 0 0
\(337\) −3873.87 −0.626181 −0.313091 0.949723i \(-0.601364\pi\)
−0.313091 + 0.949723i \(0.601364\pi\)
\(338\) 0 0
\(339\) 1104.39 0.176939
\(340\) 0 0
\(341\) −358.507 −0.0569332
\(342\) 0 0
\(343\) −6539.87 −1.02950
\(344\) 0 0
\(345\) −982.327 −0.153295
\(346\) 0 0
\(347\) 4859.89 0.751852 0.375926 0.926650i \(-0.377325\pi\)
0.375926 + 0.926650i \(0.377325\pi\)
\(348\) 0 0
\(349\) 7470.46 1.14580 0.572901 0.819625i \(-0.305818\pi\)
0.572901 + 0.819625i \(0.305818\pi\)
\(350\) 0 0
\(351\) −934.076 −0.142044
\(352\) 0 0
\(353\) −8770.79 −1.32244 −0.661221 0.750191i \(-0.729961\pi\)
−0.661221 + 0.750191i \(0.729961\pi\)
\(354\) 0 0
\(355\) 5065.81 0.757368
\(356\) 0 0
\(357\) 3561.59 0.528009
\(358\) 0 0
\(359\) 6966.77 1.02421 0.512106 0.858923i \(-0.328866\pi\)
0.512106 + 0.858923i \(0.328866\pi\)
\(360\) 0 0
\(361\) 2151.90 0.313734
\(362\) 0 0
\(363\) 4596.48 0.664607
\(364\) 0 0
\(365\) 3331.46 0.477744
\(366\) 0 0
\(367\) 6601.00 0.938881 0.469440 0.882964i \(-0.344456\pi\)
0.469440 + 0.882964i \(0.344456\pi\)
\(368\) 0 0
\(369\) 3095.75 0.436744
\(370\) 0 0
\(371\) −8463.04 −1.18431
\(372\) 0 0
\(373\) 8555.25 1.18760 0.593799 0.804614i \(-0.297628\pi\)
0.593799 + 0.804614i \(0.297628\pi\)
\(374\) 0 0
\(375\) 399.716 0.0550433
\(376\) 0 0
\(377\) 193.516 0.0264366
\(378\) 0 0
\(379\) −7739.90 −1.04900 −0.524501 0.851410i \(-0.675748\pi\)
−0.524501 + 0.851410i \(0.675748\pi\)
\(380\) 0 0
\(381\) 1874.06 0.251998
\(382\) 0 0
\(383\) 269.048 0.0358949 0.0179474 0.999839i \(-0.494287\pi\)
0.0179474 + 0.999839i \(0.494287\pi\)
\(384\) 0 0
\(385\) −4713.11 −0.623902
\(386\) 0 0
\(387\) −3612.44 −0.474497
\(388\) 0 0
\(389\) 1006.78 0.131223 0.0656113 0.997845i \(-0.479100\pi\)
0.0656113 + 0.997845i \(0.479100\pi\)
\(390\) 0 0
\(391\) −3819.67 −0.494039
\(392\) 0 0
\(393\) 1288.93 0.165440
\(394\) 0 0
\(395\) −413.688 −0.0526960
\(396\) 0 0
\(397\) 13629.4 1.72302 0.861511 0.507739i \(-0.169518\pi\)
0.861511 + 0.507739i \(0.169518\pi\)
\(398\) 0 0
\(399\) −5438.09 −0.682318
\(400\) 0 0
\(401\) −8894.57 −1.10767 −0.553833 0.832628i \(-0.686835\pi\)
−0.553833 + 0.832628i \(0.686835\pi\)
\(402\) 0 0
\(403\) 45.4674 0.00562009
\(404\) 0 0
\(405\) 26.4917 0.00325033
\(406\) 0 0
\(407\) 15587.5 1.89838
\(408\) 0 0
\(409\) 11566.2 1.39832 0.699158 0.714968i \(-0.253559\pi\)
0.699158 + 0.714968i \(0.253559\pi\)
\(410\) 0 0
\(411\) −8866.60 −1.06413
\(412\) 0 0
\(413\) 6010.95 0.716173
\(414\) 0 0
\(415\) −5109.06 −0.604322
\(416\) 0 0
\(417\) −2790.81 −0.327738
\(418\) 0 0
\(419\) −5313.67 −0.619546 −0.309773 0.950811i \(-0.600253\pi\)
−0.309773 + 0.950811i \(0.600253\pi\)
\(420\) 0 0
\(421\) 8441.45 0.977223 0.488612 0.872501i \(-0.337504\pi\)
0.488612 + 0.872501i \(0.337504\pi\)
\(422\) 0 0
\(423\) 7186.86 0.826092
\(424\) 0 0
\(425\) 1554.25 0.177394
\(426\) 0 0
\(427\) −9089.08 −1.03010
\(428\) 0 0
\(429\) −1122.73 −0.126354
\(430\) 0 0
\(431\) 3013.08 0.336740 0.168370 0.985724i \(-0.446150\pi\)
0.168370 + 0.985724i \(0.446150\pi\)
\(432\) 0 0
\(433\) 13117.3 1.45583 0.727916 0.685666i \(-0.240489\pi\)
0.727916 + 0.685666i \(0.240489\pi\)
\(434\) 0 0
\(435\) 463.670 0.0511064
\(436\) 0 0
\(437\) 5832.15 0.638421
\(438\) 0 0
\(439\) −12694.2 −1.38010 −0.690048 0.723764i \(-0.742411\pi\)
−0.690048 + 0.723764i \(0.742411\pi\)
\(440\) 0 0
\(441\) 369.818 0.0399328
\(442\) 0 0
\(443\) −1465.19 −0.157141 −0.0785704 0.996909i \(-0.525036\pi\)
−0.0785704 + 0.996909i \(0.525036\pi\)
\(444\) 0 0
\(445\) 8054.36 0.858007
\(446\) 0 0
\(447\) −2027.94 −0.214582
\(448\) 0 0
\(449\) 18063.8 1.89862 0.949312 0.314336i \(-0.101782\pi\)
0.949312 + 0.314336i \(0.101782\pi\)
\(450\) 0 0
\(451\) 9710.27 1.01383
\(452\) 0 0
\(453\) −11311.7 −1.17322
\(454\) 0 0
\(455\) 597.737 0.0615876
\(456\) 0 0
\(457\) 12527.9 1.28234 0.641172 0.767397i \(-0.278448\pi\)
0.641172 + 0.767397i \(0.278448\pi\)
\(458\) 0 0
\(459\) −8702.50 −0.884963
\(460\) 0 0
\(461\) 9493.78 0.959153 0.479576 0.877500i \(-0.340790\pi\)
0.479576 + 0.877500i \(0.340790\pi\)
\(462\) 0 0
\(463\) −12422.3 −1.24690 −0.623448 0.781865i \(-0.714269\pi\)
−0.623448 + 0.781865i \(0.714269\pi\)
\(464\) 0 0
\(465\) 108.941 0.0108646
\(466\) 0 0
\(467\) −2687.23 −0.266275 −0.133137 0.991098i \(-0.542505\pi\)
−0.133137 + 0.991098i \(0.542505\pi\)
\(468\) 0 0
\(469\) −7611.68 −0.749413
\(470\) 0 0
\(471\) 5495.74 0.537644
\(472\) 0 0
\(473\) −11330.9 −1.10147
\(474\) 0 0
\(475\) −2373.14 −0.229236
\(476\) 0 0
\(477\) 7924.21 0.760639
\(478\) 0 0
\(479\) 6265.59 0.597666 0.298833 0.954305i \(-0.403403\pi\)
0.298833 + 0.954305i \(0.403403\pi\)
\(480\) 0 0
\(481\) −1976.87 −0.187396
\(482\) 0 0
\(483\) −3519.71 −0.331579
\(484\) 0 0
\(485\) 2516.00 0.235558
\(486\) 0 0
\(487\) −2182.45 −0.203073 −0.101536 0.994832i \(-0.532376\pi\)
−0.101536 + 0.994832i \(0.532376\pi\)
\(488\) 0 0
\(489\) −8653.48 −0.800254
\(490\) 0 0
\(491\) 12012.1 1.10407 0.552033 0.833822i \(-0.313852\pi\)
0.552033 + 0.833822i \(0.313852\pi\)
\(492\) 0 0
\(493\) 1802.93 0.164706
\(494\) 0 0
\(495\) 4413.03 0.400709
\(496\) 0 0
\(497\) 18151.0 1.63820
\(498\) 0 0
\(499\) −5124.94 −0.459767 −0.229883 0.973218i \(-0.573834\pi\)
−0.229883 + 0.973218i \(0.573834\pi\)
\(500\) 0 0
\(501\) 2321.39 0.207010
\(502\) 0 0
\(503\) 11674.0 1.03482 0.517412 0.855736i \(-0.326896\pi\)
0.517412 + 0.855736i \(0.326896\pi\)
\(504\) 0 0
\(505\) −679.346 −0.0598624
\(506\) 0 0
\(507\) −6883.01 −0.602930
\(508\) 0 0
\(509\) −6986.81 −0.608418 −0.304209 0.952605i \(-0.598392\pi\)
−0.304209 + 0.952605i \(0.598392\pi\)
\(510\) 0 0
\(511\) 11936.7 1.03337
\(512\) 0 0
\(513\) 13287.6 1.14359
\(514\) 0 0
\(515\) −3799.01 −0.325057
\(516\) 0 0
\(517\) 22542.6 1.91765
\(518\) 0 0
\(519\) 13738.9 1.16199
\(520\) 0 0
\(521\) 3951.22 0.332257 0.166129 0.986104i \(-0.446873\pi\)
0.166129 + 0.986104i \(0.446873\pi\)
\(522\) 0 0
\(523\) 12384.7 1.03546 0.517730 0.855544i \(-0.326777\pi\)
0.517730 + 0.855544i \(0.326777\pi\)
\(524\) 0 0
\(525\) 1432.20 0.119059
\(526\) 0 0
\(527\) 423.606 0.0350144
\(528\) 0 0
\(529\) −8392.24 −0.689754
\(530\) 0 0
\(531\) −5628.24 −0.459971
\(532\) 0 0
\(533\) −1231.50 −0.100079
\(534\) 0 0
\(535\) −1390.33 −0.112353
\(536\) 0 0
\(537\) −7065.36 −0.567770
\(538\) 0 0
\(539\) 1159.99 0.0926978
\(540\) 0 0
\(541\) 18209.6 1.44712 0.723561 0.690261i \(-0.242504\pi\)
0.723561 + 0.690261i \(0.242504\pi\)
\(542\) 0 0
\(543\) 5818.22 0.459823
\(544\) 0 0
\(545\) −6571.23 −0.516478
\(546\) 0 0
\(547\) −6706.17 −0.524196 −0.262098 0.965041i \(-0.584414\pi\)
−0.262098 + 0.965041i \(0.584414\pi\)
\(548\) 0 0
\(549\) 8510.39 0.661593
\(550\) 0 0
\(551\) −2752.85 −0.212841
\(552\) 0 0
\(553\) −1482.26 −0.113982
\(554\) 0 0
\(555\) −4736.64 −0.362269
\(556\) 0 0
\(557\) −2253.63 −0.171435 −0.0857177 0.996319i \(-0.527318\pi\)
−0.0857177 + 0.996319i \(0.527318\pi\)
\(558\) 0 0
\(559\) 1437.04 0.108730
\(560\) 0 0
\(561\) −10460.2 −0.787217
\(562\) 0 0
\(563\) −11102.2 −0.831091 −0.415545 0.909572i \(-0.636409\pi\)
−0.415545 + 0.909572i \(0.636409\pi\)
\(564\) 0 0
\(565\) 1726.84 0.128581
\(566\) 0 0
\(567\) 94.9208 0.00703051
\(568\) 0 0
\(569\) 5931.20 0.436992 0.218496 0.975838i \(-0.429885\pi\)
0.218496 + 0.975838i \(0.429885\pi\)
\(570\) 0 0
\(571\) 20111.2 1.47395 0.736976 0.675919i \(-0.236253\pi\)
0.736976 + 0.675919i \(0.236253\pi\)
\(572\) 0 0
\(573\) 2292.42 0.167133
\(574\) 0 0
\(575\) −1535.98 −0.111399
\(576\) 0 0
\(577\) −8488.16 −0.612421 −0.306210 0.951964i \(-0.599061\pi\)
−0.306210 + 0.951964i \(0.599061\pi\)
\(578\) 0 0
\(579\) 4670.98 0.335267
\(580\) 0 0
\(581\) −18305.9 −1.30716
\(582\) 0 0
\(583\) 24855.4 1.76571
\(584\) 0 0
\(585\) −559.680 −0.0395554
\(586\) 0 0
\(587\) 1833.65 0.128932 0.0644659 0.997920i \(-0.479466\pi\)
0.0644659 + 0.997920i \(0.479466\pi\)
\(588\) 0 0
\(589\) −646.793 −0.0452473
\(590\) 0 0
\(591\) −4285.97 −0.298310
\(592\) 0 0
\(593\) 2105.52 0.145806 0.0729032 0.997339i \(-0.476774\pi\)
0.0729032 + 0.997339i \(0.476774\pi\)
\(594\) 0 0
\(595\) 5568.94 0.383705
\(596\) 0 0
\(597\) −13242.1 −0.907810
\(598\) 0 0
\(599\) 908.499 0.0619704 0.0309852 0.999520i \(-0.490136\pi\)
0.0309852 + 0.999520i \(0.490136\pi\)
\(600\) 0 0
\(601\) −9802.80 −0.665332 −0.332666 0.943045i \(-0.607948\pi\)
−0.332666 + 0.943045i \(0.607948\pi\)
\(602\) 0 0
\(603\) 7127.05 0.481320
\(604\) 0 0
\(605\) 7187.10 0.482971
\(606\) 0 0
\(607\) 9792.26 0.654787 0.327394 0.944888i \(-0.393830\pi\)
0.327394 + 0.944888i \(0.393830\pi\)
\(608\) 0 0
\(609\) 1661.35 0.110544
\(610\) 0 0
\(611\) −2858.95 −0.189298
\(612\) 0 0
\(613\) 4093.99 0.269747 0.134873 0.990863i \(-0.456937\pi\)
0.134873 + 0.990863i \(0.456937\pi\)
\(614\) 0 0
\(615\) −2950.71 −0.193470
\(616\) 0 0
\(617\) −23664.7 −1.54409 −0.772045 0.635568i \(-0.780766\pi\)
−0.772045 + 0.635568i \(0.780766\pi\)
\(618\) 0 0
\(619\) 9143.61 0.593720 0.296860 0.954921i \(-0.404060\pi\)
0.296860 + 0.954921i \(0.404060\pi\)
\(620\) 0 0
\(621\) 8600.19 0.555738
\(622\) 0 0
\(623\) 28859.1 1.85588
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 15971.3 1.01728
\(628\) 0 0
\(629\) −18417.9 −1.16752
\(630\) 0 0
\(631\) 27746.1 1.75049 0.875243 0.483684i \(-0.160701\pi\)
0.875243 + 0.483684i \(0.160701\pi\)
\(632\) 0 0
\(633\) 11743.8 0.737401
\(634\) 0 0
\(635\) 2930.30 0.183127
\(636\) 0 0
\(637\) −147.115 −0.00915054
\(638\) 0 0
\(639\) −16995.3 −1.05215
\(640\) 0 0
\(641\) 18111.0 1.11598 0.557990 0.829848i \(-0.311573\pi\)
0.557990 + 0.829848i \(0.311573\pi\)
\(642\) 0 0
\(643\) −5147.09 −0.315679 −0.157839 0.987465i \(-0.550453\pi\)
−0.157839 + 0.987465i \(0.550453\pi\)
\(644\) 0 0
\(645\) 3443.19 0.210194
\(646\) 0 0
\(647\) −25849.3 −1.57070 −0.785348 0.619055i \(-0.787516\pi\)
−0.785348 + 0.619055i \(0.787516\pi\)
\(648\) 0 0
\(649\) −17653.8 −1.06775
\(650\) 0 0
\(651\) 390.341 0.0235002
\(652\) 0 0
\(653\) −3407.37 −0.204197 −0.102099 0.994774i \(-0.532556\pi\)
−0.102099 + 0.994774i \(0.532556\pi\)
\(654\) 0 0
\(655\) 2015.38 0.120225
\(656\) 0 0
\(657\) −11176.7 −0.663693
\(658\) 0 0
\(659\) −20168.4 −1.19218 −0.596092 0.802916i \(-0.703281\pi\)
−0.596092 + 0.802916i \(0.703281\pi\)
\(660\) 0 0
\(661\) −20849.4 −1.22685 −0.613425 0.789753i \(-0.710209\pi\)
−0.613425 + 0.789753i \(0.710209\pi\)
\(662\) 0 0
\(663\) 1326.61 0.0777090
\(664\) 0 0
\(665\) −8503.06 −0.495841
\(666\) 0 0
\(667\) −1781.73 −0.103432
\(668\) 0 0
\(669\) −8582.06 −0.495967
\(670\) 0 0
\(671\) 26694.1 1.53579
\(672\) 0 0
\(673\) 22770.2 1.30420 0.652099 0.758133i \(-0.273888\pi\)
0.652099 + 0.758133i \(0.273888\pi\)
\(674\) 0 0
\(675\) −3499.48 −0.199548
\(676\) 0 0
\(677\) 109.708 0.00622812 0.00311406 0.999995i \(-0.499009\pi\)
0.00311406 + 0.999995i \(0.499009\pi\)
\(678\) 0 0
\(679\) 9014.91 0.509515
\(680\) 0 0
\(681\) 910.906 0.0512570
\(682\) 0 0
\(683\) 24062.9 1.34809 0.674043 0.738692i \(-0.264556\pi\)
0.674043 + 0.738692i \(0.264556\pi\)
\(684\) 0 0
\(685\) −13863.9 −0.773304
\(686\) 0 0
\(687\) 2564.55 0.142422
\(688\) 0 0
\(689\) −3152.28 −0.174299
\(690\) 0 0
\(691\) −2469.01 −0.135927 −0.0679635 0.997688i \(-0.521650\pi\)
−0.0679635 + 0.997688i \(0.521650\pi\)
\(692\) 0 0
\(693\) 15812.0 0.866739
\(694\) 0 0
\(695\) −4363.74 −0.238167
\(696\) 0 0
\(697\) −11473.5 −0.623515
\(698\) 0 0
\(699\) 4859.49 0.262951
\(700\) 0 0
\(701\) 21976.8 1.18410 0.592050 0.805901i \(-0.298319\pi\)
0.592050 + 0.805901i \(0.298319\pi\)
\(702\) 0 0
\(703\) 28121.8 1.50873
\(704\) 0 0
\(705\) −6850.14 −0.365945
\(706\) 0 0
\(707\) −2434.12 −0.129483
\(708\) 0 0
\(709\) −12148.5 −0.643509 −0.321755 0.946823i \(-0.604273\pi\)
−0.321755 + 0.946823i \(0.604273\pi\)
\(710\) 0 0
\(711\) 1387.89 0.0732065
\(712\) 0 0
\(713\) −418.626 −0.0219883
\(714\) 0 0
\(715\) −1755.52 −0.0918219
\(716\) 0 0
\(717\) 1993.24 0.103820
\(718\) 0 0
\(719\) −30341.3 −1.57377 −0.786885 0.617100i \(-0.788307\pi\)
−0.786885 + 0.617100i \(0.788307\pi\)
\(720\) 0 0
\(721\) −13612.0 −0.703103
\(722\) 0 0
\(723\) −6084.38 −0.312975
\(724\) 0 0
\(725\) 725.000 0.0371391
\(726\) 0 0
\(727\) −34508.1 −1.76043 −0.880217 0.474572i \(-0.842603\pi\)
−0.880217 + 0.474572i \(0.842603\pi\)
\(728\) 0 0
\(729\) 11996.7 0.609496
\(730\) 0 0
\(731\) 13388.5 0.677415
\(732\) 0 0
\(733\) 22674.2 1.14255 0.571275 0.820759i \(-0.306449\pi\)
0.571275 + 0.820759i \(0.306449\pi\)
\(734\) 0 0
\(735\) −352.491 −0.0176896
\(736\) 0 0
\(737\) 22355.0 1.11731
\(738\) 0 0
\(739\) −23215.0 −1.15559 −0.577793 0.816183i \(-0.696086\pi\)
−0.577793 + 0.816183i \(0.696086\pi\)
\(740\) 0 0
\(741\) −2025.56 −0.100419
\(742\) 0 0
\(743\) 32946.8 1.62679 0.813393 0.581714i \(-0.197618\pi\)
0.813393 + 0.581714i \(0.197618\pi\)
\(744\) 0 0
\(745\) −3170.91 −0.155937
\(746\) 0 0
\(747\) 17140.4 0.839539
\(748\) 0 0
\(749\) −4981.59 −0.243022
\(750\) 0 0
\(751\) 31354.7 1.52350 0.761750 0.647872i \(-0.224341\pi\)
0.761750 + 0.647872i \(0.224341\pi\)
\(752\) 0 0
\(753\) 3400.20 0.164555
\(754\) 0 0
\(755\) −17687.1 −0.852582
\(756\) 0 0
\(757\) 5133.20 0.246459 0.123229 0.992378i \(-0.460675\pi\)
0.123229 + 0.992378i \(0.460675\pi\)
\(758\) 0 0
\(759\) 10337.2 0.494356
\(760\) 0 0
\(761\) 1128.72 0.0537664 0.0268832 0.999639i \(-0.491442\pi\)
0.0268832 + 0.999639i \(0.491442\pi\)
\(762\) 0 0
\(763\) −23545.0 −1.11715
\(764\) 0 0
\(765\) −5214.37 −0.246439
\(766\) 0 0
\(767\) 2238.93 0.105402
\(768\) 0 0
\(769\) 7523.51 0.352802 0.176401 0.984318i \(-0.443554\pi\)
0.176401 + 0.984318i \(0.443554\pi\)
\(770\) 0 0
\(771\) 7854.94 0.366911
\(772\) 0 0
\(773\) 16606.5 0.772696 0.386348 0.922353i \(-0.373736\pi\)
0.386348 + 0.922353i \(0.373736\pi\)
\(774\) 0 0
\(775\) 170.342 0.00789530
\(776\) 0 0
\(777\) −16971.6 −0.783593
\(778\) 0 0
\(779\) 17518.6 0.805736
\(780\) 0 0
\(781\) −53308.3 −2.44241
\(782\) 0 0
\(783\) −4059.39 −0.185276
\(784\) 0 0
\(785\) 8593.20 0.390706
\(786\) 0 0
\(787\) −8302.34 −0.376044 −0.188022 0.982165i \(-0.560208\pi\)
−0.188022 + 0.982165i \(0.560208\pi\)
\(788\) 0 0
\(789\) −2969.81 −0.134003
\(790\) 0 0
\(791\) 6187.32 0.278123
\(792\) 0 0
\(793\) −3385.46 −0.151603
\(794\) 0 0
\(795\) −7552.95 −0.336950
\(796\) 0 0
\(797\) 3798.67 0.168828 0.0844139 0.996431i \(-0.473098\pi\)
0.0844139 + 0.996431i \(0.473098\pi\)
\(798\) 0 0
\(799\) −26636.0 −1.17937
\(800\) 0 0
\(801\) −27021.7 −1.19196
\(802\) 0 0
\(803\) −35057.5 −1.54066
\(804\) 0 0
\(805\) −5503.46 −0.240959
\(806\) 0 0
\(807\) −22289.7 −0.972285
\(808\) 0 0
\(809\) 14597.8 0.634401 0.317201 0.948358i \(-0.397257\pi\)
0.317201 + 0.948358i \(0.397257\pi\)
\(810\) 0 0
\(811\) −30975.4 −1.34118 −0.670588 0.741830i \(-0.733958\pi\)
−0.670588 + 0.741830i \(0.733958\pi\)
\(812\) 0 0
\(813\) 20961.3 0.904238
\(814\) 0 0
\(815\) −13530.7 −0.581545
\(816\) 0 0
\(817\) −20442.5 −0.875388
\(818\) 0 0
\(819\) −2005.35 −0.0855589
\(820\) 0 0
\(821\) 28057.6 1.19271 0.596355 0.802721i \(-0.296615\pi\)
0.596355 + 0.802721i \(0.296615\pi\)
\(822\) 0 0
\(823\) −22257.8 −0.942718 −0.471359 0.881941i \(-0.656236\pi\)
−0.471359 + 0.881941i \(0.656236\pi\)
\(824\) 0 0
\(825\) −4206.27 −0.177507
\(826\) 0 0
\(827\) 26900.2 1.13109 0.565546 0.824717i \(-0.308666\pi\)
0.565546 + 0.824717i \(0.308666\pi\)
\(828\) 0 0
\(829\) −30057.2 −1.25926 −0.629631 0.776894i \(-0.716794\pi\)
−0.629631 + 0.776894i \(0.716794\pi\)
\(830\) 0 0
\(831\) −13946.7 −0.582197
\(832\) 0 0
\(833\) −1370.62 −0.0570099
\(834\) 0 0
\(835\) 3629.75 0.150434
\(836\) 0 0
\(837\) −953.771 −0.0393873
\(838\) 0 0
\(839\) 20278.8 0.834450 0.417225 0.908803i \(-0.363003\pi\)
0.417225 + 0.908803i \(0.363003\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) 0 0
\(843\) 26022.4 1.06318
\(844\) 0 0
\(845\) −10762.4 −0.438150
\(846\) 0 0
\(847\) 25751.6 1.04467
\(848\) 0 0
\(849\) −24426.0 −0.987394
\(850\) 0 0
\(851\) 18201.4 0.733179
\(852\) 0 0
\(853\) −28158.6 −1.13028 −0.565141 0.824994i \(-0.691178\pi\)
−0.565141 + 0.824994i \(0.691178\pi\)
\(854\) 0 0
\(855\) 7961.68 0.318461
\(856\) 0 0
\(857\) 20284.0 0.808506 0.404253 0.914647i \(-0.367532\pi\)
0.404253 + 0.914647i \(0.367532\pi\)
\(858\) 0 0
\(859\) −33964.6 −1.34908 −0.674538 0.738240i \(-0.735657\pi\)
−0.674538 + 0.738240i \(0.735657\pi\)
\(860\) 0 0
\(861\) −10572.5 −0.418478
\(862\) 0 0
\(863\) −753.223 −0.0297103 −0.0148552 0.999890i \(-0.504729\pi\)
−0.0148552 + 0.999890i \(0.504729\pi\)
\(864\) 0 0
\(865\) 21482.3 0.844417
\(866\) 0 0
\(867\) −3350.85 −0.131258
\(868\) 0 0
\(869\) 4353.31 0.169938
\(870\) 0 0
\(871\) −2835.16 −0.110294
\(872\) 0 0
\(873\) −8440.95 −0.327243
\(874\) 0 0
\(875\) 2239.40 0.0865205
\(876\) 0 0
\(877\) −34014.3 −1.30967 −0.654836 0.755771i \(-0.727262\pi\)
−0.654836 + 0.755771i \(0.727262\pi\)
\(878\) 0 0
\(879\) 14.0102 0.000537602 0
\(880\) 0 0
\(881\) −39180.0 −1.49830 −0.749152 0.662398i \(-0.769539\pi\)
−0.749152 + 0.662398i \(0.769539\pi\)
\(882\) 0 0
\(883\) −17470.1 −0.665818 −0.332909 0.942959i \(-0.608030\pi\)
−0.332909 + 0.942959i \(0.608030\pi\)
\(884\) 0 0
\(885\) 5364.55 0.203760
\(886\) 0 0
\(887\) 23954.8 0.906792 0.453396 0.891309i \(-0.350212\pi\)
0.453396 + 0.891309i \(0.350212\pi\)
\(888\) 0 0
\(889\) 10499.4 0.396106
\(890\) 0 0
\(891\) −278.777 −0.0104819
\(892\) 0 0
\(893\) 40669.8 1.52404
\(894\) 0 0
\(895\) −11047.5 −0.412599
\(896\) 0 0
\(897\) −1311.01 −0.0487996
\(898\) 0 0
\(899\) 197.597 0.00733060
\(900\) 0 0
\(901\) −29368.8 −1.08592
\(902\) 0 0
\(903\) 12337.1 0.454653
\(904\) 0 0
\(905\) 9097.44 0.334154
\(906\) 0 0
\(907\) −14323.5 −0.524371 −0.262186 0.965017i \(-0.584443\pi\)
−0.262186 + 0.965017i \(0.584443\pi\)
\(908\) 0 0
\(909\) 2279.15 0.0831623
\(910\) 0 0
\(911\) 12582.2 0.457593 0.228796 0.973474i \(-0.426521\pi\)
0.228796 + 0.973474i \(0.426521\pi\)
\(912\) 0 0
\(913\) 53763.4 1.94886
\(914\) 0 0
\(915\) −8111.66 −0.293075
\(916\) 0 0
\(917\) 7221.20 0.260049
\(918\) 0 0
\(919\) −24674.7 −0.885683 −0.442842 0.896600i \(-0.646030\pi\)
−0.442842 + 0.896600i \(0.646030\pi\)
\(920\) 0 0
\(921\) −25428.1 −0.909756
\(922\) 0 0
\(923\) 6760.80 0.241099
\(924\) 0 0
\(925\) −7406.27 −0.263261
\(926\) 0 0
\(927\) 12745.3 0.451577
\(928\) 0 0
\(929\) −4197.11 −0.148227 −0.0741135 0.997250i \(-0.523613\pi\)
−0.0741135 + 0.997250i \(0.523613\pi\)
\(930\) 0 0
\(931\) 2092.77 0.0736709
\(932\) 0 0
\(933\) −30989.6 −1.08741
\(934\) 0 0
\(935\) −16355.6 −0.572071
\(936\) 0 0
\(937\) −39945.1 −1.39269 −0.696345 0.717707i \(-0.745192\pi\)
−0.696345 + 0.717707i \(0.745192\pi\)
\(938\) 0 0
\(939\) −6226.45 −0.216392
\(940\) 0 0
\(941\) −24254.1 −0.840235 −0.420117 0.907470i \(-0.638011\pi\)
−0.420117 + 0.907470i \(0.638011\pi\)
\(942\) 0 0
\(943\) 11338.6 0.391555
\(944\) 0 0
\(945\) −12538.7 −0.431625
\(946\) 0 0
\(947\) 22187.2 0.761338 0.380669 0.924711i \(-0.375694\pi\)
0.380669 + 0.924711i \(0.375694\pi\)
\(948\) 0 0
\(949\) 4446.15 0.152084
\(950\) 0 0
\(951\) 11566.6 0.394399
\(952\) 0 0
\(953\) 16582.0 0.563634 0.281817 0.959468i \(-0.409063\pi\)
0.281817 + 0.959468i \(0.409063\pi\)
\(954\) 0 0
\(955\) 3584.46 0.121456
\(956\) 0 0
\(957\) −4879.27 −0.164811
\(958\) 0 0
\(959\) −49674.9 −1.67267
\(960\) 0 0
\(961\) −29744.6 −0.998442
\(962\) 0 0
\(963\) 4664.42 0.156084
\(964\) 0 0
\(965\) 7303.60 0.243639
\(966\) 0 0
\(967\) 39863.3 1.32567 0.662833 0.748768i \(-0.269354\pi\)
0.662833 + 0.748768i \(0.269354\pi\)
\(968\) 0 0
\(969\) −18871.5 −0.625635
\(970\) 0 0
\(971\) 7854.55 0.259593 0.129796 0.991541i \(-0.458568\pi\)
0.129796 + 0.991541i \(0.458568\pi\)
\(972\) 0 0
\(973\) −15635.5 −0.515159
\(974\) 0 0
\(975\) 533.458 0.0175224
\(976\) 0 0
\(977\) 26872.1 0.879954 0.439977 0.898009i \(-0.354987\pi\)
0.439977 + 0.898009i \(0.354987\pi\)
\(978\) 0 0
\(979\) −84757.3 −2.76696
\(980\) 0 0
\(981\) 22045.9 0.717504
\(982\) 0 0
\(983\) −29487.8 −0.956781 −0.478390 0.878147i \(-0.658780\pi\)
−0.478390 + 0.878147i \(0.658780\pi\)
\(984\) 0 0
\(985\) −6701.59 −0.216782
\(986\) 0 0
\(987\) −24544.3 −0.791543
\(988\) 0 0
\(989\) −13231.0 −0.425402
\(990\) 0 0
\(991\) 23743.6 0.761092 0.380546 0.924762i \(-0.375736\pi\)
0.380546 + 0.924762i \(0.375736\pi\)
\(992\) 0 0
\(993\) 19024.3 0.607975
\(994\) 0 0
\(995\) −20705.5 −0.659706
\(996\) 0 0
\(997\) −16962.5 −0.538824 −0.269412 0.963025i \(-0.586829\pi\)
−0.269412 + 0.963025i \(0.586829\pi\)
\(998\) 0 0
\(999\) 41468.9 1.31333
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1160.4.a.d.1.7 9
4.3 odd 2 2320.4.a.y.1.3 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1160.4.a.d.1.7 9 1.1 even 1 trivial
2320.4.a.y.1.3 9 4.3 odd 2